1
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
2
|
Meikle TG, Huynh K, Giles C, Meikle PJ. Clinical lipidomics: realizing the potential of lipid profiling. J Lipid Res 2021; 62:100127. [PMID: 34582882 PMCID: PMC8528718 DOI: 10.1016/j.jlr.2021.100127] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of lipid metabolism plays a major role in the etiology and sequelae of inflammatory disorders, cardiometabolic and neurological diseases, and several forms of cancer. Recent advances in lipidomic methodology allow comprehensive lipidomic profiling of clinically relevant biological samples, enabling researchers to associate lipid species and metabolic pathways with disease onset and progression. The resulting data serve not only to advance our fundamental knowledge of the underlying disease process but also to develop risk assessment models to assist in the diagnosis and management of disease. Currently, clinical applications of in-depth lipidomic profiling are largely limited to the use of research-based protocols in the analysis of population or clinical sample sets. However, we foresee the development of purpose-built clinical platforms designed for continuous operation and clinical integration-assisting health care providers with disease risk assessment, diagnosis, and monitoring. Herein, we review the current state of clinical lipidomics, including the use of research-based techniques and platforms in the analysis of clinical samples as well as assays already available to clinicians. With a primary focus on MS-based strategies, we examine instrumentation, analysis techniques, statistical models, prospective design of clinical platforms, and the possible pathways toward implementation of clinical lipidomics.
Collapse
Affiliation(s)
- Thomas G Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Tomczyk MM, Dolinsky VW. The Cardiac Lipidome in Models of Cardiovascular Disease. Metabolites 2020; 10:E254. [PMID: 32560541 PMCID: PMC7344916 DOI: 10.3390/metabo10060254] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. There are numerous factors involved in the development of CVD. Among these, lipids have an important role in maintaining the myocardial cell structure as well as cardiac function. Fatty acids (FA) are utilized for energy, but also contribute to the pathogenesis of CVD and heart failure. Advances in mass spectrometry methods have enabled the comprehensive analysis of a plethora of lipid species from a single sample comprised of a heterogeneous population of lipid molecules. Determining cardiac lipid alterations in different models of CVD identifies novel biomarkers as well as reveals molecular mechanisms that underlie disease development and progression. This information could inform the development of novel therapeutics in the treatment of CVD. Herein, we provide a review of recent studies of cardiac lipid profiles in myocardial infarction, obesity, and diabetic and dilated cardiomyopathy models of CVD by methods of mass spectrometry analysis.
Collapse
Affiliation(s)
- Mateusz M. Tomczyk
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children’s Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Rady Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Goracci L, Valeri A, Sciabola S, Aleo MD, Moritz W, Lichtenberg J, Cruciani G. A Novel Lipidomics-Based Approach to Evaluating the Risk of Clinical Hepatotoxicity Potential of Drugs in 3D Human Microtissues. Chem Res Toxicol 2019; 33:258-270. [PMID: 31820940 DOI: 10.1021/acs.chemrestox.9b00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis is expected to grow substantially due to recent failures in detecting severe toxicity issues of new chemical entities during preclinical/clinical development. Traditionally, safety risk assessment studies for humans have been conducted in animals during advanced preclinical or clinical phase of drug development. However, potential drug toxicity in humans now needs to be detected in the drug discovery process as soon as possible without reliance on animal studies. The "omics", such as genomics, proteomics, and metabolomics, have recently entered pharmaceutical research in both drug discovery and drug development, but to the best of our knowledge, no applications in high-throughput safety risk assessment have been attempted so far. This paper reports an innovative method to anticipate adverse drug effects in an early discovery phase based on lipid fingerprints using human three-dimensional microtissues. The risk of clinical hepatotoxicity potential was evaluated for a data set of 22 drugs belonging to five different therapeutic chemical classes and with various drug-induced liver injury effect. The treatment of microtissues with repeated doses of each drug allowed collecting lipid fingerprints for five time points (2, 4, 7, 9, and 11 days), and multivariate statistical analysis was applied to search for correlations with the hepatotoxic effect. The method allowed clustering of the drugs based on their hepatotoxic effect, and the observed lipid impairments for a number of drugs was confirmed by literature sources. Compared to traditional screening methods, here multiple interconnected variables (lipids) are measured simultaneously, providing a snapshot of the cellular status from the lipid perspective at a molecular level. Applied here to hepatotoxicity, the proposed workflow can be applied to several tissues, being tridimensional microtissues from various origins.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology, and Biotechnology , University of Perugia , Perugia 06123 , Italy
