1
|
Bidikian A, Bewersdorf JP, Shallis RM, Getz TM, Stempel JM, Kewan T, Stahl M, Zeidan AM. Targeted therapies for myelodysplastic syndromes/neoplasms (MDS): current landscape and future directions. Expert Rev Anticancer Ther 2024; 24:1131-1146. [PMID: 39367718 DOI: 10.1080/14737140.2024.2414071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematologic malignancies that are stratified into high-risk (HR-MDS) and low-risk (LR-MDS) categories. Until recently, LR-MDS has been typically managed by supportive measures and erythropoiesis-stimulating agents (ESAs); whereas management of HR-MDS typically included hypomethylating agents and allogeneic hematopoietic stem cell transplant. However, the limited rates and durations of response observed with these interventions prompted the search for targeted therapies to improve the outcomes among patients with MDS. AREAS COVERED Here, we review the current landscape of targeted therapies in MDS. These include pyruvate kinase and hypoxia-inducible factor (HIF) activators; TGF-beta, telomerase, BCL2 and isocitrate dehydrogenase (IDH) inhibitors; as well as novel approaches targeting inflammation, pyroptosis, immune evasion, and RNA splicing machinery. EXPERT OPINION This review highlights the progress and challenges in MDS treatment. Despite some promising results, many therapies remain in early development or have faced setbacks, emphasizing the need for a more comprehensive understanding of the disease's pathobiology. Continued research into targeted therapies, homogenous clinical trial designs, as well as increased incorporation of molecular prognostic tools and artificial intelligence into trial design are essential for developing effective treatments for MDS and improving patient outcomes.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
2
|
Abba ML, Riabov V, Nowak D, Hofmann WK, Boch T. Understanding iron homeostasis in MDS: the role of erythroferrone. Front Oncol 2024; 14:1404817. [PMID: 38835379 PMCID: PMC11148345 DOI: 10.3389/fonc.2024.1404817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous group of clonal stem cell disorders characterized by dysplasia and cytopenia in one or more cell lineages. Anemia is a very common symptom that is often treated with blood transfusions and/or erythropoiesis stimulating factors. Iron overload results from a combination of these factors together with the disease-associated ineffective erythropoiesis, that is seen especially in MDS cases with SF3B1 mutations. A growing body of research has shown that erythroferrone is an important regulator of hepcidin, the master regulator of systemic iron homeostasis. Consequently, it is of interest to understand how this molecule contributes to regulating the iron balance in MDS patients. This short review evaluates our current understanding of erythroferrone in general, but more specifically in MDS and seeks to place in context how the current knowledge could be utilized for prognostication and therapy.
Collapse
Affiliation(s)
- Mohammed L Abba
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Hematology and Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
3
|
Awidi A, Alzu'bi M, Odeh N, Alrawabdeh J, Al Zyoud M, Hamadneh Y, Bawa'neh H, Magableh A, Alshorman A, Al-Fararjeh F, Aladily T, Zeidan AM. Myelodysplastic Syndromes and Myelodysplastic Syndromes/Myeloproliferative Neoplasms: A Real-World Experience From a Developing Country. JCO Glob Oncol 2024; 10:e2300281. [PMID: 38422464 PMCID: PMC10914245 DOI: 10.1200/go.23.00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Myelodysplastic syndromes (MDS) include a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis. They manifest as dysplasia in bone marrow hemopoietic elements associated with peripheral cytopenias with variable risk of AML transformation. PATIENTS AND METHODS We analyzed retrospectively registry data collected prospectively from patients with primary MDS and patients with MDS/myeloproliferative neoplasm (MPN) in the Jordan University Hospital between January 2007 and September 2021. The registry captured epidemiologic information such as date of diagnosis, age, gender, date of AML transformation, cytogenetics, MDS subtype, risk group according to Revised International Prognostic Scoring System, and survival. The registry also captured baseline ferritin, B12, and lactate dehydrogenase levels. RESULTS A total of 112 patients with MDS and MDS/MPN were included in the registry. Median age at diagnosis was 59 years. The male-to-female ratio was about 1.2. In a multivariate cox regression model, baseline serum ferritin significantly affected survival as patients with levels exceeding 1,000 μg/L had a risk of death three times higher compared with those with <1,000 μg/L levels (P < .05). CONCLUSION To our knowledge, our study is the first comprehensive study examining the epidemiology and prognostic factors in patients with MDS and patients with MDS/MPN in Jordan. Our results show that MDS and MDS/MPN epidemiology in Jordan is different compared with Western countries. Our results also show that baseline serum ferritin levels can be used as a prognostic marker for patients with MDS.
Collapse
Affiliation(s)
- Abdalla Awidi
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
- Cell Therapy Center, University of Jordan, Amman, Jordan
| | | | - Nada Odeh
- Medical School, University of Jordan, Amman, Jordan
| | | | | | | | | | | | - Alaa Alshorman
- Jordan University Hospital, Amman, Jordan
- Al-Basheer Hospital, Ministry of Health, Amman, Jordan
| | - Feras Al-Fararjeh
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Tariq Aladily
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Amer M. Zeidan
- Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Słomka A, Pokrzywa A, Strzała D, Kubiaczyk M, Wesolowska O, Denkiewicz K, Styczyński J. The Role of Hepcidin in Myelodysplastic Syndromes (MDS): A Systematic Review of Observational Studies. Cancers (Basel) 2024; 16:332. [PMID: 38254820 PMCID: PMC10814117 DOI: 10.3390/cancers16020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Iron overload emerges as a serious complication in myelodysplastic syndromes (MDS), particularly associated with frequent transfusions during the course of the disease. The discovery and description of hepcidin's mechanisms of action have contributed to a deeper understanding of iron metabolism. The existing literature reports a potential role of hepcidin in MDS, yet these data are fragmented and presented in an unstructured, somewhat chaotic manner. Hence, to address the existing data, we performed a systematic review of observational studies examining hepcidin levels in MDS. An extensive review of three bibliographic databases (Pubmed, Web of Science, and Scopus) enabled us to identify 12 observational studies. These studies focused primarily on adult patients with low-risk MDS who underwent transfusions and chelation therapy. An in-depth analysis of these manuscripts led to four main conclusions: (1) although high serum hepcidin levels are associated with MDS, most studies generally have not found a significant difference in these levels between patients and healthy individuals; (2) serum hepcidin levels are specific to MDS type; (3) serum hepcidin levels in MDS are strongly associated with transfusions and the genetic status of patients; and (4) high-risk MDS is associated with high serum hepcidin levels. While we have furnished a comprehensive summary of the significance of hepcidin in MDS, there are still gaps that future research should address. This pertains primarily to the capacity of hepcidin in predicting adverse outcomes for MDS patients and evaluating the efficacy of chelation therapy or the need for transfusion.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Anna Pokrzywa
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Dominika Strzała
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Maja Kubiaczyk
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Oliwia Wesolowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Kinga Denkiewicz
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (A.P.); (D.S.); (M.K.); (O.W.); (K.D.)
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Schulz F, Hauch U, Ketzler-Henkel S, von der Heyde E, Koenigsmann M, Lauseker M, Schulte N, Germing U. Iron Chelation in Patients with Myelodysplastic Syndromes and Myeloproliferative Neoplasms-Real-World Data from the German Noninterventional Study EXCALIBUR. J Clin Med 2023; 12:6569. [PMID: 37892707 PMCID: PMC10607194 DOI: 10.3390/jcm12206569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Myelodysplastic syndromes and myeloproliferative neoplasms both represent hematologic diseases associated with bone marrow failure often resulting in anemia. For those patients, transfusion of red blood cell (RBC) units is essential but results in iron overload (IOL) that may affect various organ functions. Therefore, iron chelation therapy plays a major role in anemic patients, not only because it reduces IOL, but also because it may improve hematopoietic function by increasing hemoglobin or diminishing the requirement for RBC transfusions. To assess the utility, efficacy, and safety of the different iron chelation medications approved in Germany, as well as to examine the effect of chelation on hematopoietic insufficiency, a prospective, multicenter, noninterventional study named EXCALIBUR was designed. In total, 502 patients from 106 German hospitals and medical practices were enrolled. A large proportion of patients switched from a deferasirox dispersible tablet to a deferasirox-film-coated tablet, mainly because of more convenient application, which was reflected in the treatment satisfaction questionnaire for medication scores. Iron chelation was effective in lowering serum ferritin levels, with the observed adverse drug reactions being in line with the known safety profile. Hematologic response occurred in a few patients, comparable to other studies that examined hematologic improvement in patients with MDS.
