1
|
Zhang Q, Hrach H, Mangone M, Reiner DJ. Identifying the Caenorhabditis elegans vulval transcriptome. G3 (BETHESDA, MD.) 2022; 12:jkac091. [PMID: 35551383 PMCID: PMC9157107 DOI: 10.1093/g3journal/jkac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Development of the Caenorhabditis elegans vulva is a classic model of organogenesis. This system, which starts with 6 equipotent cells, encompasses diverse types of developmental event, including developmental competence, multiple signaling events to control precise and faithful patterning of three cell fates, execution and proliferation of specific cell lineages, and a series of sophisticated morphogenetic events. Early events have been subjected to extensive mutational and genetic investigations and later events to cell biological analyses. We infer the existence of dramatically changing profiles of gene expression that accompanies the observed changes in development. Yet, except from serendipitous discovery of several transcription factors expressed in dynamic patterns in vulval lineages, our knowledge of the transcriptomic landscape during vulval development is minimal. This study describes the composition of a vulva-specific transcriptome. We used tissue-specific harvesting of mRNAs via immunoprecipitation of epitope-tagged poly(A) binding protein, PAB-1, heterologously expressed by a promoter known to express GFP in vulval cells throughout their development. The identified transcriptome was small but tightly interconnected. From this data set, we identified several genes with identified functions in development of the vulva and validated more with promoter-GFP reporters of expression. For one target, lag-1, promoter-GFP expression was limited but a fluorescent tag of the endogenous protein revealed extensive expression. Thus, we have identified a transcriptome of C. elegans vulval lineages as a launching pad for exploration of functions of these genes in organogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Heather Hrach
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - David J Reiner
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
2
|
Tang H, Cui M, Han M. Fatty acids impact sarcomere integrity through myristoylation and ER homeostasis. Cell Rep 2021; 36:109539. [PMID: 34407398 PMCID: PMC8404530 DOI: 10.1016/j.celrep.2021.109539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Decreased ability to maintain tissue integrity is critically involved in aging and degenerative diseases. Fatty acid (FA) metabolism has a profound impact on animal development and tissue maintenance, but our understanding of the underlying mechanisms is limited. We investigated whether and how FA abundance affects muscle integrity using Caenorhabditis elegans. We show that reducing the overall FA level by blocking FA biosynthesis or inhibiting protein myristoylation leads to disorganization of sarcomere structure and adult-onset paralysis. Further analysis indicates that myristoylation of two ARF guanosine triphosphatases (GTPases) critically mediates the effect of FA deficiency on sarcomere integrity through inducing endoplasmic reticulum (ER) stress and ER unfolded protein response (UPRER), which in turn leads to reduction of the level of sarcomere component PINCH and myosin disorganization. We thus present a mechanism that links FA signal, protein myristoylation, and ER homeostasis with muscle integrity, which provides valuable insights into the regulatory role of nutrients and ER homeostasis in muscle maintenance.
Collapse
Affiliation(s)
- Hongyun Tang
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA; Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Mingxue Cui
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
3
|
Cho JY, Choi TW, Kim SH, Ahnn J, Lee SK. Morphological Characterization of small, dumpy, and long Phenotypes in Caenorhabditis elegans. Mol Cells 2021; 44:160-167. [PMID: 33692220 PMCID: PMC8019597 DOI: 10.14348/molcells.2021.2236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022] Open
Abstract
The determinant factors of an organism's size during animal development have been explored from various angles but remain partially understood. In Caenorhabditis elegans, many genes affecting cuticle structure, cell growth, and proliferation have been identified to regulate the worm's overall morphology, including body size. While various mutations in those genes directly result in changes in the morphological phenotypes, there is still a need for established, clear, and distinct standards to determine the apparent abnormality in a worm's size and shape. In this study, we measured the body length, body width, terminal bulb length, and head size of mutant worms with reported Dumpy (Dpy), Small (Sma) or Long (Lon) phenotypes by plotting and comparing their respective ratios of various parameters. These results show that the Sma phenotypes are proportionally smaller overall with mild stoutness, and Dpy phenotypes are significantly stouter and have disproportionally small head size. This study provides a standard platform for determining morphological phenotypes designating and annotating mutants that exhibit body shape variations, defining the morphological phenotype of previously unexamined mutants.
