1
|
Niizawa T, Sakuraba R, Kusaka T, Kurihara Y, Sugashi T, Kawaguchi H, Kanno I, Masamoto K. Spatiotemporal analysis of blood plasma and blood cell flow fluctuations of cerebral microcirculation in anesthetized rats. J Cereb Blood Flow Metab 2023; 43:138-152. [PMID: 36138557 PMCID: PMC9875347 DOI: 10.1177/0271678x221125743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/28/2023]
Abstract
Cerebral hemodynamics fluctuates spontaneously over broad frequency ranges. However, its spatiotemporal coherence of flow oscillations in cerebral microcirculation remains incompletely understood. The objective of this study was to characterize the spatiotemporal fluctuations of red blood cells (RBCs) and plasma flow in the rat cerebral microcirculation by simultaneously imaging their dynamic behaviors. Comparisons of changes in cross-section diameters between RBC and plasma flow showed dissociations in penetrating arterioles. The results indicate that vasomotion has the least effect on the lateral movement of circulating RBCs, resulting in variable changes in plasma layer thickness. Parenchymal capillaries exhibited slow fluctuations in RBC velocity (0.1 to 0.3 Hz), regardless of capillary diameter fluctuations (<0.1 Hz). Temporal fluctuations and the velocity of RBCs decreased significantly at divergent capillary bifurcations. The results indicate that a transit of RBCs generates flow resistance in the capillaries and that slow velocity fluctuations of the RBCs are subject to a number of bifurcations. In conclusion, the high-frequency oscillation of the blood flow is filtered at the bifurcation through the capillary networks. Therefore, a number of bifurcations in the cerebral microcirculation may contribute to the power of low-frequency oscillations.
Collapse
Affiliation(s)
- Tomoya Niizawa
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
| | - Ruka Sakuraba
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
| | - Tomoya Kusaka
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
| | - Yuika Kurihara
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
| | - Takuma Sugashi
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering,
University of Electro-Communications, Tokyo, Japan
| | - Hiroshi Kawaguchi
- Human Informatics and Interaction Research Institute,
National Institute of Advanced Industrial Science and Technology
(AIST), Ibaraki, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research,
National Institute of Radiological Sciences, Chiba, Japan
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, University of
Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering,
University of Electro-Communications, Tokyo, Japan
- Department of Functional Brain Imaging Research,
National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
2
|
Chaigneau E, Charpak S. Measurement of Blood Velocity With Laser Scanning Microscopy: Modeling and Comparison of Line-Scan Image-Processing Algorithms. Front Physiol 2022; 13:848002. [PMID: 35464098 PMCID: PMC9022085 DOI: 10.3389/fphys.2022.848002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Laser scanning microscopy is widely used to measure blood hemodynamics with line-scans in physiological and pathological vessels. With scans of broken lines, i.e., lines made of several segments with different orientations, it also allows simultaneous monitoring of vessel diameter dynamics or the activity of specific cells. Analysis of red blood cell (RBC) velocity from line-scans requires specific image-processing algorithms, as angle measurements, Line-Scanning Particle Image Velocimetry (LSPIV) or Fourier transformation of line-scan images. The conditions under which these image-processing algorithms give accurate measurements have not been fully characterized although the accuracy of measurements vary according to specific experimental parameters: the vessel type, the RBC velocity, the scanning parameters, and the image signal to noise ratio. Here, we developed mathematical models for the three previously mentioned line-scan image-processing algorithms. Our models predict the experimental conditions in which RBC velocity measurements are accurate. We illustrate the case of different vessel types and give the parameter space available for each of them. Last, we developed a software generating artificial line-scan images and used it to validate our models.
Collapse
Affiliation(s)
- Emmanuelle Chaigneau
- Institut de la Vision, INSERM U968, Paris, France
- Institut de la Vision, CNRS UMR 7210, Paris, France
- Institut de la Vision, Sorbonne Université, Paris, France
- *Correspondence: Emmanuelle Chaigneau,
| | - Serge Charpak
- Institut de la Vision, INSERM U968, Paris, France
- Institut de la Vision, CNRS UMR 7210, Paris, France
- Institut de la Vision, Sorbonne Université, Paris, France
- Serge Charpak,
| |
Collapse
|
3
|
Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, Parker GJ, Parkes LM. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 2021; 41:1939-1953. [PMID: 33325766 PMCID: PMC8323340 DOI: 10.1177/0271678x20978523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multi-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm-2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability.