| | | | - Simone Sciabola
- Medicinal Chemistry , Biogen , 115 Broadway Street , Cambridge , Massachusetts 02139 , United States
| | - Michael D Aleo
- Drug Safety R&D , Pfizer Worldwide Research and Development , Groton , Connecticut 06340 , United States
| | | | | | - Gabriele Cruciani
- Department of Chemistry, Biology, and Biotechnology , University of Perugia , Perugia 06123 , Italy
| |
Collapse
|
5
|
Zhu C, Sawrey-Kubicek L, Beals E, Hughes RL, Rhodes CH, Sacchi R, Zivkovic AM. The HDL lipidome is widely remodeled by fast food versus Mediterranean diet in 4 days. Metabolomics 2019; 15:114. [PMID: 31422486 DOI: 10.1007/s11306-019-1579-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION HDL is associated with increased longevity and protection from multiple chronic diseases. The major HDL protein ApoA-I has a half-life of about 4 days, however, the effects of diet on the composition of HDL particles at this time scale have not been studied. OBJECTIVES The objective of this study is to investigate the short term dietary effect on HDL lipidomic composition. METHODS In this randomized order cross-over study, ten healthy subjects consumed a Mediterranean (Med) and a fast food (FF) diet for 4 days, with a 4-day wash-out between treatments. Lipidomic composition was analyzed in isolated HDL fractions by an untargeted LC-MS method with 15 internal standards. RESULTS HDL phosphatidylethanolamine (PE) content was increased by FF diet, and 41 out of 170 lipid species were differentially affected by diet. Saturated fatty acids (FAs) and odd chain FA were enriched after FF diet, while very-long chain FA and unsaturated FA were enriched after Med diet. The composition of phosphatidylcholine (PC), triacylglycerol (TG) and cholesteryl ester (CE) were significantly altered to reflect the FA composition of the diet whereas the composition of sphingomyelin (SM) and ceramides were generally unaffected. CONCLUSION Results from this study indicate that the HDL lipidome is widely remodeled within 4 days of diet change and that certain lipid classes are more sensitive markers of diet whereas other lipid classes are better indicators of non-dietary factors.
Collapse
Affiliation(s)
- Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Lisa Sawrey-Kubicek
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Elizabeth Beals
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Riley L Hughes
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Chris H Rhodes
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Romina Sacchi
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
7
|
Metabolic Alterations Associated with Atorvastatin/Fenofibric Acid Combination in Patients with Atherogenic Dyslipidaemia: A Randomized Trial for Comparison with Escalated-Dose Atorvastatin. Sci Rep 2018; 8:14642. [PMID: 30279504 PMCID: PMC6168550 DOI: 10.1038/s41598-018-33058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
In the current study, the metabolic effects of atorvastatin dose escalation versus atorvastatin/fenofibric acid combination were compared using metabolomics analyses. Men and women with combined hyperlipidaemia were initially prescribed atorvastatin (10 mg, ≥4 weeks). Patients who reached low-density lipoprotein-cholesterol targets, but had triglyceride and high-density lipoprotein-cholesterol levels ≥150 mg/dL and <50 mg/dL, respectively, were randomized to receive atorvastatin 20 mg or atorvastatin 10 mg/fenofibric acid 135 mg for 12 weeks. Metabolite profiling of serum was performed and changes in metabolites after drug treatment in the two groups were compared. Analysis was performed using patients' samples obtained before and after treatment. Of 89 screened patients, 37 who met the inclusion criteria were randomized, and 34 completed the study. Unlike that in the dose-escalation group, distinct clustering of both lipid and aqueous metabolites was observed in the combination group after treatment. Most lipid metabolites of acylglycerols and many of ceramides decreased, while many of sphingomyelins increased in the combination group. Atorvastatin dose escalation modestly decreased lysophosphatidylcholines; however, the effect of combination therapy was variable. Most aqueous metabolites decreased, while L-carnitine remarkably increased in the combination group. In conclusion, the atorvastatin/fenofibric acid combination induced distinct metabolite clustering. Our results provide comprehensive information regarding metabolic changes beyond conventional lipid profiles for this combination therapy.