Collapse
Affiliation(s)
- Felicitas Schulz
- Department for Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, 40225 Düsseldorf, Germany;
| | - Ulrich Hauch
- Practice for Hematology and Oncology, 99084 Erfurt, Germany
| | | | | | | | - Michael Lauseker
- Institut für Medizinische Informationsverarbeitung Biometrie und Epidemiologie (IBE), Fakultät für Medizin, Ludwig-Maximilians Universität München, 81377 Munich, Germany;
| | | | - Ulrich Germing
- Department for Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
6
|
Tomosugi N, Koshino Y, Ogawa C, Maeda K, Shimada N, Tomita K, Daimon S, Shikano T, Ryu K, Takatani T, Sakamoto K, Ueyama S, Nagasaku D, Nakamura M, Ra S, Nishimura M, Takagi C, Ishii Y, Kudo N, Takechi S, Ishizu T, Yanagawa T, Fukuda M, Nitta Y, Yamaoka T, Saito T, Imayoshi S, Omata M, Oshima J, Onozaki A, Ichihashi H, Matsushima Y, Takae H, Nakazawa R, Ikeda K, Tsuboi M, Konishi K, Kato S, Ooura M, Koyama M, Naganuma T, Ogi M, Katayama S, Okumura T, Kameda S, Shirai S. Oral Iron Absorption of Ferric Citrate Hydrate and Hepcidin-25 in Hemodialysis Patients: A Prospective, Multicenter, Observational Riona-Oral Iron Absorption Trial. Int J Mol Sci 2023; 24:13779. [PMID: 37762085 PMCID: PMC10531220 DOI: 10.3390/ijms241813779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Oral ferric citrate hydrate (FCH) is effective for iron deficiencies in hemodialysis patients; however, how iron balance in the body affects iron absorption in the intestinal tract remains unclear. This prospective observational study (Riona-Oral Iron Absorption Trial, R-OIAT, UMIN 000031406) was conducted at 42 hemodialysis centers in Japan, wherein 268 hemodialysis patients without inflammation were enrolled and treated with a fixed amount of FCH for 6 months. We assessed the predictive value of hepcidin-25 for iron absorption and iron shift between ferritin (FTN) and red blood cells (RBCs) following FCH therapy. Serum iron changes at 2 h (ΔFe2h) after FCH ingestion were evaluated as iron absorption. The primary outcome was the quantitative delineation of iron variables with respect to ΔFe2h, and the secondary outcome was the description of the predictors of the body's iron balance. Generalized estimating equations (GEEs) were used to identify the determinants of iron absorption during each phase of FCH treatment. ΔFe2h increased when hepcidin-25 and TSAT decreased (-0.459, -0.643 to -0.276, p = 0.000; -0.648, -1.099 to -0.197, p = 0.005, respectively) in GEEs. FTN increased when RBCs decreased (-1.392, -1.749 to -1.035, p = 0.000) and hepcidin-25 increased (0.297, 0.239 to 0.355, p = 0.000). Limiting erythropoiesis to maintain hemoglobin levels induces RBC reduction in hemodialysis patients, resulting in increased hepcidin-25 and FTN levels. Hepcidin-25 production may prompt an iron shift from RBC iron to FTN iron, inhibiting iron absorption even with continued FCH intake.
Collapse
Affiliation(s)
- Naohisa Tomosugi
- Division of Systems Bioscience for Drug Discovery, Project Research Center, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | | | - Chie Ogawa
- Maeda Institute of Renal Research Musashikosugi, Kawasaki 211-0063, Kanagawa, Japan;
| | - Kunimi Maeda
- Maeda Institute of Renal Research Shakujii, Nerima 177-0041, Tokyo, Japan;
| | | | - Kimio Tomita
- The Chronic Kidney Disease Research Center, Tomei Atsugi General Hospital, Atsugi 243-8571, Kanagawa, Japan;
| | - Shoichiro Daimon
- Department of Nephrology, Daimon Clinic for Internal Medicine, Nonoichi 921-8802, Ishikawa, Japan;
| | - Tsutomu Shikano
- Kyoto Okamoto Memorial Hospital, Kuze 613-0034, Kyoto, Japan; (T.S.); (K.R.)
| | - Kazuyuki Ryu
- Kyoto Okamoto Memorial Hospital, Kuze 613-0034, Kyoto, Japan; (T.S.); (K.R.)
| | - Toru Takatani
- Nephrology Division, Tojinkai Hospital, Fushimi 612-8026, Kyoto, Japan;
| | - Kazuya Sakamoto
- Department of Urology, Tomakomai Nisshou Hospital, Tomakomai 053-0803, Hokkaido, Japan;
| | - Satonori Ueyama
- Jinaikai Ueyama Hospital, Kagoshima 890-0073, Kagoshima, Japan;
| | | | | | - Shibun Ra
- Noheji Clinic, Noheji 039-3152, Aomori, Japan;
| | | | | | - Yoji Ishii
- Nozatomon Clinic, Himeji 670-0011, Hyogo, Japan;
| | | | | | - Takashi Ishizu
- Department of Nephrology, Tsukuba Central Hospital, Ushiku 300-1211, Ibaraki, Japan; (T.I.); (T.Y.)
| | - Takamoto Yanagawa
- Department of Nephrology, Tsukuba Central Hospital, Ushiku 300-1211, Ibaraki, Japan; (T.I.); (T.Y.)
| | | | - Yutaka Nitta
- The Department of Nephrology, Saiseikai Shimonoseki General Hospital, Shimonoseki 759-6603, Yamaguchi, Japan; (Y.N.); (T.Y.)
| | - Takayuki Yamaoka
- The Department of Nephrology, Saiseikai Shimonoseki General Hospital, Shimonoseki 759-6603, Yamaguchi, Japan; (Y.N.); (T.Y.)
| | - Taku Saito
- Saito Memorial Hospital, Kawaguchi 332-0034, Saitama, Japan; (T.S.); (S.I.)
| | - Suzuko Imayoshi
- Saito Memorial Hospital, Kawaguchi 332-0034, Saitama, Japan; (T.S.); (S.I.)
| | - Momoyo Omata
- Department of Internal Medicine, Hachioji Azumacho Clinic, Hachioji-shi 192-0082, Tokyo, Japan;
| | - Joji Oshima
- Kubojima Clinic, Kumagaya 360-0831, Saitama, Japan;
| | - Akira Onozaki
- Tokatsu-Clinic Hospital, Matsudo 271-0067, Chiba, Japan;
| | | | | | | | | | - Koichi Ikeda
- Tokatsu Clinic Koiwa, Edogawa 133-0056, Tokyo, Japan;
| | - Masato Tsuboi
- Kaikoukai Anjo Kyoritsu Clinic, Anjo 446-0065, Aichi, Japan;
| | | | - Shouzaburo Kato
- Nishi Interchange Clinic for Internal Medicine and Dialysis, Kanazawa 921-8001, Ishikawa, Japan;
| | - Maki Ooura
- Maro Clinic, Tanabe 646-0004, Wakayama, Japan;
| | | | - Tsukasa Naganuma
- Department of Nephrology, Yamanashi Prefectural Central Hospital, Kofu 400-0027, Yamanashi, Japan;
| | - Makoto Ogi
- Department of Internal Medicine, Yuurinkouseikai Fuji Hospital, Gotemba 412-0043, Shizuoka, Japan;
| | | | | | - Shigemi Kameda
- Joetsu General Hospital, Joetsu 943-8507, Niigata, Japan;
| | - Sayuri Shirai
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University Yokohama Seibu Hospital, Yokohama 241-0811, Kanagawa, Japan;
| |
Collapse
|
7
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
8
|
Stempel JM, Podoltsev NA, Dosani T. Supportive Care for Patients With Myelodysplastic Syndromes. Cancer J 2023; 29:168-178. [PMID: 37195773 DOI: 10.1097/ppo.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes are a heterogeneous group of bone marrow disorders characterized by ineffective hematopoiesis, progressive cytopenias, and an innate capability of progressing to acute myeloid leukemia. The most common causes of morbidity and mortality are complications related to myelodysplastic syndromes rather than progression to acute myeloid leukemia. Although supportive care measures are applicable to all patients with myelodysplastic syndromes, they are especially essential in patients with lower-risk disease who have a better prognosis compared with their higher-risk counterparts and require longer-term monitoring of disease and treatment-related complications. In this review, we will address the most frequent complications and supportive care interventions used in patients with myelodysplastic syndromes, including transfusion support, management of iron overload, antimicrobial prophylaxis, important considerations in the era of COVID-19 (coronavirus infectious disease 2019), role of routine immunizations, and palliative care in the myelodysplastic syndrome population.
Collapse
|
9
|
Ginzburg YZ. Hepcidin and its multiple partners: Complex regulation of iron metabolism in health and disease. VITAMINS AND HORMONES 2023; 123:249-284. [PMID: 37717987 DOI: 10.1016/bs.vh.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The peptide hormone hepcidin is central to the regulation of iron metabolism, influencing the movement of iron into the circulation and determining total body iron stores. Its effect on a cellular level involves binding ferroportin, the main iron export protein, preventing iron egress and leading to iron sequestration within ferroportin-expressing cells. Hepcidin expression is enhanced by iron loading and inflammation and suppressed by erythropoietic stimulation. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis as occurs in anemia of chronic inflammation. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload such as hereditary hemochromatosis and iron loading anemias. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we assess the complex regulation of hepcidin, delineate the many binding partners involved in its regulation, and present an update on the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United Sates.
| |
Collapse
|
10
|
Vittayawacharin P, Kongtim P, Ciurea SO. Allogeneic stem cell transplantation for patients with myelodysplastic syndromes. Am J Hematol 2023; 98:322-337. [PMID: 36251347 DOI: 10.1002/ajh.26763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell neoplasms primarily affecting older persons, associated with dysplastic changes of bone marrow cells, peripheral cytopenias, and various risk of leukemic transformation. Although treatment with several drugs has shown improved disease control, allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment for MDS. The number of patients receiving a transplant, as well as survival, have increased past years because of the use of reduce-intensity conditioning regimens (RIC) as well as the use of haploidentical donors for transplantation. With treatment-related mortality as main limitation, pre-transplant evaluation is essential to assess risks for this older group of patients. In a recent randomized study, allo-HSCT with RIC for patients >50 years old with higher-risk MDS demonstrated superiority in survival compared with hypomethylating agents. Genetic mutations have been shown to significantly impact treatment outcomes including after transplant. Recently, a transplant-specific risk score (which includes age, donor type, performance status, cytogenetic category, recipient's cytomegalovirus status, percentage of blasts, and platelet count) has shown superiority in transplantation outcome prediction, compared with previous scoring systems. Survival remains low for most patients with TP53 mutations and novel treatment strategies are needed, such as administration of natural killer cells post-transplant, as there is no clear evidence that maintenance therapy after transplantation can improve outcomes.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, California, USA
| |
Collapse
|
11
|
Cappellini MD, Taher AT, Verma A, Shah F, Hermine O. Erythropoiesis in lower-risk myelodysplastic syndromes and beta-thalassemia. Blood Rev 2022; 59:101039. [PMID: 36577601 DOI: 10.1016/j.blre.2022.101039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The hematologic disorders myelodysplastic syndromes and beta-thalassemia are characterized by ineffective erythropoiesis and anemia, often managed with regular blood transfusions. Erythropoiesis, the process by which sufficient numbers of functional erythrocytes are produced from hematopoietic stem cells, is highly regulated, and defects can negatively affect the proliferation, differentiation, and survival of erythroid precursors. Treatments that directly target the underlying mechanisms of ineffective erythropoiesis are limited, and management of anemia with regular blood transfusions imposes a significant burden on patients, caregivers, and health care systems. There is therefore a strong unmet need for treatments that can restore effective erythropoiesis. Novel therapies are beginning to address this need by targeting a variety of mechanisms underlying erythropoiesis. Herein, we provide an overview of the role of ineffective erythropoiesis in myelodysplastic syndromes and beta-thalassemia, discuss unmet needs in targeting ineffective erythropoiesis, and describe current management strategies and emerging treatments for these disorders.