Collapse
Affiliation(s)
- Lauren A Scott
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ben R Dickie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Shelley D Rawson
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Timothy L Burnett
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Geoff Jm Parker
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK.,Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Wang HL, Chen JW, Yang SH, Lo YC, Pan HC, Liang YW, Wang CF, Yang Y, Kuo YT, Lin YC, Chou CY, Lin SH, Chen YY. Multimodal Optical Imaging to Investigate Spatiotemporal Changes in Cerebrovascular Function in AUDA Treatment of Acute Ischemic Stroke. Front Cell Neurosci 2021; 15:655305. [PMID: 34149359 PMCID: PMC8209306 DOI: 10.3389/fncel.2021.655305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
Administration of 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) has been demonstrated to alleviate infarction following ischemic stroke. Reportedly, the main effect of AUDA is exerting anti-inflammation and neovascularization via the inhibition of soluble epoxide hydrolase. However, the major contribution of this anti-inflammation and neovascularization effect in the acute phase of stroke is not completely elucidated. To investigate the neuroprotective effects of AUDA in acute ischemic stroke, we combined laser speckle contrast imaging and optical intrinsic signal imaging techniques with the implantation of a lab-designed cranial window. Forepaw stimulation was applied to assess the functional changes via measuring cerebral metabolic rate of oxygen (CMRO2) that accompany neural activity. The rats that received AUDA in the acute phase of photothrombotic ischemia stroke showed a 30.5 ± 8.1% reduction in the ischemic core, 42.3 ± 15.1% reduction in the ischemic penumbra (p < 0.05), and 42.1 ± 4.6% increase of CMRO2 in response to forepaw stimulation at post-stroke day 1 (p < 0.05) compared with the control group (N = 10 for each group). Moreover, at post-stroke day 3, increased functional vascular density was observed in AUDA-treated rats (35.9 ± 1.9% higher than that in the control group, p < 0.05). At post-stroke day 7, a 105.4% ± 16.4% increase of astrocytes (p < 0.01), 30.0 ± 10.9% increase of neurons (p < 0.01), and 65.5 ± 15.0% decrease of microglia (p < 0.01) were observed in the penumbra region in AUDA-treated rats (N = 5 for each group). These results suggested that AUDA affects the anti-inflammation at the beginning of ischemic injury and restores neuronal metabolic rate of O2 and tissue viability. The neovascularization triggered by AUDA restored CBF and may contribute to ischemic infarction reduction at post-stroke day 3. Moreover, for long-term neuroprotection, astrocytes in the penumbra region may play an important role in protecting neurons from apoptotic injury.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, Taipei, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi Yang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Chou
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Du Le VN, Srinivasan VJ. Beyond diffuse correlations: deciphering random flow in time-of-flight resolved light dynamics. OPTICS EXPRESS 2020; 28:11191-11214. [PMID: 32403635 PMCID: PMC7340374 DOI: 10.1364/oe.385202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diffusing wave spectroscopy (DWS) and diffuse correlation spectroscopy (DCS) can assess blood flow index (BFI) of biological tissue with multiply scattered light. Though the main biological function of red blood cells (RBCs) is advection, in DWS/DCS, RBCs are assumed to undergo Brownian motion. To explain this discrepancy, we critically examine the cumulant approximation, a major assumption in DWS/DCS. We present a precise criterion for validity of the cumulant approximation, and in realistic tissue models, identify conditions that invalidate it. We show that, in physiologically relevant scenarios, the first cumulant term for random flow and second cumulant term for Brownian motion alone can cancel each other. In such circumstances, assuming pure Brownian motion of RBCs and the first cumulant approximation, a routine practice in DWS/DCS of BFI, can yield good agreement with data, but only because errors due to two incorrect assumptions cancel out. We conclude that correctly assessing random flow from scattered light dynamics requires going beyond the cumulant approximation and propose a more accurate model to do so.