Collapse
|
8
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L, Cheng L, Shang F, Sun J. Berberine Could Ameliorate Cardiac Dysfunction via Interfering Myocardial Lipidomic Profiles in the Rat Model of Diabetic Cardiomyopathy. Front Physiol 2018; 9:1042. [PMID: 30131709 PMCID: PMC6090155 DOI: 10.3389/fphys.2018.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is considered to be a distinct clinical entity independent of concomitant macro- and microvascular disorders, which is initiated partly by disturbances in energy substrates. This study was to observe the dynamic modulations of berberine in DCM rats and explore the changes of lipidomic profiles of myocardial tissue. Methods: Sprague-Dawley (SD) rats were fed high-sucrose and high-fat diet (HSHFD) for totally 22 weeks and intraperitoneally (i.p.) injected with 30 mg/kg of streptozotocin (STZ) at the fifth week to induce DCM. Seventy-two hours after STZ injection, the rats were orally given with berberine at 10, 30 mg/kg and metformin at 200 mg/kg, respectively. Dynamic changes of cardiac function, heart mass ratios and blood lipids were observed at f 4, 10, 16, and 22, respectively. Furthermore, lipid metabolites in myocardial tissue at week 16 were profiled by the ultra-high-performance liquid chromatography coupled to a quadruple time of flight mass spectrometer (UPLC/Q-TOF/MS) approach. Results: Berberine could protect against cardiac diastolic and systolic dysfunctions, as well as cardiac hypertrophy, and the most effective duration is with 16-week of administration. Meanwhile, 17 potential biomarkers of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingolipids (SMs) of DCM induced by HSFD/STZ were identified. The perturbations of lipidomic profiles could be partly reversed with berberine intervention, i.e., PC (16:0/20:4), PC (18:2/0:0), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0), PC (20:4/18:1), PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0). Conclusions: These results indicated a close relationship between PCs, PEs and SMs and cardiac damage mechanisms during development of DCM. The therapeutic effects of berberine on DCM are partly caused by interferences with PCs, PEs, and SMs metabolisms.
Collapse
Affiliation(s)
- Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Department of Pharmacology, Analysis and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Kulkarni H, Mamtani M, Blangero J, Curran JE. Lipidomics in the Study of Hypertension in Metabolic Syndrome. Curr Hypertens Rep 2017; 19:7. [DOI: 10.1007/s11906-017-0705-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Rankin NJ, Preiss D, Welsh P, Sattar N. Applying metabolomics to cardiometabolic intervention studies and trials: past experiences and a roadmap for the future. Int J Epidemiol 2016; 45:1351-1371. [PMID: 27789671 PMCID: PMC5100629 DOI: 10.1093/ije/dyw271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Metabolomics and lipidomics are emerging methods for detailed phenotyping of small molecules in samples. It is hoped that such data will: (i) enhance baseline prediction of patient response to pharmacotherapies (beneficial or adverse); (ii) reveal changes in metabolites shortly after initiation of therapy that may predict patient response, including adverse effects, before routine biomarkers are altered; and( iii) give new insights into mechanisms of drug action, particularly where the results of a trial of a new agent were unexpected, and thus help future drug development. In these ways, metabolomics could enhance research findings from intervention studies. This narrative review provides an overview of metabolomics and lipidomics in early clinical intervention studies for investigation of mechanisms of drug action and prediction of drug response (both desired and undesired). We highlight early examples from drug intervention studies associated with cardiometabolic disease. Despite the strengths of such studies, particularly the use of state-of-the-art technologies and advanced statistical methods, currently published studies in the metabolomics arena are largely underpowered and should be considered as hypothesis-generating. In order for metabolomics to meaningfully improve stratified medicine approaches to patient treatment, there is a need for higher quality studies, with better exploitation of biobanks from randomized clinical trials i.e. with large sample size, adjudicated outcomes, standardized procedures, validation cohorts, comparison witth routine biochemistry and both active and control/placebo arms. On the basis of this review, and based on our research experience using clinically established biomarkers, we propose steps to more speedily advance this area of research towards potential clinical impact.