Collapse
Affiliation(s)
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Halim and Aida Daniel Academic and Clinical Center, Beirut, Lebanon.
| | - Amit Verma
- Albert Einstein College of Medicine, New York, NY, USA.
| | - Farrukh Shah
- Department of Haematology, Whittington Health NHS Trust, London, UK.
| | - Olivier Hermine
- Department of Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Cité, Paris, France; INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
12
|
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 2022; 139:3018-3029. [PMID: 34601591 PMCID: PMC11022970 DOI: 10.1182/blood.2021011338] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Pierre Brissot
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
| | - Ioav Cabantchik
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
| | - Graça Porto
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| | - on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society)
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| |
Collapse
|
13
|
Finelli C, Parisi S, Paolini S. Exploring the rationale for red cell transfusion in myelodysplastic syndrome patients: emerging data and future insights. Expert Rev Hematol 2022; 15:411-421. [PMID: 35549626 DOI: 10.1080/17474086.2022.2077721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Anemia is often present in mostly elderly patients with myelodysplastic syndromes (MDS), and is associated with a poorer outcome. Although Red blood cell (RBC) transfusions are the most immediate treatment, waiting for the response to disease-specific therapy, or in case of non-response, the choice of the optimal transfusion regimen is still controversial. AREAS COVERED The main objectives of RBC transfusion are the control of anemia-related symptoms and complications and the improvement of functional status and of health-related quality of life (HRQoL). However, RBC transfusions are associated with several negative clinical consequences, mainly adverse transfusion reactions and iron overload, which can be counteracted by iron chelation therapy. Recent few pilot prospective trials have shown a benefit, in terms of HRQoL, of more liberal transfusion regimens, with higher haemoglobin (Hb) targets, compared to conventional restrictive regimens, but these results need confirmation by larger studies. EXPERT OPINION : A patient-oriented RBC transfusion therapy in MDS patients must take into account several laboratory (Hb), clinical (age, comorbidities), psychological, family and social factors, and evaluation of HRQoL should become a fundamental parameter in assessing the clinical benefit of therapy. Many questions remain to be clarified, including why some patients report little benefit from transfusions.
Collapse
Affiliation(s)
- Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Stefania Paolini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| |
Collapse
|
14
|
Parisi S, Finelli C. Prognostic Factors and Clinical Considerations for Iron Chelation Therapy in Myelodysplastic Syndrome Patients. J Blood Med 2021; 12:1019-1030. [PMID: 34887690 PMCID: PMC8651046 DOI: 10.2147/jbm.s287876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) is an important tool in the treatment of transfusion-dependent lower-risk myelodysplastic syndrome (MDS) patients. ICT is effective in decreasing iron overload and consequently in limiting its detrimental effects on several organs, such as the heart, liver, and endocrine glands. Besides this effect, ICT also proved to be effective in improving peripheral cytopenia in a significant number of MDS patients, thus further increasing the clinical interest of this therapeutic tool. In the first part of the review, we will analyze the toxic effect of iron overload and its mechanism. Subsequently, we will revise the clinical role of ICT in various subsets of MDS patients (low, intermediate, and high risk MDS, patients who are candidates for allogeneic stem cell transplantation).
Collapse
Affiliation(s)
- Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
15
|
Zheng Q, Xu H, Song L, Yan Z, Sun M, Peng X, Jiang Y, Shi L, Zhang A, Wu Z, Lu J, Luo M. Integrated traditional Chinese and conventional medicine in the treatment of anemia due to lower-risk myelodysplastic syndrome: study protocol for a randomized placebo-controlled trial. Trials 2021; 22:712. [PMID: 34663434 PMCID: PMC8522070 DOI: 10.1186/s13063-021-05646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Erythropoiesis and iron homeostasis are closely related; anemia due to lower-risk myelodysplastic syndromes (MDS) remains difficult to treat. In the last decade, we have been committed to improving the regulation of iron metabolism using traditional Chinese medicine (TCM). Previous studies have found that the TCM Yi Gong San (YGS) can reduce the expression of transferrin by inhibiting hepcidin overexpression caused by inflammation, promote the outward transfer of intracellular iron, and improve the symptoms of anemia. Here, our study aimed to compare the efficacy of a conventional drug with YGS with that of conventional medicine with placebo to provide a scientific basis for making clinical decisions. Methods A prospective, multicenter, double-blinded, randomized controlled clinical trial will be conducted to evaluate the therapeutic efficacy of conventional medicine combined with YGS with that of conventional medicine alone in the treatment of MDS. A total of 60 patients would be enrolled in this study, with each treatment group (conventional medicine + YGS and conventional medicine + placebo) comprising 30 patients. Oral medication would be administered twice daily for 3 months. All patients would be followed up throughout the 3-month period. The primary outcome was measured by assessing blood hemoglobin level. The secondary outcome was measured by assessing TCM symptom score, iron metabolism, hepcidin levels, and inflammatory factors. Discussion This trial would aim to demonstrate the effectiveness and feasibility of YGS in the treatment of lower-risk MDS anemia, as well as its impact on inflammatory factors and iron metabolism in patients with lower-risk MDS. Trial registration Chinese Clinical Trials Registry (http://www.chictr.org.cn/) ChiCTR1900026774. Registered on October 21, 2019.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Haitao Xu
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Luxi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Zeying Yan
- Department of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200020, Shanghai, China
| | - Manqin Sun
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xia Peng
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiling Jiang
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Ling Shi
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Aiping Zhang
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Zhihao Wu
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China
| | - Jiahui Lu
- Department of Hematology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Meihong Luo
- Department of Hematology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine (Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine), Shanghai, 201999, China.
| |
Collapse
|
16
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
18
|
Tackling the unknowns in understanding and management of hospital acquired anemia. Blood Rev 2021; 49:100830. [PMID: 33810899 DOI: 10.1016/j.blre.2021.100830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 03/21/2021] [Indexed: 01/29/2023]
Abstract
Hospital acquired anemia (HAA) has been a recognized entity for nearly 50 years. Despite multiple hypotheses, a mechanistic understanding is lacking, and targeted interventions have not yet yielded significantly impactful results. Known risk factors include advanced age, multiple co-morbidities, low bone marrow reserve, admission to the intensive care unit, and frequent phlebotomy. However, confounding variables in many studies continues to complicate the identification of additional risk factors. Improved understanding of iron metabolism, erythropoiesis, and the erythroid iron restriction response in the last few decades, as well as the recent demonstration of poor outcomes correlating with increased transfusion have refocused attention on HAA. While retrospective database studies provide ample correlative data between 1) HAA and poor outcomes; 2) reduction of phlebotomy volume and decrease in transfusion requirement; and 3) over-transfusion and increased mortality, no causal link between reduced phlebotomy volume, decreased rates of HAA, and improved mortality or other relevant outcomes have been definitely established. Here, we review the current state of knowledge and provide a summary of potential directions to understand and mitigate HAA. There are at present no clear guidelines on whether and when to evaluate hospitalized patients for underlying causes of anemia. We thus provide a guide for clinicians in general practice toward identifying patients at the highest risk for HAA, decreasing blood loss through phlebotomy to the greatest degree feasible, and evaluating and treating reversible causes of anemia in a targeted population.
Collapse
|
19
|
Prospective cardiac magnetic resonance imaging survey in myelodysplastic syndrome patients: insights from an Italian network. Ann Hematol 2021; 100:1139-1147. [PMID: 33742225 DOI: 10.1007/s00277-021-04495-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
We prospectively evaluated changes in cardiac and hepatic iron overload (IO) and in morpho-functional cardiac parameters and myocardial fibrosis by magnetic resonance imaging (MRI) in patients with low-risk and intermediate-1-risk myelodysplastic syndromes (MDS). Fifty patients enrolled in the Myocardial Iron Overload in MyElodysplastic Diseases (MIOMED) study were followed for 12 months. IO was quantified by the T2* technique and biventricular function parameters by cine images. Macroscopic myocardial fibrosis was detected by late gadolinium enhancement technique. Twenty-eight patients (71.89±8.46 years; 8 females) performed baseline and follow-up MRIs. Thirteen patients had baseline hepatic IO, with a higher frequency among transfusion-dependent patients. Out of the 15 patients with a baseline MRI liver iron concentration <3 mg/g/dw, two (non-chelated) developed hepatic IO. Thirteen (46.4%) patients had an abnormal T2* value in at least one myocardial segment. One patient without hepatic IO and non-transfused had baseline global T2* <20 ms. Among the 15 patients with no baseline myocardial IO (MIO), 2 worsened. There was a significant increase in both left and right ventricular end-diastolic volume indexes. Thirty-six percent of patients showed myocardial fibrosis correlating with aging. Two new occurrences were detected at the follow-up. In conclusion, by a more sensitive segmental approach, MIO is quite frequent in MDS patients and it can be present also in non-transfused patients and in absence of detectable hepatic iron. The incidence of cardiac and hepatic IO and of myocardial fibrosis and the increase in biventricular volumes after a 12-month interval suggest performing periodic MRI scans to better manage MDS patients.