Collapse
Affiliation(s)
- V. N. Du Le
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, CA 96817, USA
| |
Collapse
|
6
|
Chaigneau E, Roche M, Charpak S. Unbiased Analysis Method for Measurement of Red Blood Cell Size and Velocity With Laser Scanning Microscopy. Front Neurosci 2019; 13:644. [PMID: 31316334 PMCID: PMC6610068 DOI: 10.3389/fnins.2019.00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
Two-photon laser scanning microscopy is widely used to measure blood hemodynamics in brain blood vessels. Still, the algorithms used so far to extract red blood cell (RBC) size and velocity from line-scan acquisitions have ignored the extent to which scanning speed influences the measurements. Here, we used a theoretical approach that takes into account the velocity and direction of both scanning mirrors and RBCs during acquisition to provide an algorithm that measures the real RBC size and velocity. We validate our approach in brain vessels of anesthetized mice, and demonstrate that it corrects online measurement errors that can reach several 10s of percent as well as data previously acquired. To conclude, our analysis allows unbiased comparisons of blood hemodynamic parameters from brain capillaries and large vessels in control and pathological animal models.
Collapse
Affiliation(s)
| | | | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Hotta K, Behnke BJ, Masamoto K, Shimotsu R, Onodera N, Yamaguchi A, Poole DC, Kano Y. Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy. J Appl Physiol (1985) 2018; 125:369-380. [DOI: 10.1152/japplphysiol.00046.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Via modulation of endothelial integrity and vascular permeability in response to damage, skeletal muscle microvessels play a crucial permissive role in tissue leukocyte invasion. However, direct visual evidence of altered microvascular permeability of skeletal muscle has not been technically feasible, impairing mechanistic understanding of these responses. Two-photon laser scanning microscopy (TPLSM) allows three-dimensional in vivo imaging of skeletal muscle microcirculation. We hypothesized that the regulation of microvascular permeability in vivo is temporally related to acute inflammatory and regenerative processes following muscle injury. To test our hypothesis, tibialis anterior muscles of anesthetized male Wistar rats were subjected to eccentric contractions (ECCs) via electrical stimulation. The skeletal muscle microcirculation was imaged by an intravenously infused fluorescent dye (rhodamine B isothiocyanate-dextran) to assess microvascular permeability via TPLSM 1, 3, and 7 days after ECC. Immunohistochemistry on serial muscle sections was performed to determine the proportion of VEGF-A-positive muscle fibers in the damaged muscle. Compared with control rats, the volumetrically determined interstitial leakage of fluorescent dye (5.1 ± 1.4, 5.3 ± 1.2 vs. 0.51 ± 0.14 μm3 × 106; P < 0.05, days 1 and 3, respectively, vs. control) and percentage of VEGF-A-positive fibers in the damaged muscle (10 ± 0.4%, 22 ± 1.1% vs. 0%; days 1 and 3, respectively, vs. control) were significantly higher on days 1 and 3 after ECC. The interstitial leakage volume returned to control by day 7. These results suggest that microvascular hyperpermeability assessed by in vivo TPLSM imaging is associated with ECC-induced muscle damage and increased VEGF expression. NEW & NOTEWORTHY This investigation employed a novel in vivo imaging technique for skeletal muscle microcirculation using two-photon laser scanning microscopy that enabled microvascular permeability to be assessed by four-dimensional image analysis. By combining in vivo imaging and histological analysis, we found the temporal profile of microvascular hyperpermeability to be related to that of eccentric contraction-induced skeletal muscle injury and pronounced novel myocyte VEGF expression.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Bradley Jon Behnke
- Department of Kinesiology, Kansas State University College of Human Ecology, Manhattan, Kansas
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Rie Shimotsu
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoya Onodera
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa Ishikari-Tobetsu, Hokkaido, Japan
| | - David C. Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
8
|
Rungta RL, Chaigneau E, Osmanski BF, Charpak S. Vascular Compartmentalization of Functional Hyperemia from the Synapse to the Pia. Neuron 2018; 99:362-375.e4. [PMID: 29937277 PMCID: PMC6069674 DOI: 10.1016/j.neuron.2018.06.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/29/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Functional hyperemia, a regional increase of blood flow triggered by local neural activation, is used to map brain activity in health and disease. However, the spatial-temporal dynamics of functional hyperemia remain unclear. Two-photon imaging of the entire vascular arbor in NG2-creERT2;GCaMP6f mice shows that local synaptic activation, measured via oligodendrocyte precursor cell (OPC) Ca2+ signaling, generates a synchronous Ca2+ drop in pericytes and smooth muscle cells (SMCs) enwrapping all upstream vessels feeding the activated synapses. Surprisingly, the onset timing, direction, and amplitude of vessel diameter and blood velocity changes vary dramatically from juxta-synaptic capillaries back to the pial arteriole. These results establish a precise spatial-temporal sequence of vascular changes triggered by neural activity and essential for the interpretation of blood-flow-based imaging techniques such as BOLD-fMRI. Odor triggers rapid Ca2+ elevations in OPC process that are input specific All pericyte subtypes and SMCs respond to downstream synaptic activation Synchronous mural cell activation is associated with heterogeneous local hemodynamics The arteriole and first-order capillary dilate first and form the primary functional unit
Collapse
Affiliation(s)
- Ravi L Rungta
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris 75006, France.