Collapse
Affiliation(s)
- Naomi J Rankin
- BHF Glasgow Cardiovascular Research Centre
- Glasgow Polyomics, University of Glasgow, Glasgow, UK
| | - David Preiss
- Clinical Trials Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, UK
| | - Paul Welsh
- BHF Glasgow Cardiovascular Research Centre
| | | |
Collapse
|
12
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
13
|
Zhao YY, Miao H, Cheng XL, Wei F. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease. Chem Biol Interact 2015; 240:220-38. [PMID: 26358168 DOI: 10.1016/j.cbi.2015.09.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China.
| | - Hua Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, PR China
| | - Xian-Long Cheng
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, PR China
| |
Collapse
|
14
|
Denimal D, Pais de Barros JP, Petit JM, Bouillet B, Vergès B, Duvillard L. Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration. Atherosclerosis 2015; 241:752-60. [DOI: 10.1016/j.atherosclerosis.2015.06.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
|
15
|
Abstract
Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vana Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece ; Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| |
Collapse
|
16
|
Dehairs J, Derua R, Rueda-Rincon N, Swinnen JV. Lipidomics in drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 13:33-38. [PMID: 26190681 DOI: 10.1016/j.ddtec.2015.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Numerous human pathologies, including common conditions such as obesity, diabetes, cardiovascular disease, cancer, inflammatory disease and neurodegeneration, involve changes in lipid metabolism. Likewise, a growing number of drugs are being developed that directly or indirectly affect lipid metabolic pathways. Instead of classical and cumbrous radiochemical analyses, lipid profiling by mass spectrometry (MS)-based lipidomics holds great potential as companion diagnostic in several steps along the drug development process. In this review we describe some typical lipidomics set-ups and illustrate how these technologies can be implemented in target discovery, compound screening, in vitro and in vivo preclinical testing, toxicity testing of drugs, and prediction and monitoring of response.
Collapse
Affiliation(s)
- Jonas Dehairs
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, B-3000 Leuven, Belgium
| | - Rita Derua
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, B-3000 Leuven, Belgium
| | - Natalia Rueda-Rincon
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, B-3000 Leuven, Belgium
| | - Johannes V Swinnen
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, B-3000 Leuven, Belgium.
| |
Collapse
|
17
|
Karilainen T, Timr Š, Vattulainen I, Jungwirth P. Oxidation of Cholesterol Does Not Alter Significantly Its Uptake into High-Density Lipoprotein Particles. J Phys Chem B 2015; 119:4594-600. [DOI: 10.1021/acs.jpcb.5b00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Topi Karilainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Štěpán Timr
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstı́ 2, 16610 Prague 6, Czech Republic
| | - Ilpo Vattulainen
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- MEMPHYS -
Center
for Biomembrane Physics, University of Southern Denmark, DK-5230, Odense, Denmark
| | - Pavel Jungwirth
- Department
of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstı́ 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
18
|
Gomaraschi M, Adorni MP, Banach M, Bernini F, Franceschini G, Calabresi L. Effects of established hypolipidemic drugs on HDL concentration, subclass distribution, and function. Handb Exp Pharmacol 2015; 224:593-615. [PMID: 25523003 DOI: 10.1007/978-3-319-09665-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The knowledge of an inverse relationship between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and rates of cardiovascular disease has led to the concept that increasing plasma HDL-C levels would be protective against cardiovascular events. Therapeutic interventions presently available to correct the plasma lipid profile have not been designed to specifically act on HDL, but have modest to moderate effects on plasma HDL-C concentrations. Statins, the first-line lipid-lowering drug therapy in primary and secondary cardiovascular prevention, have quite modest effects on plasma HDL-C concentrations (2-10%). Fibrates, primarily used to reduce plasma triglyceride levels, also moderately increase HDL-C levels (5-15%). Niacin is the most potent available drug in increasing HDL-C levels (up to 30%), but its use is limited by side effects, especially flushing.The present chapter reviews the effects of established hypolipidemic drugs (statins, fibrates, and niacin) on plasma HDL-C levels and HDL subclass distribution, and on HDL functions, including cholesterol efflux capacity, endothelial protection, and antioxidant properties.