Collapse
Affiliation(s)
- Joshua Young Cho
- Department of Life Science, School of Natural Sciences, Hanyang University, Seoul 04763, Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Present address: Doctor of Dental Surgery Program, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Tae-Woo Choi
- Department of Life Science, School of Natural Sciences, Hanyang University, Seoul 04763, Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Present address: Macrogen Inc., Seoul 08511, Korea
| | - Seung Hyun Kim
- Department of Life Science, School of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, School of Natural Sciences, Hanyang University, Seoul 04763, Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sun-Kyung Lee
- Department of Life Science, School of Natural Sciences, Hanyang University, Seoul 04763, Korea
- BK21 PLUS Life Science for BDR Team, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
4
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
5
|
Cohen JD, Sparacio AP, Belfi AC, Forman-Rubinsky R, Hall DH, Maul-Newby H, Frand AR, Sundaram MV. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020; 9:e57874. [PMID: 32975517 PMCID: PMC7544507 DOI: 10.7554/elife.57874] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alessandro P Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alexandra C Belfi
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Rachel Forman-Rubinsky
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hannah Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
6
|
Noble LM, Miah A, Kaur T, Rockman MV. The Ancestral Caenorhabditis elegans Cuticle Suppresses rol-1. G3 (BETHESDA, MD.) 2020; 10:2385-2395. [PMID: 32423919 PMCID: PMC7341120 DOI: 10.1534/g3.120.401336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner's choice of strain.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Asif Miah
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| |
Collapse
|
7
|
Gaffney CJ, Pollard A, Barratt TF, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in C. elegans. Aging (Albany NY) 2019; 10:3382-3396. [PMID: 30455409 PMCID: PMC6286836 DOI: 10.18632/aging.101654] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Sarcopenia, the age-related decline of muscle, is a significant and growing public health burden. C. elegans, a model organism for investigating the mechanisms of ageing, also displays sarcopenia, but the underlying mechanism(s) remain elusive. Here, we use C. elegans natural scaling of lifespan in response to temperature to examine the relationship between mitochondrial content, mitochondrial function, and sarcopenia. Mitochondrial content and maximal mitochondrial ATP production rates (MAPR) display an inverse relationship to lifespan, while onset of MAPR decline displays a direct relationship. Muscle mitochondrial structure, sarcomere structure, and movement decline also display a direct relationship with longevity. Notably, the decline in mitochondrial network structure occurs earlier than sarcomere decline, and correlates more strongly with loss of movement, and scales with lifespan. These results suggest that mitochondrial function is critical in the ageing process and more robustly explains the onset and progression of sarcopenia than loss of sarcomere structure.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK.,Lancaster University Medical School, Lancaster University, Lancaster, UK
| | - Amelia Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Thomas F Barratt
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Sudevan S, Takiura M, Kubota Y, Higashitani N, Cooke M, Ellwood RA, Etheridge T, Szewczyk NJ, Higashitani A. Mitochondrial dysfunction causes Ca 2+ overload and ECM degradation-mediated muscle damage in C. elegans. FASEB J 2019; 33:9540-9550. [PMID: 31162948 PMCID: PMC6662967 DOI: 10.1096/fj.201802298r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/29/2019] [Indexed: 01/14/2023]
Abstract
Mitochondrial dysfunction impairs muscle health and causes subsequent muscle wasting. This study explores the role of mitochondrial dysfunction as an intramuscular signal for the extracellular matrix (ECM)-based proteolysis and, consequentially, muscle cell dystrophy. We found that inhibition of the mitochondrial electron transport chain causes paralysis as well as muscle structural damage in the nematode Caenorhabditis elegans. This was associated with a significant decline in collagen content. Both paralysis and muscle damage could be rescued with collagen IV overexpression, matrix metalloproteinase (MMP), and Furin inhibitors in Antimycin A-treated animal as well as in the C. elegans Duchenne muscular dystrophy model. Additionally, muscle cytosolic calcium increased in the Antimycin A-treated worms, and its down-regulation rescued the muscle damage, suggesting that calcium overload acts as one of the early triggers and activates Furin and MMPs for collagen degradation. In conclusion, we have established ECM degradation as an important pathway of muscle damage.-Sudevan, S., Takiura, M., Kubota, Y., Higashitani, N., Cooke, M., Ellwood, R. A., Etheridge, T., Szewczyk, N. J., Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans.