| | - Emmanuelle Chaigneau
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris 75006, France
| | - Bruno-Félix Osmanski
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris 75006, France
| | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris 75006, France.
| |
Collapse
|
9
|
Hoshikawa R, Kawaguchi H, Takuwa H, Ikoma Y, Tomita Y, Unekawa M, Suzuki N, Kanno I, Masamoto K. Dynamic Flow Velocity Mapping from Fluorescent Dye Transit Times in the Brain Surface Microcirculation of Anesthetized Rats and Mice. Microcirculation 2016; 23:416-25. [DOI: 10.1111/micc.12285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Hoshikawa
- Faculty of Informatics and Engineering; University of Electro-Communications; Tokyo Japan
| | - Hiroshi Kawaguchi
- Human Informatics Research Institute; National Institute of Advanced Industrial Science and Technology; Tsukuba Japan
| | - Hiroyuki Takuwa
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| | - Yoko Ikoma
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| | - Yutaka Tomita
- Department of Neurology; Keio University School of Medicine; Tokyo Japan
| | - Miyuki Unekawa
- Department of Neurology; Keio University School of Medicine; Tokyo Japan
| | - Norihiro Suzuki
- Department of Neurology; Keio University School of Medicine; Tokyo Japan
| | - Iwao Kanno
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering; University of Electro-Communications; Tokyo Japan
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
- Brain Science Inspired Life Support Research Center; University of Electro-Communications; Tokyo Japan
| |
Collapse
|
10
|
Kanno I, Masamoto K. Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the determinants in maintaining the CBF homeostasis. PROGRESS IN BRAIN RESEARCH 2016; 225:77-97. [PMID: 27130412 DOI: 10.1016/bs.pbr.2016.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain.
Collapse
Affiliation(s)
- I Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - K Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
11
|
Saito S, Sawada K, Mori Y, Yoshioka Y, Murase K. Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography. Congenit Anom (Kyoto) 2015; 55:103-6. [PMID: 25534523 DOI: 10.1111/cga.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
The present study aimed to quantitatively characterize changes in the whole brain and arterial morphology in response to prenatal ionizing irradiation. Magnetic resonance imaging (MRI) and angiography (MRA) were used to evaluate brain and arterial abnormalities in 8-week-old male mice prenatally exposed to X-ray radiation at a dose of 0.5 or 1.0 Gy on embryonic day (E) 13. Irradiated mice demonstrated decreased brain volume, increased ventricular volume, and arterial malformation. Additionally, MRA signal intensity and arterial thickness in the anterior cerebral artery, middle cerebral artery, and basilar artery were lower in radiation-exposed mice than in control mice. MRI and MRA are useful tools for assessing brain and arterial abnormalities after prenatal exposure to radiation.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Engineering, Osaka University Graduate School of Medicine; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology
| | | | | | | | | |
Collapse
|
12
|
Abstract
Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes.
