1
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
2
|
Haas S, Bravo F, Ionescu TM, Gonzalez-Menendez I, Quintanilla-Martinez L, Dunkel G, Kuebler L, Hahn A, Lanzenberger R, Weigelin B, Reischl G, Pichler BJ, Herfert K. Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway. SCIENCE ADVANCES 2024; 10:eadn2776. [PMID: 39454014 PMCID: PMC11506239 DOI: 10.1126/sciadv.adn2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
The dopaminergic system is a central component of the brain's neurobiological framework, governing motor control and reward responses and playing an essential role in various brain disorders. Within this complex network, the nigrostriatal pathway represents a critical circuit for dopamine neurotransmission from the substantia nigra to the striatum. However, stand-alone functional magnetic resonance imaging is unable to study the intricate interplay between brain activation and its molecular underpinnings. In our study, the use of a functional [fluorine-18]2-fluor-2-deoxy-d-glucose positron emission tomography approach, simultaneously with blood oxygen level-dependent functional magnetic resonance imaging, provided an important insight that demonstrates an active suppression of the nigrostriatal activity during optogenetic stimulation. This result increases our understanding of the molecular mechanisms of brain function and provides an important perspective on how dopamine influences hemodynamic responses in the brain.
Collapse
Affiliation(s)
- Sabrina Haas
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tudor M. Ionescu
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gina Dunkel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Bernd J. Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
He H, Ettehadi N, Shmuel A, Razlighi QR. Evidence suggesting common mechanisms underlie contralateral and ipsilateral negative BOLD responses in human visual cortex. Neuroimage 2022; 262:119440. [PMID: 35842097 PMCID: PMC9523581 DOI: 10.1016/j.neuroimage.2022.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The task-evoked positive BOLD response (PBR) to a unilateral visual hemi-field stimulation is often accompanied by robust and sustained contralateral as well as ipsilateral negative BOLD responses (NBRs) in the visual cortex. The signal characteristics and the neural and/or vascular mechanisms that underlie these two types of NBRs are not completely understood. In this paper, we investigated the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs with respect to stimulus duration. Next, we showed that the hemodynamic response functions (HRFs) of the two NBRs were similar to each other, but significantly different from that of the PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the degree that the correlation between the two NBRs was significantly higher than the correlation between each NBR and the PBR. However, the activation patterns of the two NBRs did not show a high level of interhemispheric spatial similarity, and the functional connectivity between them was not different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, while attention did modulate both NBRs, the attention-related changes in their HRFs were similar. Our findings suggest that the two NBRs might be generated through common neural and/or vascular mechanisms involving distal/deep brain regions that project to the two hemispheres.
Collapse
Affiliation(s)
- Hengda He
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA; Department of Biomedical Engineering, Columbia University, New York, USA
| | - Nabil Ettehadi
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Amir Shmuel
- Montreal Neurological Institute, Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QA, Canada
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, USA.
| |
Collapse
|
4
|
Fan L, Zhong Q, Qin J, Li N, Su J, Zeng LL, Hu D, Shen H. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics. Hum Brain Mapp 2020; 42:1416-1433. [PMID: 33283954 PMCID: PMC7927310 DOI: 10.1002/hbm.25303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Until now, dynamic functional connectivity (dFC) based on functional magnetic resonance imaging is typically estimated on a set of predefined regions of interest (ROIs) derived from an anatomical or static functional atlas which follows an implicit assumption of functional homogeneity within ROIs underlying temporal fluctuation of functional coupling, potentially leading to biases or underestimation of brain network dynamics. Here, we presented a novel computational method based on dynamic functional connectivity degree (dFCD) to derive meaningful brain parcellations that can capture functional homogeneous regions in temporal variance of functional connectivity. Several spatially distributed but functionally meaningful areas that are well consistent with known intrinsic connectivity networks were identified through independent component analysis (ICA) of time‐varying dFCD maps. Furthermore, a systematical comparison with commonly used brain atlases, including the Anatomical Automatic Labeling template, static ICA‐driven parcellation and random parcellation, demonstrated that the ROI‐definition strategy based on the proposed dFC‐driven parcellation could better capture the interindividual variability in dFC and predict observed individual cognitive performance (e.g., fluid intelligence, cognitive flexibility, and sustained attention) based on chronnectome. Together, our findings shed new light on the functional organization of resting brains at the timescale of seconds and emphasized the significance of a dFC‐driven and voxel‐wise functional homogeneous parcellation for network dynamics analyses in neuroscience.