Collapse
|
20
|
Grootendorst S, de Wilde J, van Dooijeweert B, van Vuren A, van Solinge W, Schutgens R, van Wijk R, Bartels M. The Interplay between Drivers of Erythropoiesis and Iron Homeostasis in Rare Hereditary Anemias: Tipping the Balance. Int J Mol Sci 2021; 22:ijms22042204. [PMID: 33672223 PMCID: PMC7927117 DOI: 10.3390/ijms22042204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
Rare hereditary anemias (RHA) represent a group of disorders characterized by either impaired production of erythrocytes or decreased survival (i.e., hemolysis). In RHA, the regulation of iron metabolism and erythropoiesis is often disturbed, leading to iron overload or worsening of chronic anemia due to unavailability of iron for erythropoiesis. Whereas iron overload generally is a well-recognized complication in patients requiring regular blood transfusions, it is also a significant problem in a large proportion of patients with RHA that are not transfusion dependent. This indicates that RHA share disease-specific defects in erythroid development that are linked to intrinsic defects in iron metabolism. In this review, we discuss the key regulators involved in the interplay between iron and erythropoiesis and their importance in the spectrum of RHA.
Collapse
Affiliation(s)
- Simon Grootendorst
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Jonathan de Wilde
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Birgit van Dooijeweert
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Annelies van Vuren
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Wouter van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Roger Schutgens
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.G.); (J.d.W.); (B.v.D.); (W.v.S.); (R.v.W.)
| | - Marije Bartels
- Van Creveldkliniek, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (A.v.V.); (R.S.)
- Correspondence:
| |
Collapse
|
21
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Riabov V, Mossner M, Stöhr A, Jann JC, Streuer A, Schmitt N, Knaflic A, Nowak V, Weimer N, Obländer J, Palme I, Schumann C, Baldus CD, Schulze TJ, Wuchter P, Röhl H, Jawhar A, Weiss C, Boch T, Metzgeroth G, Neumann M, Hofmann WK, Nolte F, Nowak D. High erythroferrone expression in CD71 + erythroid progenitors predicts superior survival in myelodysplastic syndromes. Br J Haematol 2021; 192:879-891. [PMID: 33486765 DOI: 10.1111/bjh.17314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandra Stöhr
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Knaflic
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Schumann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Torsten J Schulze
- Institute Springe, German Red Cross Blood Service NSTOB, Springe, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Henning Röhl
- Department of Orthopedic Surgery, Diakonissen Hospital, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Ooi SL, Campbell R, Pak SC, Golombick T, Manoharan A, Ramakrishna R, Badmaev V, Schloss J. Is 6-Shogaol an Effective Phytochemical for Patients With Lower-risk Myelodysplastic Syndrome? A Narrative Review. Integr Cancer Ther 2021; 20:15347354211065038. [PMID: 34930049 PMCID: PMC8728773 DOI: 10.1177/15347354211065038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndrome (MDS) evolves due to genomic instability, dysregulated signaling pathways, and overproduction of inflammatory markers. Reactive oxygen species contribute to the inflammatory response, which causes gene damage, cellular remodeling, and fibrosis. MDS can be a debilitating condition, and management options in patients with MDS aim to improve cytopenias, delay disease progression, and enhance quality of life. High serum ferritin levels, a source of iron for reactive oxygen species production, correlate with a higher risk of progression to acute myeloid leukemia, and iron overload is compounded by blood transfusions given to improve anemia. 6-shogaol is a natural phenolic compound formed when ginger is exposed to heat and/or acidic conditions, and it has been shown to possess anti-tumor activity against leukemia cell lines and antioxidant effects. This narrative review assessed the potential benefits of this phytochemical in lower-risk MDS patients through examining the current evidence on the pharmacological and therapeutic properties of ginger and 6-shogaol.
Collapse
Affiliation(s)
| | - Ron Campbell
- Charles Sturt University, Bathurst,
NSW, Australia
- The Oaks Medical Practice, The Oaks,
NSW, Australia
| | | | | | - Arumugam Manoharan
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | - Raj Ramakrishna
- Southern Sydney Haematology, Kogarah,
NSW, Australia
- University of Wollongong Australia,
Wollongong NSW, Australia
| | | | | |
Collapse
|
24
|
Marchi G, Busti F, Girelli D. The Role of Iron Staining in Myelodysplastic Syndromes: A Treasure Trove of Information. Acta Haematol 2020; 144:250-251. [PMID: 33254167 DOI: 10.1159/000511559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Giacomo Marchi
- Internal Medicine, University Hospital of Verona, Verona, Italy,
| | - Fabiana Busti
- Internal Medicine, University Hospital of Verona, Verona, Italy
| | | |
Collapse
|
25
|
Iron Overload Impairs Bone Marrow Mesenchymal Stromal Cells from Higher-Risk MDS Patients by Regulating the ROS-Related Wnt/ β-Catenin Pathway. Stem Cells Int 2020; 2020:8855038. [PMID: 33178287 PMCID: PMC7648692 DOI: 10.1155/2020/8855038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
The bone marrow microenvironment plays important roles in the progression of the myelodysplastic syndrome (MDS). The higher incidence of ASXL1 and TET2 gene mutations in our iron overload (IO) MDS patients suggests that IO may be involved in the pathogenesis of MDS. The effects of IO damaging bone marrow mesenchymal stromal cells (MSCs) from higher-risk MDS patients were investigated. In our study, IO decreased the quantity and weakened the abilities of proliferation and differentiation of MSCs, and it inhibited the gene expressions of VEGFA, CXCL12, and TGF-β1 in MSCs regulating hematopoiesis. The increased level of reactive oxygen species (ROS) in MSCs caused by IO might be inducing apoptosis by activating caspase3 signals and involving in MDS progression by activating β-catenin signals. The damages of MSCs caused by IO could be partially reversed by an antioxidant or an iron chelator. Furthermore, the MSCs in IO MDS/AML patients had increased levels of ROS and apoptosis, and the expressions of caspase3 and β-catenin were increased even further. In conclusion, IO affects gene stability in higher-risk MDS patients and impairs MSCs by inducing ROS-related apoptosis and activating the Wnt/β-catenin signaling pathway, which could be partially reversed by an antioxidant or an iron chelator.
Collapse
|
26
|
Chang MY, Lin SF, Wu SC, Yang WC. Myelodysplastic syndrome: the other cause of anemia in end-stage renal disease patients undergoing dialysis. Sci Rep 2020; 10:15557. [PMID: 32968161 PMCID: PMC7511931 DOI: 10.1038/s41598-020-72568-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
In end-stage renal disease (ESRD) patients receiving dialysis, anemia is common and related to a higher mortality rate. Erythropoietin (EPO) resistance and iron refractory anemia require red blood cell transfusions. Myelodysplastic syndrome (MDS) is a disease with hematopoietic dysplasia. There are limited reports regarding ESRD patients with MDS. We aim to assess whether, for ESRD patients, undergoing dialysis is a predictive factor of MDS by analyzing data from the Taiwan National Health Insurance Research Database. We enrolled 74,712 patients with chronic renal failure (ESRD) who underwent dialysis and matched 74,712 control patients. In our study, we noticed that compared with the non-ESRD controls, in ESRD patients, undergoing dialysis (subdistribution hazard ratio [sHR] = 1.60, 1.16–2.19) and age (sHR = 1.03, 1.02–1.04) had positive predictive value for MDS occurrence. Moreover, more units of red blood cell transfusion (higher than 4 units per month) was also associated with a higher incidence of MDS. The MDS cumulative incidence increased with the duration of dialysis in ESRD patients. These effects may be related to exposure to certain cytokines, including interleukin-1, tumor necrosis factor-α, and tumor growth factor-β. In conclusion, we report the novel finding that ESRD patients undergoing dialysis have an increased risk of MDS.
