1
|
Xiao S, Xing J, Nie T, Su A, Zhang R, Zhao Y, Song W, Zhao J. Comparative analysis of mitochondrial genomes of maize CMS-S subtypes provides new insights into male sterility stability. BMC PLANT BIOLOGY 2022; 22:469. [PMID: 36180833 PMCID: PMC9526321 DOI: 10.1186/s12870-022-03849-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a trait of economic importance in the production of hybrid seeds. In CMS-S maize, exerted anthers appear frequently in florets of field-grown female populations where only complete male-sterile plants were expected. It has been reported that these reversions are associated with the loss of sterility-conferring regions or other rearrangements in the mitochondrial genome. However, the relationship between mitochondrial function and sterility stability is largely unknown. RESULTS In this study, we determined the ratio of plants carrying exerted anthers in the population of two CMS-S subtypes. The subtype with a high ratio of exerted anthers was designated as CMS-Sa, and the other with low ratio was designated as CMS-Sb. Through next-generation sequencing, we assembled and compared mitochondrial genomes of two CMS-S subtypes. Phylogenetic analyses revealed strong similarities between the two mitochondrial genomes. The sterility-associated regions, S plasmids, and terminal inverted repeats (TIRs) were intact in both genomes. The two subtypes maintained high transcript levels of the sterility gene orf355 in anther tissue. Most of the functional genes/proteins were identical at the nucleotide sequence and amino acid sequence levels in the two subtypes, except for NADH dehydrogenase subunit 1 (nad1). In the mitochondrial genome of CMS-Sb, a 3.3-kilobase sequence containing nad1-exon1 was absent from the second copy of the 17-kb repeat region. Consequently, we detected two copies of nad1-exon1 in CMS-Sa, but only one copy in CMS-Sb. During pollen development, nad1 transcription and mitochondrial biogenesis were induced in anthers of CMS-Sa, but not in those of CMS-Sb. We suggest that the impaired mitochondrial function in the anthers of CMS-Sb is associated with its more stable sterility. CONCLUSIONS Comprehensive analyses revealed diversity in terms of the copy number of the mitochondrial gene nad1-exon1 between two subtypes of CMS-S maize. This difference in copy number affected the transcript levels of nad1 and mitochondrial biogenesis in anther tissue, and affected the reversion rate of CMS-S maize. The results of this study suggest the involvement of mitochondrial robustness in modulation of sterility stability in CMS-S maize.
Collapse
Affiliation(s)
- Senlin Xiao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingfeng Xing
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tiange Nie
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ruyang Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
He T, Ding X, Zhang H, Li Y, Chen L, Wang T, Yang L, Nie Z, Song Q, Gai J, Yang S. Comparative analysis of mitochondrial genomes of soybean cytoplasmic male-sterile lines and their maintainer lines. Funct Integr Genomics 2021; 21:43-57. [PMID: 33404916 DOI: 10.1007/s10142-020-00760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
In soybean, only one mitochondrial genome of cultispecies has been completely obtained. To explore the effect of mitochondrial genome on soybean cytoplasmic male sterility (CMS), two CMS lines and three maintainer lines were used for sequencing. Comparative analysis showed that mitochondrial genome of the CMS line was more compact than that of its maintainer line, but genes were highly conserved. Conserved and unique sequence coexisted in the genomes. Mitochondrial genomes contained different sequence lengths and copy numbers of repeats between CMS line and maintainer line. Large and short repeats mediated intramolecular and intermolecular recombination in mitochondria. Unique sequences and genes were also involved in recombination process and constituted a complex network. orf178 and orf261 were identified as CMS-associated candidate genes. They had sequence characteristics of reported CMS genes in other crops and could be transcribed in CMS lines but not in maintainer lines. This report reveals mitochondrial genome of soybean CMS lines and compares complete mitochondrial sequence between CMS lines and their maintainer lines. The information will be helpful in further understanding the characteristics of soybean mitochondrial genome and the mechanism underlying CMS.