Collapse
Affiliation(s)
- Monica Gomaraschi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milan, Italy,
| | | | | | | | | | | |
Collapse
|
19
|
Kopf T, Schaefer HL, Troetzmueller M, Koefeler H, Broenstrup M, Konovalova T, Schmitz G. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats. PLoS One 2014; 9:e106849. [PMID: 25198467 PMCID: PMC4157811 DOI: 10.1371/journal.pone.0106849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/08/2014] [Indexed: 11/18/2022] Open
Abstract
Fenofibrate (FF) lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o.) was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS) on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5) increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0) increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS) may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.
Collapse
Affiliation(s)
- Thomas Kopf
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Ludwig Schaefer
- Sanofi-Aventis Germany, R&D DIAB Div./Biomarker & Diagnostics, Frankfurt, Germany
| | | | - Harald Koefeler
- Core Facility Mass Spectrometry, ZMF, Medical University Graz, Graz, Austria
| | - Mark Broenstrup
- Sanofi-Aventis Germany, R&D DIAB Div./Biomarker & Diagnostics, Frankfurt, Germany
| | - Tatiana Konovalova
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 2014; 55:43-60. [DOI: 10.1016/j.plipres.2014.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
|
21
|
Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol Ther 2014; 143:12-23. [DOI: 10.1016/j.pharmthera.2014.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 01/07/2023]
|
22
|
Koivuniemi A, Sysi-Aho M, Orešič M, Ollila S. Interfacial properties of high-density lipoprotein-like lipid droplets with different lipid and apolipoprotein A-I compositions. Biophys J 2013; 104:2193-201. [PMID: 23708359 DOI: 10.1016/j.bpj.2013.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 01/22/2023] Open
Abstract
The surface properties of high-density lipoproteins (HDLs) are important because different enzymes bind and carry out their functions at the surface of HDL particles during metabolic processes. However, the surface properties of HDL and other lipoproteins are poorly known because they cannot be directly measured for nanoscale particles with contemporary experimental methods. In this work, we carried out coarse-grained molecular dynamics simulations to study the concentration of core lipids in the surface monolayer and the interfacial tension of droplets resembling HDL particles. We simulated lipid droplets composed of different amounts of phospholipids, cholesterol esters (CEs), triglycerides (TGs), and apolipoprotein A-Is. Our results reveal that the amount of TGs in the vicinity of water molecules in the phospholipid monolayer is 25-50% higher compared to the amount of CEs in a lipid droplet with a mixed core of an equal amount of TG and CE. In addition, the correlation time for the exchange of molecules between the core and the monolayer is significantly longer for TGs compared to CEs. This suggests that the chemical potential of TG is lower in the vicinity of aqueous phase but the free-energy barrier for the translocation between the monolayer and the core is higher compared to CEs. From the point of view of enzymatic modification, this indicates that TG molecules are more accessible from the aqueous phase. Further, our results point out that CE molecules decrease the interfacial tension of HDL-like lipid droplets whereas TG keeps it constant while the amount of phospholipids varies.
Collapse
|
23
|
Lu J, Mazer NA, Hübner K. Mathematical models of lipoprotein metabolism and kinetics: current status and future perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Fournier N, Tuloup-Minguez V, Pourci ML, Thérond P, Jullian JC, Wien F, Leroy M, Dallongeville J, Paul JL, Leroy A. Fibrate treatment induced quantitative and qualitative HDL changes associated with an increase of SR-BI cholesterol efflux capacities in rabbits. Biochimie 2013; 95:1278-87. [DOI: 10.1016/j.biochi.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
|
25
|
Martínez-Beamonte R, Lou-Bonafonte JM, Martínez-Gracia MV, Osada J. Sphingomyelin in high-density lipoproteins: structural role and biological function. Int J Mol Sci 2013; 14:7716-41. [PMID: 23571495 PMCID: PMC3645712 DOI: 10.3390/ijms14047716] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin-cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann-Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jose M. Lou-Bonafonte
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca E-22002, Spain
| | - María V. Martínez-Gracia
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761-644; Fax: +34-976-761-612
| |
Collapse
|
26
|
Ottestad I, Hassani S, Borge GI, Kohler A, Vogt G, Hyötyläinen T, Orešič M, Brønner KW, Holven KB, Ulven SM, Myhrstad MCW. Fish oil supplementation alters the plasma lipidomic profile and increases long-chain PUFAs of phospholipids and triglycerides in healthy subjects. PLoS One 2012; 7:e42550. [PMID: 22952598 PMCID: PMC3429454 DOI: 10.1371/journal.pone.0042550] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping. CONCLUSIONS/SIGNIFICANCE In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated. TRIAL REGISTRATION ClinicalTrials.gov NCT01034423.