Collapse
Affiliation(s)
- Min-Yu Chang
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Fung Lin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
| | - Shih-Chi Wu
- Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University College of Medicine, Taichung, Taiwan
| | - Wen-Chi Yang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan. .,Faculty of School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Hoeks M, Bagguley T, van Marrewijk C, Smith A, Bowen D, Culligan D, Kolade S, Symeonidis A, Garelius H, Spanoudakis M, Langemeijer S, Roelofs R, Wiegerinck E, Tatic A, Killick S, Panagiotidis P, Stanca O, Hellström-Lindberg E, Cermak J, van der Klauw M, Wouters H, van Kraaij M, Blijlevens N, Swinkels DW, de Witte T. Toxic iron species in lower-risk myelodysplastic syndrome patients: course of disease and effects on outcome. Leukemia 2020; 35:1745-1750. [PMID: 32948844 PMCID: PMC8179850 DOI: 10.1038/s41375-020-01022-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Marlijn Hoeks
- Centre for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands. .,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. .,Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tim Bagguley
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Corine van Marrewijk
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - David Bowen
- St. James's Institute of Oncology, Leeds Teaching Hospitals, Leeds, UK
| | - Dominic Culligan
- Department of Hematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Seye Kolade
- Department of Hematology, Blackpool Victoria Hospital, Blackpool, Lancashire, UK
| | - Argiris Symeonidis
- Department of Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece
| | - Hege Garelius
- Department of Medicine, Sect. of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Michail Spanoudakis
- Department of Hematology, Airedale NHS Trust, Airdale, UK.,Department of Haematology, Warrington and Halton Teaching Hospitals NHS foundation Trust, Cheshire, UK
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rian Roelofs
- Department of Laboratory Medicine, Hepcidinanalysis.com, and Radboudumc Expertise Center for Iron Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin Wiegerinck
- Department of Laboratory Medicine, Hepcidinanalysis.com, and Radboudumc Expertise Center for Iron Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Sally Killick
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Panagiotis Panagiotidis
- Department of Haematology, 1st Department of Propedeutic Internal Medicine, National and Kapodistrian University of Athens, Medical School, Laikon General Hospital, Athens, Greece
| | - Oana Stanca
- Department of Hematology, Coltea Clinical Hospital, Bucharest, Romania
| | - Eva Hellström-Lindberg
- Department of Medicine, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - Melanie van der Klauw
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hanneke Wouters
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marian van Kraaij
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Hepcidinanalysis.com, and Radboudumc Expertise Center for Iron Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo de Witte
- Nijmegen Center for Molecular Life Sciences, Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Bondu S, Alary AS, Lefèvre C, Houy A, Jung G, Lefebvre T, Rombaut D, Boussaid I, Bousta A, Guillonneau F, Perrier P, Alsafadi S, Wassef M, Margueron R, Rousseau A, Droin N, Cagnard N, Kaltenbach S, Winter S, Kubasch AS, Bouscary D, Santini V, Toma A, Hunault M, Stamatoullas A, Gyan E, Cluzeau T, Platzbecker U, Adès L, Puy H, Stern MH, Karim Z, Mayeux P, Nemeth E, Park S, Ganz T, Kautz L, Kosmider O, Fontenay M. A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome. Sci Transl Med 2020; 11:11/500/eaav5467. [PMID: 31292266 DOI: 10.1126/scitranslmed.aav5467] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) with ring sideroblasts are hematopoietic stem cell disorders with erythroid dysplasia and mutations in the SF3B1 splicing factor gene. Patients with MDS with SF3B1 mutations often accumulate excessive tissue iron, even in the absence of transfusions, but the mechanisms that are responsible for their parenchymal iron overload are unknown. Body iron content, tissue distribution, and the supply of iron for erythropoiesis are controlled by the hormone hepcidin, which is regulated by erythroblasts through secretion of the erythroid hormone erythroferrone (ERFE). Here, we identified an alternative ERFE transcript in patients with MDS with the SF3B1 mutation. Induction of this ERFE transcript in primary SF3B1-mutated bone marrow erythroblasts generated a variant protein that maintained the capacity to suppress hepcidin transcription. Plasma concentrations of ERFE were higher in patients with MDS with an SF3B1 gene mutation than in patients with SF3B1 wild-type MDS. Thus, hepcidin suppression by a variant ERFE is likely responsible for the increased iron loading in patients with SF3B1-mutated MDS, suggesting that ERFE could be targeted to prevent iron-mediated toxicity. The expression of the variant ERFE transcript that was restricted to SF3B1-mutated erythroblasts decreased in lenalidomide-responsive anemic patients, identifying variant ERFE as a specific biomarker of clonal erythropoiesis.
Collapse
Affiliation(s)
- Sabrina Bondu
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Anne-Sophie Alary
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Carine Lefèvre
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Human Genetics and Oncogenesis, Paris 75005, France
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Thibaud Lefebvre
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - David Rombaut
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Ismael Boussaid
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Abderrahmane Bousta
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - François Guillonneau
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Proteomic platform 3P5, Université de Paris, Paris 75014, France
| | - Prunelle Perrier
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM U1220, Institut National de la Recherche Agronomique U1416, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse 31024, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Department of Translational Research, Paris 75005, France
| | - Michel Wassef
- Institut Curie, PSL Research University, INSERM 934/UMR 3215, Genetics and biology of Development, Paris 75005 France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, INSERM 934/UMR 3215, Genetics and biology of Development, Paris 75005 France
| | - Alice Rousseau
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Nathalie Droin
- Institut Gustave Roussy, Genomic platform, Villejuif 94805, France
| | - Nicolas Cagnard
- Université de Paris, Paris 75006, France.,Platform Bioinformatics, Université de Paris, Paris 75015, France
| | - Sophie Kaltenbach
- Université de Paris, Paris 75006, France.,Laboratoire de Génétique, AP-HP, Hôpital Necker, Paris 75015, France
| | - Susann Winter
- Medical Clinic und Policlinic 1, Technische Universität Dresden, Dresden 01307, Germany
| | - Anne-Sophie Kubasch
- Medical Clinic und Policlinic 1, Hematology and Cellular Therapy, University Hospital, Leipzig 04103, Germany
| | - Didier Bouscary
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'Hématologie clinique, AP-HP, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Valeria Santini
- MDS unit, Hematology, AOU Careggi, University of Florence, Florence 50134, Italy
| | - Andrea Toma
- Département d'Hématologie, AP-HP, Hôpital Henri-Mondor, Université Paris 12, Créteil 94000, France
| | - Mathilde Hunault
- Service des Maladies du Sang, Centre hospitalo-universitaire, Angers 49100, France
| | | | - Emmanuel Gyan
- Service d'hématologie et thérapie cellulaire, Centre hospitalo-universitaire, CNRS ERL 7001 LNOx, Université de Tours, Tours 37044, France
| | - Thomas Cluzeau
- Côte d'Azur University, CHU of Nice, Hematology department and INSERM U1065, Mediterranean Center of Molecular Medecine, Nice 06204, France
| | - Uwe Platzbecker
- Medical Clinic und Policlinic 1, Hematology and Cellular Therapy, University Hospital, Leipzig 04103, Germany
| | - Lionel Adès
- Université de Paris, Paris 75006, France.,Service d'Hématologie Senior, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Hervé Puy
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, INSERM U830, Genetics and biology of cancers, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris 75005, France
| | - Zoubida Karim
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - Patrick Mayeux
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,Proteomic platform 3P5, Université de Paris, Paris 75014, France
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sophie Park
- Département d'Hématologie, Centre Hospitalier Universitaire, Université de Grenoble Alpes, La Tronche 38700, France
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Léon Kautz
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM U1220, Institut National de la Recherche Agronomique U1416, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse 31024, France
| | - Olivier Kosmider
- Université de Paris, Paris 75006, France. .,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| | - Michaëla Fontenay
- Université de Paris, Paris 75006, France. .,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| |
Collapse
|
29
|
Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv 2020; 4:367-379. [PMID: 31985806 DOI: 10.1182/bloodadvances.2019001124] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.
Collapse
|
30
|
Iron overload and its impact on outcome of patients with hematological diseases. Mol Aspects Med 2020; 75:100868. [PMID: 32620237 DOI: 10.1016/j.mam.2020.100868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023]
Abstract
Systemic iron overload (SIO) is a common challenge in patients with hematological diseases and develops as a result of ineffective erythropoiesis, multiple red blood cell (RBC) transfusions and disease-specific therapies. Iron homeostasis is tightly regulated as there is no physiological pathway to excrete iron from the body. Excess iron is, therefore, stored in tissues like liver, heart and bone marrow and can lead to progressive organ damage. The presence of free iron in the form of non-transferrin bound iron (NTBI) is especially detrimental. Reactive oxygen species can also cause stromal damage in the bone marrow and promote leukemic cell growth in vitro. In acute leukemias and myelodysplastic syndromes outcome is worse in patients with SIO compared to patients without. Especially in patients undergoing allogeneic HSCT presence of NTBI before or during transplant has been shown to negatively affect non-relapse mortality and overall survival. Although the mechanisms, of how these effects are mediated by SIO are not very well understood monitoring of iron status by serum markers and imaging techniques is, therefore, mandatory especially in these patients. Whether peri-interventional iron chelation may improve outcome of these patients is part of current clinical research.
Collapse
|
31
|
Controversies on the Consequences of Iron Overload and Chelation in MDS. Hemasphere 2020; 4:e357. [PMID: 32647792 PMCID: PMC7306315 DOI: 10.1097/hs9.0000000000000357] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many patients with MDS are prone to develop systemic and tissue iron overload in part as a consequence of disease-immanent ineffective erythropoiesis. However, chronic red blood cell transfusions, which are part of the supportive care regimen to correct anemia, are the major source of iron overload in MDS. Increased systemic iron levels eventually lead to the saturation of the physiological systemic iron carrier transferrin and the occurrence of non-transferrin-bound iron (NTBI) together with its reactive fraction, the labile plasma iron (LPI). NTBI/LPI-mediated toxicity and tissue iron overload may exert multiple detrimental effects that contribute to the pathogenesis, complications and eventually evolution of MDS. Until recently, the evidence supporting the use of iron chelation in MDS was based on anecdotal reports, uncontrolled clinical trials or prospective registries. Despite not fully conclusive, these and more recent studies, including the TELESTO trial, unravel an overall adverse action of iron overload and therapeutic benefit of chelation, ranging from improved hematological outcome, reduced transfusion dependence and superior survival of iron-loaded MDS patients. The still limited and somehow controversial experimental and clinical data available from preclinical studies and randomized trials highlight the need for further investigation to fully elucidate the mechanisms underlying the pathological impact of iron overload-mediated toxicity as well as the effect of classic and novel iron restriction approaches in MDS. This review aims at providing an overview of the current clinical and translational debated landscape about the consequences of iron overload and chelation in the setting of MDS.