Collapse
Affiliation(s)
- Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhixing Nie
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, 20705, USA
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Qin X, Zhang W, Dong X, Tian S, Zhang P, Zhao Y, Wang Y, Yan J, Yue B. Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq. PeerJ 2020; 8:e10015. [PMID: 33062436 PMCID: PMC7532766 DOI: 10.7717/peerj.10015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
Cytoplasmic male sterility (CMS) is extensively used in maize hybrid production, and identification of genes related to fertility restoration for CMS is important for hybrid breeding. The fertility restoration of S type CMS is governed by several loci with major and minor effects, while the mechanism of fertility restoration for CMS-S is still unknown. In this study, BSR-Seq was conducted with two backcrossing populations with the fertility restoration genes, Rf3 and Rf10, respectively. Genetic mapping via BSR-Seq verified the positions of the two loci. A total of 353 and 176 differentially expressed genes (DEGs) between the male fertility and male sterile pools were identified in the populations with Rf3 and Rf10, respectively. In total, 265 DEGs were co-expressed in the two populations, which were up-regulated in the fertile plants, and they might be related to male fertility involving in anther or pollen development. Moreover, 35 and seven DEGs were specifically up-regulated in the fertile plants of the population with Rf3 and Rf10, respectively. Function analysis of these DEGs revealed that jasmonic acid (JA) signal pathway might be involved in the Rf3 mediated fertility restoration for CMS-S, while the small ubiquitin-related modifier system could play a role in the fertility restoration of Rf10.
Collapse
Affiliation(s)
- Xiner Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xue Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shike Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Industrial Crops Research Institution, Heilongjiang Academy of Land Reclamation of Sciences, Haerbin, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bing Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Niazi AK, Delannoy E, Iqbal RK, Mileshina D, Val R, Gabryelska M, Wyszko E, Soubigou-Taconnat L, Szymanski M, Barciszewski J, Weber-Lotfi F, Gualberto JM, Dietrich A. Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells 2019; 8:E583. [PMID: 31200566 PMCID: PMC6627697 DOI: 10.3390/cells8060583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
We address here organellar genetic regulation and intercompartment genome coordination. We developed earlier a strategy relying on a tRNA-like shuttle to mediate import of nuclear transgene-encoded custom RNAs into mitochondria in plants. In the present work, we used this strategy to drive trans-cleaving hammerhead ribozymes into the organelles, to knock down specific mitochondrial RNAs and analyze the regulatory impact. In a similar approach, the tRNA mimic was used to import into mitochondria in Arabidopsis thaliana the orf77, an RNA associated with cytoplasmic male sterility in maize and possessing sequence identities with the atp9 mitochondrial RNA. In both cases, inducible expression of the transgenes allowed to characterise early regulation and signaling responses triggered by these respective manipulations of the organellar transcriptome. The results imply that the mitochondrial transcriptome is tightly controlled by a "buffering" mechanism at the early and intermediate stages of plant development, a control that is released at later stages. On the other hand, high throughput analyses showed that knocking down a specific mitochondrial mRNA triggered a retrograde signaling and an anterograde nuclear transcriptome response involving a series of transcription factor genes and small RNAs. Our results strongly support transcriptome coordination mechanisms within the organelles and between the organelles and the nucleus.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan.
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Rana Khalid Iqbal
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Romain Val
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Marta Gabryelska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Paris Diderot, Sorbonne Paris-Cité, 91405 Orsay, France.
| | - Maciej Szymanski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, A. Mickiewicz University Poznan, Ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
- NanoBioMedical Centre of the Adam Mickiewicz University, Umultowska 85, 61614 Poznan, Poland.