Collapse
Affiliation(s)
- Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Qi Zhong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Jian Qin
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
5
|
Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics (Basel) 2020; 10:diagnostics10090630. [PMID: 32854196 PMCID: PMC7554935 DOI: 10.3390/diagnostics10090630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography (PET), xenon-enhanced computed tomography (CT), single photon emission computed tomography (SPECT), dynamic contrast enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI. Here, we show how regional perfusion can be quantitively measured with magnetic resonance imaging (MRI) using time-resolved depolarization of hyperpolarized (HP) xenon-129 (129Xe), and the application of this approach to detect changes in cerebral blood flow (CBF) due to a hemodynamic response in response to brain stimuli. The investigated HP 129Xe Time-of-Flight (TOF) technique produced perfusion images with an average signal-to-noise ratio (SNR) of 10.35. Furthermore, to our knowledge, the first hemodynamic response (HDR) map was acquired in healthy volunteers using the HP 129Xe TOF imaging. Responses to visual and motor stimuli were observed. The acquired HP TOF HDR maps correlated well with traditional proton blood oxygenation level-dependent functional MRI. Overall, this study expands the field of HP MRI with a novel dynamic imaging technique suitable for rapid and quantitative perfusion imaging.
Collapse
|
6
|
Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K. Negative BOLD responses during hand and foot movements: An fMRI study. PLoS One 2019; 14:e0215736. [PMID: 31002697 PMCID: PMC6474656 DOI: 10.1371/journal.pone.0215736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
The present study employed functional magnetic resonance imaging (fMRI) to examine the characteristics of negative blood oxygen level-dependent (Negative BOLD) signals during motor execution. Subjects repeated extension and flexion of one of the following: the right hand, left hand, right ankle, or left ankle. Negative BOLD responses during hand movements were observed in the ipsilateral hemisphere of the hand primary sensorimotor area (SMI), medial frontal gyrus (MeFG), middle frontal gyrus (MFG), and superior frontal gyrus (SFG). Negative BOLD responses during foot movements were also noted in the bilateral hand SMI, MeFG, MFG, SFG, inferior frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, cingulate gyrus (CG), fusiform gyrus, and precuneus. A conjunction analysis showed that portions of the MeFG and CG involving similar regions to those of the default mode network were commonly deactivated during voluntary movements of the right/left hand or foot. The present results suggest that three mechanisms are involved in the Negative BOLD responses observed during voluntary movements: (1) transcallosal inhibition from the contralateral to ipsilateral hemisphere in the SMI, (2) the deactivated neural network with several brain regions, and (3) the default mode network in the MeFG and CG.