Collapse
|
32
|
Shallis RM, Podoltsev NA, Gowda L, Zeidan AM, Gore SD. Cui bono? Finding the value of allogeneic stem cell transplantation for lower-risk myelodysplastic syndromes. Expert Rev Hematol 2020; 13:447-460. [PMID: 32182435 DOI: 10.1080/17474086.2020.1744433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction: The myelodysplastic syndromes (MDS) vary in their risk of disease progression; progression includes increasingly severe bone marrow failure, reclassification as acute myeloid leukemia (AML), and death. Prognostic tools guide recommendations for allogeneic stem cell transplantation (alloSCT), the only curative option. AlloSCT is typically reserved for patients with higher-risk MDS as defined by existing prognostic tools, although additional clinical and biological factors in lower-risk patients may influence this dogma.Areas covered: This review discusses the current understanding of MDS risk stratification as it pertains to the use of alloSCT in subpopulations of MDS patients with a particular focus on the use of alloSCT in patients with lower-risk disease.Expert commentary: Though high-quality data are lacking, some lower-risk MDS patients may benefit from alloSCT, which offers the only prospect of cure. Understanding the etiologic role and prognostic impact of recurring genetic events may improve existing risk stratification and become integral facets of prognostic schemata. The identification of additional factors influencing the prognoses of patients currently lumped together as 'lower-risk' will likewise improve the selection of MDS patients for early intervention or aggressive therapies such as alloSCT.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
33
|
Brissot E, Bernard DG, Loréal O, Brissot P, Troadec MB. Too much iron: A masked foe for leukemias. Blood Rev 2020; 39:100617. [DOI: 10.1016/j.blre.2019.100617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
34
|
Miura S, Kobune M, Horiguchi H, Kikuchi S, Iyama S, Murase K, Goto A, Ikeda H, Takada K, Miyanishi K, Kato J. EPO-R+ myelodysplastic cells with ring sideroblasts produce high erythroferrone levels to reduce hepcidin expression in hepatic cells. Blood Cells Mol Dis 2019; 78:1-8. [DOI: 10.1016/j.bcmd.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
|
35
|
Leitch HA, Gattermann N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit Rev Oncol Hematol 2019; 141:54-72. [DOI: 10.1016/j.critrevonc.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/25/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
|
36
|
de Swart L, Crouch S, Hoeks M, Smith A, Langemeijer S, Fenaux P, Symeonidis A, Cermâk J, Hellström-Lindberg E, Stauder R, Sanz G, Mittelman M, Holm MS, Malcovati L, Mądry K, Germing U, Tatic A, Savic A, Almeida AM, Gredelj-Simec N, Guerci-Bresler A, Beyne-Rauzy O, Culligan D, Kotsianidis I, Itzykson R, van Marrewijk C, Blijlevens N, Bowen D, de Witte T. Impact of red blood cell transfusion dose density on progression-free survival in patients with lower-risk myelodysplastic syndromes. Haematologica 2019; 105:632-639. [PMID: 31171638 PMCID: PMC7049377 DOI: 10.3324/haematol.2018.212217] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Progression-free survival (PFS) of patients with lower-risk myelodysplastic syndromes (MDS) treated with red blood cell transfusions is usually reduced, but it is unclear whether transfusion dose density is an independent prognostic factor. The European MDS Registry collects prospective data at 6-monthly intervals from newly diagnosed lower-risk myelodysplastic syndromes patients in 16 European countries and Israel. Data on the transfusion dose density - the cumulative dose received at the end of each interval divided by the time since the beginning of the interval in which the first transfusion was received - were analyzed using proportional hazards regression with time-varying co-variates, with death and progression to higher-risk MDS/acute myeloid leukemia as events. Of the 1,267 patients included in the analyses, 317 died without progression; in 162 patients the disease had progressed. PFS was significantly associated with age, EQ-5D index, baseline World Health Organization classification, bone marrow blast count, cytogenetic risk category, number of cytopenias, and country. Transfusion dose density was inversely associated with PFS (P<1×10−4): dose density had an increasing effect on hazard until a dose density of 3 units/16 weeks. The transfusion dose density effect continued to increase beyond 8 units/16 weeks after correction for the impact of treatment with erythropoiesis-stimulating agents, lenalidomide and/or iron chelators. In conclusion, the negative effect of transfusion treatment on PFS already occurs at transfusion densities below 3 units/16 weeks. This indicates that transfusion dependency, even at relatively low dose densities, may be considered as an indicator of inferior PFS. This trial was registered at www.clinicaltrials.gov as #NCT00600860.
Collapse
Affiliation(s)
- Louise de Swart
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Marlijn Hoeks
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.,Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pierre Fenaux
- Service d'Hématologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris and Université Paris 7, Paris, France
| | - Argiris Symeonidis
- Department of Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece
| | - Jaroslav Cermâk
- Department of Clinical Hematology, Institute of Hematology & Blood Transfusion, Praha, Czech Republic
| | - Eva Hellström-Lindberg
- Department of Medicine, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Reinhard Stauder
- Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Innsbruck, Austria
| | - Guillermo Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Moshe Mittelman
- Department of Medicine A, Tel Aviv Sourasky (Ichilov) Medical Center and Sackler Medical Faculty, Tel Aviv University, Tel Aviv, Israel
| | - Mette Skov Holm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Krzysztof Mądry
- Department of Hematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Universitatsklinik Düsseldorf, Düsseldorf, Germany
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Aleksandar Savic
- Clinic of Hematology - Clinical Center of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Njetocka Gredelj-Simec
- Department of Internal Medicine, Division of Hematology, Merkur University Hospital, Zagreb, Croatia
| | - Agnes Guerci-Bresler
- Service d'Hématologie, Centre Hospitalier Universitaire (CHU) Brabois Vandoeuvre, Nancy, France
| | - Odile Beyne-Rauzy
- Service de Médecine Interne, IUCT-Oncopole, CHU Toulouse, Toulouse, France
| | - Dominic Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Raphael Itzykson
- Service d'Hématologie, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris and Université Paris 7, Paris, France
| | - Corine van Marrewijk
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Bowen
- St. James's Institute of Oncology, Leeds Teaching Hospitals, Leeds, UK
| | - Theo de Witte
- Department of Tumor Immunology - Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
37
|
Cremers EM, de Witte T, de Wreede L, Eikema DJ, Koster L, van Biezen A, Finke J, Socié G, Beelen D, Maertens J, Nagler A, Kobbe G, Ziagkos D, Itälä-Remes M, Gedde-Dahl T, Sierra J, Niederwieser D, Ljungman P, Beguin Y, Ozkurt ZN, Anagnostopoulos A, Jindra P, Robin M, Kröger N. A prospective non-interventional study on the impact of transfusion burden and related iron toxicity on outcome in myelodysplastic syndromes undergoing allogeneic hematopoietic cell transplantation. Leuk Lymphoma 2019; 60:2404-2414. [DOI: 10.1080/10428194.2019.1594215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eline M.P. Cremers
- Department of Hematology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Theo de Witte
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Linda Koster
- EBMT Data Office Leiden, Leiden, The Netherlands
| | | | - Jürgen Finke
- Department of Hematology/Oncology & Stem Cell Transplantation, University of Freiburg, Freiburg, Germany
| | | | | | | | - Arnon Nagler
- Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine Universitaet, Düsseldorf, Germany
| | - Dimitris Ziagkos
- EBMT Statistical Unit Data Office Leiden, Leiden, The Netherlands
| | | | | | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Per Ljungman
- Karolinska University Hospital, Stockholm, Sweden
| | - Yves Beguin
- Departmrnt of Hematology and Oncology, University of Liège, Liege, Belgium
| | | | | | - Pavel Jindra
- Charles University Hospital, Pilsen, Czech Republic
| | | | | |
Collapse
|
38
|
Abstract
Hepcidin is central to regulation of iron metabolism. Its effect on a cellular level involves binding ferroportin, the main iron export protein, resulting in its internalization and degradation and leading to iron sequestration within ferroportin-expressing cells. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we present an overview of and rationale for exploring the development of hepcidin agonists and antagonists in various clinical scenarios.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
39
|
Park S, Kosmider O, Maloisel F, Drenou B, Chapuis N, Lefebvre T, Karim Z, Puy H, Alary AS, Ducamp S, Verdier F, Bouilloux C, Rousseau A, Jacob MC, Debliquis A, Charpentier A, Gyan E, Anglaret B, Leyronnas C, Corm S, Slama B, Cheze S, Laribi K, Amé S, Rose C, Lachenal F, Toma A, Pica GM, Carre M, Garban F, Mariette C, Cahn JY, Meunier M, Herault O, Fenaux P, Wagner-Ballon O, Bardet V, Dreyfus F, Fontenay M. Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes. Haematologica 2018; 104:497-504. [PMID: 30287621 PMCID: PMC6395339 DOI: 10.3324/haematol.2018.203158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022] Open
Abstract
Erythropoiesis-stimulating agents are generally the first line of treatment of anemia in patients with lower-risk myelodysplastic syndrome. We prospectively investigated the predictive value of somatic mutations, and biomarkers of ineffective erythropoiesis including the flow cytometry RED score, serum growth-differentiation factor-15, and hepcidin levels. Inclusion criteria were no prior treatment with erythropoiesis-stimulating agents, low- or intermediate-1-risk myelodysplastic syndrome according to the International Prognostic Scoring System, and a hemoglobin level <10 g/dL. Patients could be red blood cell transfusion-dependent or not and were given epoetin zeta 40 000 IU/week. Serum erythropoietin level, iron parameters, hepcidin, flow cytometry Ogata and RED scores, and growth-differentiation factor-15 levels were determined at baseline, and molecular analysis by next-generation sequencing was also conducted. Erythroid response (defined according to the International Working Group 2006 criteria) was assessed at week 12. Seventy patients, with a median age of 78 years, were included in the study. There were 22 patients with refractory cytopenia with multilineage dysplasia, 19 with refractory cytopenia with unilineage dysplasia, 14 with refractory anemia with ring sideroblasts, four with refractory anemia with excess blasts-1, six with chronic myelomonocytic leukemia, two with del5q-and three with unclassifiable myelodysplastic syndrome. According to the revised International Prognostic Scoring System, 13 had very low risk, 47 had low risk, nine intermediate risk and one had high-risk disease. Twenty patients were transfusion dependent. Forty-eight percent had an erythroid response and the median duration of the response was 26 months. At baseline, non-responders had significantly higher RED scores and lower hepcidin:ferritin ratios. In multivariate analysis, only a RED score >4 (P=0.05) and a hepcidin:ferritin ratio <9 (P=0.02) were statistically significantly associated with worse erythroid response. The median response duration was shorter in patients with growth-differentiation factor-15 >2000 pg/mL and a hepcidin:ferritin ratio <9 (P=0.0008 and P=0.01, respectively). In multivariate analysis, both variables were associated with shorter response duration. Erythroid response to epoetin zeta was similar to that obtained with other erythropoiesis-stimulating agents and was correlated with higher baseline hepcidin:ferritin ratio and lower RED score. ClinicalTrials.gov registration: NCT 03598582.