Collapse
Affiliation(s)
- Surabhi Sudevan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mai Takiura
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yukihiko Kubota
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Michael Cooke
- College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca A. Ellwood
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Timothy Etheridge
- College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) and Arthritis Research United Kingdom (ARUK) Centre of Musculoskeletal Ageing Research and National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
9
|
Lanzo A, Safratowich BD, Kudumala SR, Gallotta I, Zampi G, Di Schiavi E, Carvelli L. Silencing of Syntaxin 1A in the Dopaminergic Neurons Decreases the Activity of the Dopamine Transporter and Prevents Amphetamine-Induced Behaviors in C. elegans. Front Physiol 2018; 9:576. [PMID: 29872404 PMCID: PMC5972276 DOI: 10.3389/fphys.2018.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 11/15/2022] Open
Abstract
The dopamine transporter (DAT) is a cell membrane protein whose main function is to reuptake the dopamine (DA) released in the synaptic cleft back into the dopaminergic neurons. Previous studies suggested that the activity of DAT is regulated by allosteric proteins such as Syntaxin-1A and is altered by drugs of abuse such as amphetamine (Amph). Because Caenorhabditis elegans expresses both DAT (DAT-1) and Syntaxin-1A (UNC-64), we used this model system to investigate the functional and behavioral effects caused by lack of expression of unc-64 in cultured dopaminergic neurons and in living animals. Using an inheritable RNA silencing technique, we were able to knockdown unc-64 specifically in the dopaminergic neurons. This cell-specific knockdown approach avoids the pleiotropic phenotypes caused by knockout mutations of unc-64 and ensures the transmission of dopaminergic specific unc-64 silencing to the progeny. We found that, similarly to dat-1 knockouts and dat-1 silenced lines, animals with reduced unc-64 expression in the dopaminergic neurons did not respond to Amph treatment when tested for locomotor behaviors. Our in vitro data demonstrated that in neuronal cultures derived from animals silenced for unc-64, the DA uptake was reduced by 30% when compared to controls, and this reduction was similar to that measured in neurons isolated from animals silenced for dat-1 (40%). Moreover, reduced expression of unc-64 in the dopaminergic neurons significantly reduced the DA release elicited by Amph. Because in C. elegans DAT-1 is the only protein capable to reuptake DA, these data show that reduced expression of unc-64 in the dopaminergic neurons decreases the capability of DAT in re-accumulating synaptic DA. Moreover, these results demonstrate that decreased expression of unc-64 in the dopaminergic neurons abrogates the locomotor behavior induced by Amph. Taken together these data suggest that Syntaxin-1A plays an important role in both functional and behavioral effects caused by Amph.