Collapse
Affiliation(s)
- Hiroki Nakata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.,Health Sciences, Faculty of Human Life and Environment, Nara Women's University, Nara City, Japan
| | - Ryo Domoto
- School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Nobuaki Mizuguchi
- The Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | |
Collapse
|
7
|
Cortical Response to the Natural Speech Envelope Correlates with Neuroimaging Evidence of Cognition in Severe Brain Injury. Curr Biol 2018; 28:3833-3839.e3. [PMID: 30471997 DOI: 10.1016/j.cub.2018.10.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/27/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022]
Abstract
Recent studies identify severely brain-injured patients with limited or no behavioral responses who successfully perform functional magnetic resonance imaging (fMRI) or electroencephalogram (EEG) mental imagery tasks [1-5]. Such tasks are cognitively demanding [1]; accordingly, recent studies support that fMRI command following in brain-injured patients associates with preserved cerebral metabolism and preserved sleep-wake EEG [5, 6]. We investigated the use of an EEG response that tracks the natural speech envelope (NSE) of spoken language [7-22] in healthy controls and brain-injured patients (vegetative state to emergence from minimally conscious state). As audition is typically preserved after brain injury, auditory paradigms may be preferred in searching for covert cognitive function [23-25]. NSE measures are obtained by cross-correlating EEG with the NSE. We compared NSE latencies and amplitudes with and without consideration of fMRI assessments. NSE latencies showed significant and progressive delay across diagnostic categories. Patients who could carry out fMRI-based mental imagery tasks showed no statistically significant difference in NSE latencies relative to healthy controls; this subgroup included patients without behavioral command following. The NSE may stratify patients with severe brain injuries and identify those patients demonstrating "cognitive motor dissociation" (CMD) [26] who show only covert evidence of command following utilizing neuroimaging or electrophysiological methods that demand high levels of cognitive function. Thus, the NSE is a passive measure that may provide a useful screening tool to improve detection of covert cognition with fMRI or other methods and improve stratification of patients with disorders of consciousness in research studies.
Collapse
|
8
|
Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018; 96:197-209. [PMID: 30316722 DOI: 10.1016/j.neubiorev.2018.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
A dynamic interplay exists between Internally-Based (IBT) and Externally-Cued (ECT) time processing. While IBT processes support the self-generation of context-independent temporal representations, ECT mechanisms allow constructing temporal representations primarily derived from the structure of the sensory environment. We performed an activation likelihood estimation (ALE) meta-analysis on 177 fMRI experiments, from 79 articles, to identify brain areas involved in timing; two individual ALEs tested the hypothesis of a neural segregation between IBT and ECT. The general ALE highlighted a network involving supplementary motor area (SMA), intraparietal sulcus, inferior frontal gyrus (IFG), insula (INS) and basal ganglia. We found evidence of a partial dissociation between IBT and ECT. IBT relies on a subset of areas also involved in ECT, however ECT tasks activate SMA, right IFG, left precentral gyrus and INS in a significantly stronger way. Present results suggest that ECT involves the detection of environmental temporal regularities and their integration with the output of the IBT processing, to generate a representation of time which reflects the temporal metric of the environment.
Collapse
|
9
|
Curley WH, Forgacs PB, Voss HU, Conte MM, Schiff ND. Characterization of EEG signals revealing covert cognition in the injured brain. Brain 2018; 141:1404-1421. [PMID: 29562312 PMCID: PMC5917770 DOI: 10.1093/brain/awy070] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
Collapse
Affiliation(s)
| | - Peter B Forgacs
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Department of Neurology, Weill Cornell Medicine, NY, USA
- The Rockefeller University, NY, USA
| | - Henning U Voss
- Department of Radiology and Citigroup Biomedical Imaging Center, Weill Cornell Medicine, NY, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Department of Neurology, Weill Cornell Medicine, NY, USA
- The Rockefeller University, NY, USA
| |
Collapse
|
10
|
Mayhew SD, Porcaro C, Tecchio F, Bagshaw AP. fMRI characterisation of widespread brain networks relevant for behavioural variability in fine hand motor control with and without visual feedback. Neuroimage 2017; 148:330-342. [DOI: 10.1016/j.neuroimage.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/21/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022] Open
|
11
|
Cognitive Functioning in Temporal Lobe Epilepsy: A BOLD-fMRI Study. Mol Neurobiol 2016; 54:8361-8369. [DOI: 10.1007/s12035-016-0298-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
|
12
|
Mizuguchi N, Nakata H, Kanosue K. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements. Neuroscience 2016; 315:104-13. [DOI: 10.1016/j.neuroscience.2015.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
13
|
Omel’chenko AN, Rozhkova ZZ. Characteristics of fMRI Patterns during the Performance of Hand and Finger Movements of Different Complexity. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9565-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhang X, Noah JA, Hirsch J. Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. NEUROPHOTONICS 2016; 3:015004. [PMID: 26866047 PMCID: PMC4742567 DOI: 10.1117/1.nph.3.1.015004] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/12/2016] [Indexed: 05/05/2023]
Abstract
Global systemic effects not specific to a task can be prominent in functional near-infrared spectroscopy (fNIRS) signals and the separation of task-specific fNIRS signals and global nonspecific effects is challenging due to waveform correlations. We describe a principal component spatial filter algorithm for separation of the global and local effects. The effectiveness of the approach is demonstrated using fNIRS signals acquired during a right finger-thumb tapping task where the response patterns are well established. Both the temporal waveforms and the spatial pattern consistencies between oxyhemoglobin and deoxyhemoglobin signals are significantly improved, consistent with the basic physiological basis of fNIRS signals and the expected pattern of activity associated with the task.