Collapse
|
13
|
Saito S, Sawada K, Hirose M, Mori Y, Yoshioka Y, Murase K. Diffusion tensor imaging of brain abnormalities induced by prenatal exposure to radiation in rodents. PLoS One 2014; 9:e107368. [PMID: 25202992 PMCID: PMC4159342 DOI: 10.1371/journal.pone.0107368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022] Open
Abstract
We assessed brain abnormalities in rats exposed prenatally to radiation (X-rays) using magnetic resonance imaging (MRI) and histological experiments. Pregnant rats were divided into 4 groups: the control group (n = 3) and 3 groups that were exposed to different radiation doses (0.5, 1.0, or 1.5 Gy; n = 3 each). Brain abnormalities were assessed in 32 neonatal male rats (8 per group). Ex vivo T2-weighted imaging and diffusion tensor imaging (DTI) were performed using 11.7-T MRI. The expression of markers of myelin production (Kluver-Barrera staining, KB), nonpyramidal cells (calbindin-D28k staining, CaBP), and pyramidal cells (staining of the nonphosphorylated heavy-chain neurofilament SMI-32) were histologically evaluated. Decreased brain volume, increased ventricle volume, and thinner cortices were observed by MRI in irradiated rats. However, no abnormalities in the cortical 6-layered structure were observed via KB staining in radiation-exposed rats. The DTI color-coded map revealed a dose-dependent reduction in the anisotropic signal (vertical direction), which did not represent reduced numbers of pyramidal cells; rather, it indicated a signal reduction relative to the vertical direction because of low nerve cell density in the entire cortex. We conclude that DTI and histological experiments are useful tools for assessing cortical and hippocampal abnormalities after prenatal exposure to radiation in rats.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| | - Kazuhiko Sawada
- Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Miwa Hirose
- Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yuki Mori
- Biofunctional Imaging Lab, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| | - Yoshichika Yoshioka
- Biofunctional Imaging Lab, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| | - Kenya Murase
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Dietzel S, Pircher J, Nekolla AK, Gull M, Brändli AW, Pohl U, Rehberg M. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. PLoS One 2014; 9:e99615. [PMID: 24933027 PMCID: PMC4059650 DOI: 10.1371/journal.pone.0099615] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023] Open
Abstract
Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG) microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200-1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label.
Collapse
Affiliation(s)
- Steffen Dietzel
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Joachim Pircher
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - A. Katharina Nekolla
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Mazhar Gull
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - André W. Brändli
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| | - Ulrich Pohl
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
- SyNergy, Munich Cluster for Systems Neurology, München, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung e.V., München, Germany
| | - Markus Rehberg
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
15
|
Chhatbar PY, Kara P. Improved blood velocity measurements with a hybrid image filtering and iterative Radon transform algorithm. Front Neurosci 2013; 7:106. [PMID: 23807877 PMCID: PMC3684769 DOI: 10.3389/fnins.2013.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 11/13/2022] Open
Abstract
Neural activity leads to hemodynamic changes which can be detected by functional magnetic resonance imaging (fMRI). The determination of blood flow changes in individual vessels is an important aspect of understanding these hemodynamic signals. Blood flow can be calculated from the measurements of vessel diameter and blood velocity. When using line-scan imaging, the movement of blood in the vessel leads to streaks in space-time images, where streak angle is a function of the blood velocity. A variety of methods have been proposed to determine blood velocity from such space-time image sequences. Of these, the Radon transform is relatively easy to implement and has fast data processing. However, the precision of the velocity measurements is dependent on the number of Radon transforms performed, which creates a trade-off between the processing speed and measurement precision. In addition, factors like image contrast, imaging depth, image acquisition speed, and movement artifacts especially in large mammals, can potentially lead to data acquisition that results in erroneous velocity measurements. Here we show that pre-processing the data with a Sobel filter and iterative application of Radon transforms address these issues and provide more accurate blood velocity measurements. Improved signal quality of the image as a result of Sobel filtering increases the accuracy and the iterative Radon transform offers both increased precision and an order of magnitude faster implementation of velocity measurements. This algorithm does not use a priori knowledge of angle information and therefore is sensitive to sudden changes in blood flow. It can be applied on any set of space-time images with red blood cell (RBC) streaks, commonly acquired through line-scan imaging or reconstructed from full-frame, time-lapse images of the vasculature.