Collapse
Affiliation(s)
- Sophie Park
- Department of Hematology, CHU Grenoble-Alpes, Grenoble .,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Olivier Kosmider
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre, Institut Cochin, Université Paris Descartes
| | | | - Bernard Drenou
- Department of Hematology, Hôpital Emile Muller, CH de Mulhouse
| | - Nicolas Chapuis
- INSERM UMR1149, CNRS 8252 - Centre de Recherche sur l'Inflammation (CRI) Equipe "Hème, Fer et Pathologies Inflammatoires", Labex GREX, Centre Français des Porphyries - Hôpital Louis Mourier HUPNVS, Paris
| | - Thibaud Lefebvre
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris Descartes University
| | - Zoubida Karim
- INSERM UMR1149, CNRS 8252 - Centre de Recherche sur l'Inflammation (CRI) Equipe "Hème, Fer et Pathologies Inflammatoires", Labex GREX, Centre Français des Porphyries - Hôpital Louis Mourier HUPNVS, Paris
| | - Hervé Puy
- INSERM UMR1149, CNRS 8252 - Centre de Recherche sur l'Inflammation (CRI) Equipe "Hème, Fer et Pathologies Inflammatoires", Labex GREX, Centre Français des Porphyries - Hôpital Louis Mourier HUPNVS, Paris
| | - Anne Sophie Alary
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre, Institut Cochin, Université Paris Descartes
| | - Sarah Ducamp
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris Descartes University
| | - Frédérique Verdier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris Descartes University
| | - Cécile Bouilloux
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Alice Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris Descartes University
| | | | | | | | | | | | | | | | | | | | | | - Shanti Amé
- Department of Hematology, Hôpital Civil, CHU Strasbourg
| | - Christian Rose
- Department of Hematology, Hôpital Saint Vincent de Paul, Lille
| | | | - Andrea Toma
- Department of Hematology, Hôpital Universitaire Henri Mondor, AP-HP, Université Paris 12, Créteil
| | | | - Martin Carre
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Frédéric Garban
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Clara Mariette
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Jean-Yves Cahn
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | - Mathieu Meunier
- Department of Hematology, CHU Grenoble-Alpes, Grenoble.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble
| | | | - Pierre Fenaux
- Department of Hematology, Saint Louis Hospital, AP-HP, Université Paris Diderot
| | - Orianne Wagner-Ballon
- Département d'Hématologie et Immunologie Biologiques, Hôpital Universitaire Henri Mondor, Creteil
| | - Valerie Bardet
- Service d'Hématologie Immunologie Transfusion, Hôpitaux Universitaires Paris Ile de France-Ouest, AP-HP
| | | | - Michaela Fontenay
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre, Institut Cochin, Université Paris Descartes
| |
Collapse
|
40
|
Ginzburg YZ, Feola M, Zimran E, Varkonyi J, Ganz T, Hoffman R. Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia 2018; 32:2105-2116. [PMID: 30042411 PMCID: PMC6170398 DOI: 10.1038/s41375-018-0207-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023]
Abstract
Polycythemia vera (PV) is a chronic myeloproliferative neoplasm. Virtually all PV patients are iron deficient at presentation and/or during the course of their disease. The co-existence of iron deficiency and polycythemia presents a physiological disconnect. Hepcidin, the master regulator of iron metabolism, is regulated by circulating iron levels, erythroblast secretion of erythroferrone, and inflammation. Both decreased circulating iron and increased erythroferrone levels, which occur as a consequence of erythroid hyperplasia in PV, are anticipated to suppress hepcidin and enable recovery from iron deficiency. Inflammation which accompanies PV is likely to counteract hepcidin suppression, but the relatively low serum ferritin levels observed suggest that inflammation is not a major contributor to the dysregulated iron metabolism. Furthermore, potential defects in iron absorption, aberrant hypoxia sensing and signaling, and frequency of bleeding to account for iron deficiency in PV patients have not been fully elucidated. Insufficiently suppressed hepcidin given the degree of iron deficiency in PV patients strongly suggests that disordered iron metabolism is an important component of the pathobiology of PV. Normalization of hematocrit levels using therapeutic phlebotomy is the most common approach for reducing the incidence of thrombotic complications, a therapy which exacerbates iron deficiency, contributing to a variety of non-hematological symptoms. The use of cytoreductive therapy in high-risk PV patients frequently works more effectively to reverse PV-associated symptoms in iron-deficient relative to iron-replete patients. Lastly, differences in iron-related parameters between PV patients and mice with JAK2 V617F and JAK2 exon 12 mutations suggest that specific regions in JAK2 may influence iron metabolism by nuanced changes of erythropoietin receptor signaling. In this review, we comprehensively discuss the clinical consequences of iron deficiency in PV, provide a framework for understanding the potential dysregulation of iron metabolism, and present a rationale for additional therapeutic options for iron-deficient PV patients.
Collapse
Affiliation(s)
- Yelena Z Ginzburg
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maria Feola
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eran Zimran
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Varkonyi
- Third Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Tomas Ganz
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ronald Hoffman
- Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Leitch HA, Buckstein R, Zhu N, Nevill TJ, Yee KWL, Leber B, Keating MM, St Hilaire E, Kumar R, Delage R, Geddes M, Storring JM, Shamy A, Elemary M, Wells RA. Iron overload in myelodysplastic syndromes: Evidence based guidelines from the Canadian consortium on MDS. Leuk Res 2018; 74:21-41. [PMID: 30286330 DOI: 10.1016/j.leukres.2018.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 09/15/2018] [Indexed: 01/19/2023]
Abstract
In 2008 the first evidence-based Canadian consensus guideline addressing the diagnosis, monitoring and management of transfusional iron overload in patients with myelodysplastic syndromes (MDS) was published. The Canadian Consortium on MDS, comprised of hematologists from across Canada with a clinical and academic interest in MDS, reconvened to update these guidelines. A literature search was updated in 2017; topics reviewed include mechanisms of iron overload induced cellular damage, evidence for clinical endpoints impacted by iron overload including organ dysfunction, infections, marrow failure, overall survival, acute myeloid leukemia progression, and endpoints around hematopoietic stem-cell transplant. Evidence for an impact of iron reduction on the same endpoints is discussed, guidelines are updated, and areas identified where evidence is suboptimal. The guidelines address common questions around the diagnosis, workup and management of iron overload in clinical practice, and take the approach of who, when, why and how to treat iron overload in MDS. Practical recommendations for treatment and monitoring are made. Evidence levels and grading of recommendations are provided for all clinical endpoints examined.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada.
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nancy Zhu
- Hematology/Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas J Nevill
- Leukemia/BMT Program of British Columbia, Division of Hematology, Vancouver, BC, Canada
| | - Karen W L Yee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Leber
- McMaster University, Hamilton, Ontario, Canada
| | | | - Eve St Hilaire
- Centre d'Oncologie, Dr-Leon-Richard, Moncton, New Brunswick, Canada
| | - Rajat Kumar
- Hematology/Oncology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Robert Delage
- Hematology Department, Centre Hospitalier Universitaire, Laval University, Quebec, QC, Canada
| | - Michelle Geddes
- Department of Medicine/Hematology, Foothills Medical Centre, Calgary, Alberta, Canada
| | | | - April Shamy
- Sir Mortimer B Davis Hospital, McGill University, Montreal, Quebec, Canada
| | - Mohamed Elemary
- Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard A Wells
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Iron overload in patients with myelodysplastic syndromes: An updated overview. Cancer 2018; 124:3979-3989. [DOI: 10.1002/cncr.31550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023]
|
43
|
Iron toxicity - Its effect on the bone marrow. Blood Rev 2018; 32:473-479. [PMID: 29699840 DOI: 10.1016/j.blre.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Excess iron can be extremely toxic for the body and may cause organ damage in the absence of iron chelation therapy. Preclinical studies on the role of free iron on bone marrow function have shown that iron toxicity leads to the accumulation of reactive oxygen species, affects the expression of genes coding for proteins that regulate hematopoiesis, and disrupts hematopoiesis. These effects could be partially attenuated by iron-chelation treatment with deferasirox, suggesting iron toxicity may have a negative impact on the hematopoietic microenvironment. Iron toxicity is of concern in transfusion-dependent patients. Importantly, iron chelation with deferasirox can cause the loss of transfusion dependency and may induce hematological responses, although the mechanisms through which deferasirox exerts this action are currently unknown. This review will focus on the possible mechanisms of toxicity of free iron at the bone marrow level and in the bone marrow microenvironment.
Collapse
|
44
|
Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med 2018; 50:e436. [PMID: 29391539 PMCID: PMC5903825 DOI: 10.1038/emm.2017.273] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepcidin is a crucial peptide for regulating cellular iron efflux. Because iron is essential for cell survival, especially for highly active cells, such as tumor cells, it is imperative to understand how tumor cells manipulate hepcidin expression for their own metabolic needs. Studies suggest that hepcidin expression and regulation in tumor cells show important differences in comparison with those in non-tumorous cells. These differences should be investigated to develop new strategies to fight cancer cells. Manipulating hepcidin expression to starve cancer cells for iron may prove to be a new therapy in the anticancer arsenal.