Collapse
Affiliation(s)
- Xian Zhang
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
- Address all correspondence to: Xian Zhang, E-mail:
| | - Jack Adam Noah
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, New Haven, Connecticut 06511, United States
- Yale School of Medicine, Department of Neuroscience, New Haven, Connecticut 06511, United States
- Yale School of Medicine, Department of Comparative Medicine, New Haven, Connecticut 06511, United States
- University College London, Department of Medical Physics and Biomedical Engineering, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Anatomically ordered tapping interferes more with one-digit addition than two-digit addition: a dual-task fMRI study. Cogn Process 2015; 17:67-77. [DOI: 10.1007/s10339-015-0737-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
16
|
Mankinen K, Ipatti P, Harila M, Nikkinen J, Paakki JJ, Rytky S, Starck T, Remes J, Tokariev M, Carlson S, Tervonen O, Rantala H, Kiviniemi V. Reading, listening and memory-related brain activity in children with early-stage temporal lobe epilepsy of unknown cause-an fMRI study. Eur J Paediatr Neurol 2015; 19:561-71. [PMID: 26026490 DOI: 10.1016/j.ejpn.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/25/2015] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The changes in functional brain organization associated with paediatric epilepsy are largely unknown. Since children with epilepsy are at risk of developing learning difficulties even before or shortly after the onset of epilepsy, we assessed the functional organization of memory and language in paediatric patients with temporal lobe epilepsy (TLE) at an early stage in epilepsy. METHODS Functional magnetic resonance imaging was used to measure the blood oxygenation level-dependent (BOLD) response to four cognitive tasks measuring reading, story listening, memory encoding and retrieval in a population-based group of children with TLE of unknown cause (n = 21) and of normal intelligence and a healthy age and gender-matched control group (n = 21). RESULTS Significant BOLD response differences were found only in one of the four tasks. In the story listening task, significant differences were found in the right hemispheric temporal structures, thalamus and basal ganglia. Both activation and deactivation differed significantly between the groups, activation being increased and deactivation decreased in the TLE group. Furthermore, the patients with abnormal electroencephalograms (EEGs) showed significantly increased activation bilaterally in the temporal structures, basal ganglia and thalamus relative to those with normal EEGs. The patients with normal interictal EEGs had a significantly stronger deactivation than those with abnormal EEGs or the controls, the differences being located outside the temporal structures. CONCLUSIONS Our results suggest that TLE entails a widespread disruption of brain networks. This needs to be taken into consideration when evaluating learning abilities in patients with TLE. The thalamus seems to play an active role in TLE. The changes in deactivation may reflect neuronal inhibition.