Collapse
Affiliation(s)
- Inger Ottestad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Sahar Hassani
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Centre for Integrative Genetics (CIGENE), Department of Mathematical Sciences and Technology, Norwegian University of Life Science, Ås, Norway
| | - Grethe I. Borge
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Achim Kohler
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Centre for Integrative Genetics (CIGENE), Department of Mathematical Sciences and Technology, Norwegian University of Life Science, Ås, Norway
| | - Gjermund Vogt
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | | | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Kirsti W. Brønner
- TINE SA, Centre for Research and Development, Kalbakken, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine M. Ulven
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Mari C. W. Myhrstad
- Department of Health, Nutrition and Management, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
- * E-mail:
| |
Collapse
|
27
|
Gao X, Yuan S, Jayaraman S, Gursky O. Role of apolipoprotein A-II in the structure and remodeling of human high-density lipoprotein (HDL): protein conformational ensemble on HDL. Biochemistry 2012; 51:4633-41. [PMID: 22631438 DOI: 10.1021/bi300555d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-density lipoproteins (HDL, or "good cholesterol") are heterogeneous nanoparticles that remove excess cell cholesterol and protect against atherosclerosis. The cardioprotective action of HDL and its major protein, apolipoprotein A-I (apoA-I), is well-established, yet the function of the second major protein, apolipoprotein A-II (apoA-II), is less clear. In this review, we postulate an ensemble of apolipoprotein conformations on various HDL. This ensemble is based on the crystal structure of Δ(185-243)apoA-I determined by Mei and Atkinson combined with the "double-hairpin" conformation of apoA-II(dimer) proposed in the cross-linking studies by Silva's team, and is supported by the wide array of low-resolution structural, biophysical, and biochemical data obtained by many teams over decades. The proposed conformational ensemble helps integrate and improve several existing HDL models, including the "buckle-belt" conformation of apoA-I on the midsize disks and the "trefoil/tetrafoil" arrangement on spherical HDL. This ensemble prompts us to hypothesize that endogenous apoA-II (i) helps confer lipid surface curvature during conversion of nascent discoidal HDL(A-I) and HDL(A-II) containing either apoA-I or apoA-II to mature spherical HDL(A-I/A-II) containing both proteins, and (ii) hinders remodeling of HDL(A-I/A-II) by hindering the expansion of the apoA-I conformation. Also, we report that, although endogenous apoA-II circulates mainly on the midsize spherical HDL(A-I/A-II), exogenous apoA-II can bind to HDL of any size, thereby slightly increasing this size and stabilizing the HDL assembly. This suggests distinctly different effects of the endogenous and exogenous apoA-II on HDL. Taken together, the existing results and models prompt us to postulate a new structural and functional role of apoA-II on human HDL.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Jane Stock
- European Atherosclerosis Society, Kronhusgatan 11, Kronhusgatan 11, 411 05 Gothenburg, Sweden.
| |
Collapse
|
29
|
Patel DC, Albrecht C, Pavitt D, Paul V, Pourreyron C, Newman SP, Godsland IF, Valabhji J, Johnston DG. Type 2 diabetes is associated with reduced ATP-binding cassette transporter A1 gene expression, protein and function. PLoS One 2011; 13:254-9. [PMID: 21829447 DOI: 10.2459/jcm.0b013e3283522422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor-γ (PPARγ). METHODS AND RESULTS Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2-3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = -0.41, p<0.001; rho = -0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = -0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. CONCLUSIONS ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia-related, persistent disruption of a key component of RCT.
Collapse
Affiliation(s)
- Dipesh C Patel
- Division of Medicine, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|