| | - Frédérique Weber-Lotfi
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - José Manuel Gualberto
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institute of Plant Molecular Biology (IBMP), CNRS and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
5
|
Štorchová H, Stone JD, Sloan DB, Abeyawardana OAJ, Müller K, Walterová J, Pažoutová M. Homologous recombination changes the context of Cytochrome b transcription in the mitochondrial genome of Silene vulgaris KRA. BMC Genomics 2018; 19:874. [PMID: 30514207 PMCID: PMC6280394 DOI: 10.1186/s12864-018-5254-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Silene vulgaris (bladder campion) is a gynodioecious species existing as two genders – male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content. Multiple CMS genes are expected to exist in S. vulgaris, but little is known about their molecular identity. Results We assembled the complete mitochondrial genome from the haplotype KRA of S. vulgaris. It consists of five chromosomes, two of which recombine with each other. Two small non-recombining chromosomes exist in linear, supercoiled and relaxed circle forms. We compared the mitochondrial transcriptomes from females and hermaphrodites and confirmed the differentially expressed chimeric gene bobt as the strongest CMS candidate gene in S. vulgaris KRA. The chimeric gene bobt is co-transcribed with the Cytochrome b (cob) gene in some genomic configurations. The co-transcription of a CMS factor with an essential gene may constrain transcription inhibition as a mechanism for fertility restoration because of the need to maintain appropriate production of the necessary protein. Homologous recombination places the gene cob outside the control of bobt, which allows for the suppression of the CMS gene by the fertility restorer genes. We found the loss of three editing sites in the KRA mitochondrial genome and identified four sites with highly distinct editing rates between KRA and another S. vulgaris haplotypes (KOV). Three of these highly differentially edited sites were located in the transport membrane protein B (mttB) gene. They resulted in differences in MttB protein sequences between haplotypes. Conclusions Frequent homologous recombination events that are widespread in plant mitochondrial genomes may change chromosomal configurations and also the control of gene transcription including CMS gene expression. Posttranscriptional processes, e.g. RNA editing shall be evaluated in evolutionary and co-evolutionary studies of mitochondrial genes, because they may change protein composition despite the sequence identity of the respective genes. The investigation of natural populations of wild species such as S. vulgaris are necessary to reveal important aspects of CMS missed in domesticated crops, the traditional focus of the CMS studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5254-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - James D Stone
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Oushadee A J Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Karel Müller
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Jana Walterová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| | - Marie Pažoutová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic
| |
Collapse
|
6
|
Li S, Chen Z, Zhao N, Wang Y, Nie H, Hua J. The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton. BMC Genomics 2018; 19:775. [PMID: 30367630 PMCID: PMC6204043 DOI: 10.1186/s12864-018-5122-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mitochondrial genomes of higher plants vary remarkably in size, structure and sequence content, as demonstrated by the accumulation and activity of repetitive DNA sequences. Incompatibility between mitochondrial genome and nuclear genome leads to non-functional male reproductive organs and results in cytoplasmic male sterility (CMS). CMS has been used to produce F1 hybrid seeds in a variety of plant species. RESULTS Here we compared the mitochondrial genomes (mitogenomes) of Gossypium hirsutum sterile male lines CMS-2074A and CMS-2074S, as well as their restorer and maintainer lines. First, we noticed the mitogenome organization and sequences were conserved in these lines. Second, we discovered the mitogenomes of 2074A and 2074S underwent large-scale substitutions and rearrangements. Actually, there were five and six unique chimeric open reading frames (ORFs) in 2074A and 2074S, respectively, which were derived from the recombination between unique repetitive sequences and nearby functional genes. Third, we found out four chimeric ORFs that were differentially transcribed in sterile line (2074A) and fertile-restored line. CONCLUSIONS These four novel and recombinant ORFs are potential candidates that confer CMS character in 2074A. In addition, our observations suggest that CMS in cotton is associated with the accelerated rates of rearrangement, and that novel expression products are derived from recombinant ORFs.
Collapse
Affiliation(s)
- Shuangshuang Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Gabay-Laughnan S, Settles AM, Hannah LC, Porch TG, Becraft PW, McCarty DR, Koch KE, Zhao L, Kamps TL, Chamusco KC, Chase CD. Restorer-of-Fertility Mutations Recovered in Transposon-Active Lines of S Male-Sterile Maize. G3 (BETHESDA, MD.) 2018; 8:291-302. [PMID: 29167273 PMCID: PMC5765357 DOI: 10.1534/g3.117.300304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer) mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds), Enhancer/Suppressor-mutator (En/Spm), and Mutator (Mu) transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.