Collapse
Affiliation(s)
- Katariina Mankinen
- Department of Paediatrics, Oulu University Hospital, PB 29, 90014 Oulu, Finland.
| | - Pieta Ipatti
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Marika Harila
- Department of Neurology, Oulu University Hospital, Finland
| | - Juha Nikkinen
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | | | - Seppo Rytky
- Department of Clinical Neurophysiology, Oulu University Hospital, Finland
| | - Tuomo Starck
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Jukka Remes
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Maksym Tokariev
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.B. 15100, 00076 Aalto, Finland; Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, P.B. 63, 00014 University of Helsinki, Finland
| | - Synnöve Carlson
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.B. 15100, 00076 Aalto, Finland; Neuroscience Unit, Institute of Biomedicine/Physiology, University of Helsinki, P.B. 63, 00014 University of Helsinki, Finland
| | - Osmo Tervonen
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Heikki Rantala
- Department of Paediatrics, Oulu University Hospital, PB 29, 90014 Oulu, Finland
| | - Vesa Kiviniemi
- Clinic of Diagnostic Radiology, Oulu University Hospital, Finland
| |
Collapse
|
17
|
Hu D, Huang L. Negative hemodynamic response in the cortex: evidence opposing neuronal deactivation revealed via optical imaging and electrophysiological recording. J Neurophysiol 2015; 114:2152-61. [PMID: 26180117 DOI: 10.1152/jn.00246.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022] Open
Abstract
Functional brain imaging techniques depend on the relationship between regional hemodynamic responses and neural activity. The positive hemodynamic response (PHR) has widely been discussed and has generally been associated with an increase in neuronal signals. In contrast, the negative hemodynamic response (NHR) has not been investigated extensively, and its underlying nature is highly controversial. In the present study, we employed an optical imaging (OI) technique and microelectrode array (MEA) recordings in the rat cortex to examine the NHR to hindlimb electrical stimulation; we primarily focused on the NHR adjacent to a PHR region. We determined that the dynamics of the total blood volume signal in the NHR regions lagged slightly behind those in the PHR areas. Additionally, the deoxyhemoglobin signal in the PHR areas increased immediately after stimulation and the deoxyhemoglobin signal in the NHR regions remained unchanged or increased. Consistent with the change in the deoxyhemoglobin signal, the MEA recordings demonstrated that neural activity in the PHR regions was elevated and that activity in the NHR areas was unchanged or increased during stimulation, implying that the NHR occurred in the absence of neural deactivation. These results suggest that the NHR may be explained by purely hemodynamic contributions, specifically "blood stealing" or increased neural activity, and indicate that caution should be exercised when interpreting the NHR as a decrease in neural activity, especially when the NHR is adjacent to a PHR.
Collapse
Affiliation(s)
- Dewen Hu
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Liangming Huang
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
18
|
Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal. J Neurosci 2015; 35:4641-56. [PMID: 25788681 DOI: 10.1523/jneurosci.2339-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.
Collapse
|
19
|
Kearney-Ramos TE, Fausett JS, Gess JL, Reno A, Peraza J, Kilts CD, James GA. Merging clinical neuropsychology and functional neuroimaging to evaluate the construct validity and neural network engagement of the n-back task. J Int Neuropsychol Soc 2014; 20:736-50. [PMID: 24963641 PMCID: PMC4290162 DOI: 10.1017/s135561771400054x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM); however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis (ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these, the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its use in probing the network-level neural correlates of WM processing.
Collapse
Affiliation(s)
- Tonisha E. Kearney-Ramos
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer S. Fausett
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jennifer L. Gess
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashley Reno
- University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Clint D. Kilts
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - G. Andrew James
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
20
|
Huber L, Goense J, Kennerley AJ, Ivanov D, Krieger SN, Lepsien J, Trampel R, Turner R, Möller HE. Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T. Neuroimage 2014; 97:349-62. [PMID: 24742920 DOI: 10.1016/j.neuroimage.2014.04.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022] Open
Abstract
Decreases in stimulus-dependent blood oxygenation level dependent (BOLD) signal and their underlying neurovascular origins have recently gained considerable interest. In this study a multi-echo, BOLD-corrected vascular space occupancy (VASO) functional magnetic resonance imaging (fMRI) technique was used to investigate neurovascular responses during stimuli that elicit positive and negative BOLD responses in human brain at 7 T. Stimulus-induced BOLD, cerebral blood volume (CBV), and cerebral blood flow (CBF) changes were measured and analyzed in 'arterial' and 'venous' blood compartments in macro- and microvasculature. We found that the overall interplay of mean CBV, CBF and BOLD responses is similar for tasks inducing positive and negative BOLD responses. Some aspects of the neurovascular coupling however, such as the temporal response, cortical depth dependence, and the weighting between 'arterial' and 'venous' contributions, are significantly different for the different task conditions. Namely, while for excitatory tasks the BOLD response peaks at the cortical surface, and the CBV change is similar in cortex and pial vasculature, inhibitory tasks are associated with a maximum negative BOLD response in deeper layers, with CBV showing strong constriction of surface arteries and a faster return to baseline. The different interplays of CBV, CBF and BOLD during excitatory and inhibitory responses suggests different underlying hemodynamic mechanisms.