Collapse
|
45
|
Iron Overload in Myelodysplastic Syndromes: Pathophysiology, Consequences, Diagnosis, and Treatment. J Adv Pract Oncol 2018; 9:392-405. [PMID: 30719392 PMCID: PMC6347085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms varying in severity affecting one or more lines of hematopoiesis. Ineffective erythropoiesis results in dysregulation of iron metabolism. Most MDS patients have anemia, and some require regular red blood cell transfusions. These transfusions, in addition to factors of the disease itself, can result in iron overload (IO). Retrospective analyses suggest that MDS patients with IO have reduced overall survival and poorer outcomes following allogeneic stem cell transplant vs. those without IO. Iron chelation therapy (ICT; deferoxamine, deferasirox, or deferiprone) has been used to alleviate IO in other transfusion-dependent hematologic conditions (e.g., thalassemia), but its role in MDS has not been firmly established. A growing body of evidence suggests that ICT in MDS patients is an effective means for reducing transfusional IO and may significantly improve outcomes such as survival. The orally administered iron chelator deferasirox has been widely studied in MDS, and available studies have shown it to be generally well tolerated and effective in reducing IO in this population. The pathophysiology and clinical consequences of IO in MDS, as well as current methods for diagnosing and treating IO in these patients, are discussed.
Collapse
|
46
|
Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol 2017; 107:55-63. [PMID: 29177643 DOI: 10.1007/s12185-017-2367-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/08/2017] [Indexed: 01/19/2023]
Abstract
Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.
Collapse
Affiliation(s)
- Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
47
|
Wong SA, Leitch HA. Iron chelation therapy in lower IPSS risk myelodysplastic syndromes; which subtypes benefit? Leuk Res 2017; 64:24-29. [PMID: 29149650 DOI: 10.1016/j.leukres.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Analyses suggest MDS patients with higher serum ferritin levels (SF) have inferior overall survival (OS), in one study across MDS subtypes. Multiple analyses suggest those with high SF receiving iron chelation therapy (ICT) have superior OS, but which MDS subtypes benefit from ICT remains undefined. METHODS We performed survival analyses of MDS subtypes by receipt of ICT. RESULTS 182 MDS were lower IPSS risk and received red blood cell (RBC) transfusions; 63 received ICT. For the entire cohort, receiving ICT independently predicted superior OS in a multivariate analysis (hazard ratio for death 0.3, p=0.01). Features differing for ICT and non-ICT patients, respectively, were: age; IPSS risk group; number of RBC units transfused; and SF, p≤0.03 for all. At a median follow up of 76.5 and 28.4 months, 65.1% and 63.0% were alive. Median OS (months) for ICT and non-ICT patients was: RA, 140.9 and 36.3, p=0.0008; RARS/RARS-t, 133.4 and 73.3, p=0.02. For RCMD/RCMD-RS, p=NS, however, 3 (20%) had significant erythroid improvement with ICT; other subtypes had small numbers. DISCUSSION In this retrospective analysis, RA and RARS/RARS-t patients receiving ICT had superior OS to non-ICT patients. These findings should be verified and other MDS subtypes examined in larger prospective analyses.
Collapse
Affiliation(s)
- Shannon A Wong
- Faculty of Medicine, Royal College of Surgeons, Dublin, Ireland
| | - Heather A Leitch
- Division of Hematology, St. Paul's Hospital, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
48
|
de Swart L, Reiniers C, Bagguley T, van Marrewijk C, Bowen D, Hellström-Lindberg E, Tatic A, Symeonidis A, Huls G, Cermak J, van de Loosdrecht AA, Garelius H, Culligan D, Macheta M, Spanoudakis M, Panagiotidis P, Krejci M, Blijlevens N, Langemeijer S, Droste J, Swinkels DW, Smith A, de Witte T. Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes. Haematologica 2017; 103:69-79. [PMID: 29122992 PMCID: PMC5777192 DOI: 10.3324/haematol.2017.171884] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Red blood cell transfusions remain one of the cornerstones in supportive care of lower-risk patients with myelodysplastic syndromes. We hypothesized that patients develop oxidant-mediated tissue injury through the formation of toxic iron species, caused either by red blood cell transfusions or by ineffective erythropoiesis. We analyzed serum samples from 100 lower-risk patients with myelodysplastic syndromes at six-month intervals for transferrin saturation, hepcidin-25, growth differentiation factor 15, soluble transferrin receptor, non-transferrin bound iron and labile plasma iron in order to evaluate temporal changes in iron metabolism and the presence of potentially toxic iron species and their impact on survival. Hepcidin levels were low in 34 patients with ringed sideroblasts compared to 66 patients without. Increases of hepcidin and non-transferrin bound iron levels were visible early in follow-up of all transfusion-dependent patient groups. Hepcidin levels significantly decreased over time in transfusion-independent patients with ringed sideroblasts. Increased soluble transferrin receptor levels in transfusion-independent patients with ringed sideroblasts confirmed the presence of ineffective erythropoiesis and suppression of hepcidin production in these patients. Detectable labile plasma iron levels in combination with high transferrin saturation levels occurred almost exclusively in patients with ringed sideroblasts and all transfusion-dependent patient groups. Detectable labile plasma iron levels in transfusion-dependent patients without ringed sideroblasts were associated with decreased survival. In conclusion, toxic iron species occurred in all transfusion-dependent patients and in transfusion-independent patients with ringed sideroblasts. Labile plasma iron appeared to be a clinically relevant measure for potential iron toxicity and a prognostic factor for survival in transfusion-dependent patients. clinicaltrials.gov Identifier: 00600860.
Collapse
Affiliation(s)
- Louise de Swart
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Chloé Reiniers
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Timothy Bagguley
- Epidemiology and Cancer Statistics Group, University of York, UK
| | - Corine van Marrewijk
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - David Bowen
- St. James's Institute of Oncology, Leeds Teaching Hospitals, UK
| | - Eva Hellström-Lindberg
- Department of Medicine, Division of Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Argiris Symeonidis
- Department of Medicine, Division of Hematology, University of Patras Medical School, Greece
| | - Gerwin Huls
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology & Blood Transfusion, Prague, Czech Republic
| | | | - Hege Garelius
- Department of Medicine, Section of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Mac Macheta
- Department of Haematology, Blackpool Victoria Hospital, Lancashire, UK
| | | | - Panagiotis Panagiotidis
- Department of Hematology, Laikon General Hospital, National and Kapodistrian University of Athens, Greece
| | - Marta Krejci
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Masaryk University, Czech Republic
| | - Nicole Blijlevens
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Saskia Langemeijer
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Jackie Droste
- Department of Hematology, Radboud university medical center, Nijmegen, the Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Hepcidinanalysis.com, and Radboudumc expertise center for iron disorders, Radboud university medical center, Nijmegen, the Netherlands and
| | - Alex Smith
- Department of Hematology, University Medical Centre, Groningen, the Netherlands
| | - Theo de Witte
- Nijmegen Center for Molecular Life Sciences, Department of Tumor Immunology, Radboud university medical center, the Netherlands
| | | |
Collapse
|
49
|
Unraveling the mechanisms behind iron overload and ineffective hematopoiesis in myelodysplastic syndromes. Leuk Res 2017; 62:108-115. [DOI: 10.1016/j.leukres.2017.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
|
50
|
Leitch HA, Parmar A, Wells RA, Chodirker L, Zhu N, Nevill TJ, Yee KWL, Leber B, Keating MM, Sabloff M, St Hilaire E, Kumar R, Delage R, Geddes M, Storring JM, Kew A, Shamy A, Elemary M, Lenis M, Mamedov A, Ivo J, Francis J, Zhang L, Buckstein R. Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis. Br J Haematol 2017; 179:83-97. [PMID: 28677895 DOI: 10.1111/bjh.14825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/25/2017] [Indexed: 01/23/2023]
Abstract
Analyses suggest iron overload in red blood cell (RBC) transfusion-dependent (TD) patients with myleodysplastic syndrome (MDS) portends inferior overall survival (OS) that is attenuated by iron chelation therapy (ICT) but may be biassed by unbalanced patient-related factors. The Canadian MDS Registry prospectively measures frailty, comorbidity and disability. We analysed OS by receipt of ICT, adjusting for these patient-related factors. TD International Prognostic Scoring System (IPSS) low and intermediate-1 risk MDS, at RBC TD, were included. Predictive factors for OS were determined. A matched pair analysis considering age, revised IPSS, TD severity, time from MDS diagnosis to TD, and receipt of disease-modifying agents was conducted. Of 239 patients, 83 received ICT; frailty, comorbidity and disability did not differ from non-ICT patients. Median OS from TD was superior in ICT patients (5·2 vs. 2·1 years; P < 0·0001). By multivariate analysis, not receiving ICT independently predicted inferior OS, (hazard ratio for death 2·0, P = 0·03). In matched pair analysis, OS remained superior for ICT patients (P = 0·02). In this prospective, non-randomized analysis, receiving ICT was associated with superior OS in lower IPSS risk MDS, adjusting for age, frailty, comorbidity, disability, revised IPSS, TD severity, time to TD and receiving disease-modifying agents. This provides additional evidence that ICT may confer clinical benefit.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | | | - Richard A Wells
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lisa Chodirker
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nancy Zhu
- Hematology/Oncology, University of Alberta, Edmonton, AB, Canada
| | - Thomas J Nevill
- Division of Hematology, Leukemia/BMT Program of British Columbia, Vancouver, BC, Canada
| | - Karen W L Yee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | | | - Eve St Hilaire
- Centre d'Oncologie, Dr-Leon-Richard, Moncton, NB, Canada
| | - Rajat Kumar
- Hematology/Oncology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Robert Delage
- Hematology Department, Centre Hospitalier Universitaire, Laval University, Quebec, QC, Canada
| | - Michelle Geddes
- Department of Medicine/Hematology, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Andrea Kew
- Queen Elizabeth II Health Sciences Center, Halifax, NS, Canada
| | - April Shamy
- Sir Mortimer B Davis Hospital, McGill University, Montreal, QC, Canada
| | - Mohamed Elemary
- Saskatoon Cancer Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Martha Lenis
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alexandre Mamedov
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jessica Ivo
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Janika Francis
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Liying Zhang
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|