Collapse
Affiliation(s)
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Timothy G Porch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Tropical Agriculture Research Station, The United States Department of Agriculture, Agriculture Research Service, Mayaguez, Puerto Rico 00680-5470
| | - Philip W Becraft
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Liming Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Florida Medical Entomology Laboratory, Vero Beach, Florida 32962
| | - Terry L Kamps
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Biology Department, New Jersey City University, Jersey City, NJ 07305
| | - Karen C Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Christine D Chase
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
8
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
9
|
Su A, Song W, Xing J, Zhao Y, Zhang R, Li C, Duan M, Luo M, Shi Z, Zhao J. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq. PLoS One 2016; 11:e0163489. [PMID: 27669430 PMCID: PMC5036866 DOI: 10.1371/journal.pone.0163489] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
S-type cytoplasmic male sterility (CMS-S) is the largest group among the three major types of CMS in maize. CMS-S exhibits fertility instability as a partial fertility restoration in a specific nuclear genetic background, which impedes its commercial application in hybrid breeding programs. The fertility instability phenomenon of CMS-S is controlled by several minor quantitative trait locus (QTLs), but not the major nuclear fertility restorer (Rf3). However, the gene mapping of these minor QTLs and the molecular mechanism of the genetic modifications are still unclear. Using completely sterile and partially rescued plants of fertility instable line (FIL)-B, we performed bulk segregant RNA-Seq and identified six potential associated genes in minor effect QTLs contributing to fertility instability. Analyses demonstrate that these potential associated genes may be involved in biological processes, such as floral organ differentiation and development regulation, energy metabolism and carbohydrates biosynthesis, which results in a partial anther exsertion and pollen fertility restoration in the partially rescued plants. The single nucleotide polymorphisms (SNPs) identified in two potential associated genes were validated to be related to the fertility restoration phenotype by KASP marker assays. This novel knowledge contributes to the understanding of the molecular mechanism of the partial fertility restoration of CMS-S in maize and thus helps to guide the breeding programs.
Collapse
Affiliation(s)
- Aiguo Su
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Wei Song
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jinfeng Xing
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yanxin Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Ruyang Zhang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Chunhui Li
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Minxiao Duan
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Meijie Luo
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Zi Shi
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
- * E-mail: (ZS); (JZ)
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
- * E-mail: (ZS); (JZ)
| |
Collapse
|
10
|
Wallet C, Le Ret M, Bergdoll M, Bichara M, Dietrich A, Gualberto JM. The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. THE PLANT CELL 2015; 27:2907-25. [PMID: 26462909 PMCID: PMC4682331 DOI: 10.1105/tpc.15.00680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 05/24/2023]
Abstract
The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift.
Collapse
Affiliation(s)
- Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Monique Le Ret
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - Marc Bichara
- CNRS UMR7242, IREBS, Université de Strasbourg, 67412 Illkirch, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
11
|
Heng S, Wei C, Jing B, Wan Z, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288. BMC Genomics 2014; 15:322. [PMID: 24884490 PMCID: PMC4035054 DOI: 10.1186/1471-2164-15-322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288. Results Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line “J163-4” are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity. Conclusion The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the mechanism of natural CMS in B. juncea, performing comparative analysis on sequenced mitochondrial genomes in Brassicas, and uncovering the origin of the hau CMS mitotype and structural and evolutionary differences between different mitotypes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-322) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P,R, China.
| |
Collapse
|
12
|
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A. The plant mitochondrial genome: dynamics and maintenance. Biochimie 2013; 100:107-20. [PMID: 24075874 DOI: 10.1016/j.biochi.2013.09.016] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Clémentine Wallet
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
13
|
|