Collapse
Affiliation(s)
- Laurentius Huber
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Jozien Goense
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Aneurin J Kennerley
- Signal Processing in Neuroimaging and Systems Neuroscience, University of Sheffield, UK
| | - Dimo Ivanov
- Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| | - Steffen N Krieger
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Robert Turner
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
21
|
Modulation of cortical interhemispheric interactions by motor facilitation or restraint. Neural Plast 2014; 2014:210396. [PMID: 24707408 PMCID: PMC3953668 DOI: 10.1155/2014/210396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/13/2014] [Indexed: 11/28/2022] Open
Abstract
Cortical interhemispheric interactions in motor control are still poorly understood and it is important to clarify how these depend on inhibitory/facilitatory limb movements and motor expertise, as reflected by limb dominance. Here we addressed this problem using functional magnetic resonance imaging (fMRI) and a task involving dominant/nondominant limb mobilization in the presence/absence of contralateral limb restraint. In this way we could modulate excitation/deactivation of the contralateral hemisphere. Blocks of arm elevation were alternated with absent/present restraint of the contralateral limb in 17 participants. We found the expected activation of contralateral sensorimotor cortex and ipsilateral cerebellum during arm elevation. In addition, only the dominant arm elevation (hold period) was accompanied by deactivation of ipsilateral sensorimotor cortex, irrespective of presence/absence of contralateral restraint, although the latter increased deactivation. In contrast, the nondominant limb yielded absent deactivation and reduced area of contralateral activation upon restriction. Our results provide evidence for a difference in cortical communication during motor control (action facilitation/inhibition), depending on the “expertise” of the hemisphere that controls action (dominant versus nondominant). These results have relevant implications for the development of facilitation/inhibition strategies in neurorehabilitation, namely, in stroke, given that fMRI deactivations have recently been shown to reflect decreases in neural responses.
Collapse
|
22
|
Duarte IC, Ferreira C, Marques J, Castelo-Branco M. Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task. PLoS One 2014; 9:e86213. [PMID: 24475088 PMCID: PMC3903506 DOI: 10.1371/journal.pone.0086213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
Anterior/posterior long axis specialization is thought to underlie the organization of the hippocampus. However it remains unclear whether antagonistic mechanisms differentially modulate processing of spatial information within the hippocampus. We used fMRI and a virtual reality 3D paradigm to study encoding and retrieval of spatial memory during active visuospatial navigation, requiring positional encoding and retrieval of object landmarks during the path. Both encoding and retrieval elicited BOLD activation of the posterior most portion of hippocampus, while concurrent deactivations (recently shown to reflect decreases in neural responses) were found in the most anterior regions. Encoding elicited stronger activity in the posterior right than the left hippocampus. The former structure also showed significantly stronger activity for allocentric vs. egocentric processing during retrieval. The anterior vs. posterior pattern mimics, from a functional point, although at much distinct temporal scales, the previous anatomical findings in London taxi drivers, whereby posterior enlargement was found at the cost of an anterior decrease, and the mirror symmetric findings observed in blind people, in whom the right anterior hippocampus was found to be larger, at the cost of a smaller posterior hippocampus, as compared with sighted people. In sum, we found a functional dichotomy whereby the anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and retrieval of 3D spatial information. To our knowledge, this is the first study reporting such a dynamical pattern in a functional study, which suggests that differential modulation of neural responses within the human hippocampus reflects distinct roles in spatial memory processing.