Collapse
Affiliation(s)
- Pratik Y Chhatbar
- Department of Neurosciences, Medical University of South Carolina Charleston, SC, USA
| | | |
Collapse
|
16
|
Masamoto K, Kawaguchi H, Ito H, Kanno I. Dynamic two-photon imaging of cerebral microcirculation using fluorescently labeled red blood cells and plasma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 765:163-168. [PMID: 22879029 DOI: 10.1007/978-1-4614-4989-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
To explore the spatiotemporal dynamics of red blood cells (RBCs) and plasma flow in three-dimensional (3D) microvascular networks of the cerebral cortex, we performed two-photon microscopic imaging of the cortical microvasculature in genetically engineered rats in which the RBCs endogenously express green fluorescent protein (GFP). Water-soluble quantum dots (Qdots) were injected intravenously into the animals to label the plasma, and concurrent imaging was performed for GFP-RBCs and Qdot plasma. The RBC and plasma distributions were compared between resting state and forepaw stimulation-induced neural activation. The RBC and plasma images showed detectable signals up to a depth of 0.4 and 0.6 mm from the cortical surface, respectively. A thicker plasma layer (2-5 μm) was seen in venous vessels relative to the arterial vessels. In response to neural activation, the RBCs were redistributed among the parenchymal capillary networks. In addition, individual capillaries showed a variable ratio of RBC and plasma distributions before and after activation, indicative of dynamic changes of hematocrit in single capillaries. These results demonstrate that this transgenic animal model may be useful in further investigating the mechanism that controls dynamic RBC flow in single capillaries and among multiple capillary networks of the cerebral microcirculation.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan. .,Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan.
| | - Hiroshi Kawaguchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Ito
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
17
|
Kawaguchi H, Masamoto K, Ito H, Kanno I. Image-based vessel-by-vessel analysis for red blood cell and plasma dynamics with automatic segmentation. Microvasc Res 2012; 84:178-87. [PMID: 22588048 DOI: 10.1016/j.mvr.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/06/2012] [Accepted: 05/01/2012] [Indexed: 01/27/2023]
Abstract
The aim of the present study was to test the hypothesis that vascular tones of cortical surface and parenchymal blood flow can be dissociated depending on the perturbation. To this end, a novel image-based analytical method for quantitatively measuring vessel diameters and flow dynamics was developed. The algorithm relies on the spatiotemporal coherence of the pixel intensity changes induced by the transit of the fluorescent signals measured using confocal laser scanning fluorescent microscopy in the rat cerebral cortex. A cocktail of fluorescently labeled red blood cell (RBC) and plasma agents was administered to simultaneously compare RBC and plasma dynamics in the same vascular networks. The time to fluorescent signal appearance and the width of the fluorescent signal were measured in each segment and compared between sodium nitroprusside-induced global and sensory stimulation-induced local perturbation conditions. We observed that infusion of sodium nitroprusside induced significant vasodilation in the surface artery, particularly in the small arteries (1.8-fold increase). Vasodilation induced by sensory stimulation was observed to depend on vessel size, but significant changes were only detected for the small arteries and veins. Measurements of the time to venous appearance revealed that appearance time was extended by sodium nitroprusside, but shortened during forepaw stimulation, relative to the control condition. Both perturbations provoked the largest changes between the small artery and vein segments, indicating that the changes in the appearance time originate from blood passage through parenchymal microcirculation. These findings support the hypothesis that cortical surface vascular tone and parenchymal blood flow are individually coordinated.
Collapse
Affiliation(s)
- Hiroshi Kawaguchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|
18
|
Miyazaki K, Masamoto K, Morimoto N, Kurata T, Mimoto T, Obata T, Kanno I, Abe K. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab 2012; 32:456-67. [PMID: 22068226 PMCID: PMC3293114 DOI: 10.1038/jcbfm.2011.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/09/2011] [Accepted: 09/26/2011] [Indexed: 12/11/2022]
Abstract
The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.
Collapse
Affiliation(s)
- Kazunori Miyazaki
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kazuto Masamoto
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
- Education and Research Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Tomoko Kurata
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takahumi Mimoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Takayuki Obata
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Iwao Kanno
- Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|