Collapse
Affiliation(s)
- Isabel Catarina Duarte
- Brain Imaging Network Grid, ICNAS, Portugal
- Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos Ferreira
- Brain Imaging Network Grid, ICNAS, Portugal
- Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Marques
- Brain Imaging Network Grid, ICNAS, Portugal
- Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Brain Imaging Network Grid, ICNAS, Portugal
- Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
23
|
Hsu YH, Chang C, Chen CCV. Negative cerebral blood volume fMRI response coupled with Ca²⁺-dependent brain activity in a dopaminergic road map of nociception. Neuroimage 2013; 90:43-51. [PMID: 24369291 DOI: 10.1016/j.neuroimage.2013.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
Decreased cerebral blood volume/flow (CBV/CBF) contributes to negative blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signals. But it is still strongly debated whether these negative BOLD or CBV/CBF signals are indicative of decreased or increased neuronal activity. The fidelity of Ca(2+) signals in reflecting neuronal excitation is well documented. However, the roles of Ca(2+) signals and Ca(2+)-dependent activity in negative fMRI signals have never been explored; an understanding of this is essential to unraveling the underlying mechanisms and correctly interpreting the hemodynamic response of interest. The present study utilized a nociception-induced negative CBV fMRI response as a model. Ca(2+) signals were investigated in vivo using Mn(2+)-enhanced MRI (MEMRI), and the downstream Ca(2+)-dependent signaling was investigated using phosphorylated cAMP response-element-binding (pCREB) immunohistology. The results showed that nociceptive stimulation led to (1) striatal CBV decreases, (2) Ca(2+) increases via the nigrostriatal pathway, and (3) substantial expression of pCREB in substantia nigra dopaminergic neurons and striatal neurons. Interestingly, the striatal negative fMRI response was abolished by blocking substantia nigra activity but was not affected by blocking the striatal activity. This suggests the importance of input activity other than output in triggering the negative CBV signals. These findings indicate that the striatal negative CBV fMRI signals are associated with Ca(2+) increases and Ca(2+)-dependent signaling along the nigrostriatal pathway. The obtained data reveal a new brain road map in response to nociceptive stimulation of hemodynamic changes in association with Ca(2+) signals within the dopaminergic system.
Collapse
Affiliation(s)
- Yi-Hua Hsu
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chen Chang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Chiao-Chi V Chen
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan.
| |
Collapse
|
24
|
Moraschi M, DiNuzzo M, Giove F. On the origin of sustained negative BOLD response. J Neurophysiol 2012; 108:2339-42. [DOI: 10.1152/jn.01199.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Several brain regions exhibit a sustained negative BOLD response (NBR) during specific tasks, as assessed with functional magnetic resonance imaging. The origin of the NBR and the relationships between the vascular/metabolic dynamics and the underlying neural activity are highly debated. Converging evidence indicates that NBR, in human and non-human primates, can be interpreted in terms of decrease in neuronal activity under its basal level, rather than a purely vascular phenomenon. However, the scarcity of direct experimental evidence suggests caution and encourages the ongoing utilization of multimodal approaches in the investigation of this effect.
Collapse
Affiliation(s)
- Marta Moraschi
- MARBILab, Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Roma, Italy
- Fondazione Santa Lucia, Roma, Italy
| | - Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Roma, Italy
| | - Federico Giove
- MARBILab, Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy; and
| |
Collapse
|
25
|
Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2012; 66:71-9. [PMID: 23099101 DOI: 10.1016/j.neuroimage.2012.10.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/21/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022] Open
Abstract
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p<0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Collapse
Affiliation(s)
- F Scholkmann
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland; Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Gerber
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland
| | - M Wolf
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - U Wolf
- Institute of Complementary Medicine KIKOM, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|