Collapse
Affiliation(s)
- Ambra Lanzo
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Bryan D Safratowich
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Sirisha R Kudumala
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Ivan Gallotta
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy.,Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, United States.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| |
Collapse
|
10
|
Lehmann S, Bass JJ, Barratt TF, Ali MZ, Szewczyk NJ. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle. J Cachexia Sarcopenia Muscle 2017; 8:660-672. [PMID: 28508547 PMCID: PMC5566650 DOI: 10.1002/jcsm.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53 are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phosphatases in C. elegans. METHODS RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochondrial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation. Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases required for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein kinase activation was assessed by western blot. RESULTS A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle. Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. CONCLUSIONS A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis.
Collapse
Affiliation(s)
- Susann Lehmann
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Joseph J Bass
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Thomas F Barratt
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Mohammed Z Ali
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Medical School, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, UK
| |
Collapse
|
11
|
Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles. Genetics 2017; 206:1985-1994. [PMID: 28576866 PMCID: PMC5560802 DOI: 10.1534/genetics.117.202747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/23/2017] [Indexed: 01/22/2023] Open
Abstract
Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. Here, we showed that elevated temperature increases free cytosolic Ca2+ [Ca2+]f from RYR (ryanodine receptor)/UNC-68in vivo in the muscles of an experimental model animal, the nematode Caenorhabditis elegans. This subsequently leads to mitochondrial fragmentation and dysfunction, and breakdown of myofilaments similar to rhabdomyolysis. In addition, treatment with an inhibitor of RYR (dantrolene) or activation of FoxO (Forkhead box O)/DAF-16 is effective against heat-induced muscle damage. Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. To gain insight into heat-induced muscle breakdown, we investigated alterations of Ca2+ homeostasis and mitochondrial morphology in vivo in body-wall muscles of C. elegans exposed to elevated temperature. Heat stress for 3 hr at 35° increased the concentration of [Ca2+]f, and led to mitochondrial fragmentation and subsequent dysfunction in the muscle cells. A similar mitochondrial fragmentation phenotype is induced in the absence of heat stress by treatment with a calcium ionophore, ionomycin. Mutation of the unc-68 gene, which encodes the ryanodine receptor that is linked to Ca2+ release from the sarcoplasmic reticulum, could suppress the mitochondrial dysfunction, muscle degeneration, and reduced mobility and life span induced by heat stress. In addition, in a daf-2 mutant, in which the DAF-16/FoxO transcription factor is activated, resistance to calcium overload, mitochondrial fragmentation, and dysfunction was observed. These findings reveal that heat-induced Ca2+ accumulation causes mitochondrial damage and consequently induces muscle breakdown.
Collapse
|
12
|
Qu M, Li Y, Wu Q, Xia Y, Wang D. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 2017; 11:520-533. [PMID: 28368775 DOI: 10.1080/17435390.2017.1315190] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- School of Public Health, Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Gaffney CJ, Shephard F, Chu J, Baillie DL, Rose A, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle. J Cachexia Sarcopenia Muscle 2016; 7:181-92. [PMID: 27493871 PMCID: PMC4864282 DOI: 10.1002/jcsm.12040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC-105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS unc-105 gain-of-function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let-2 mutants that gate the hyperactive UNC-105 channel. Degradation is not suppressed by interventions suppressing proteasome-mediated, autophagy-mediated, or calpain-mediated degradation nor by suppressors of degenerin-induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced-3 or ced-4. Adult unc-105 muscles display a time-dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED-4, which is sufficient to activate CED-3 in vitro, are observed in unc-105 mitochondrial isolations. CONCLUSIONS Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Freya Shephard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Jeff Chu
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BCV5A 1S6 Canada; Department of Medical Genetics University of British Columbia Vancouver BCV6T 1Z4 Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Ann Rose
- Department of Medical Genetics University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| |
Collapse
|
14
|
Etheridge T, Rahman M, Gaffney CJ, Shaw D, Shephard F, Magudia J, Solomon DE, Milne T, Blawzdziewicz J, Constantin-Teodosiu D, Greenhaff PL, Vanapalli SA, Szewczyk NJ. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. FASEB J 2014; 29:1235-46. [PMID: 25491313 PMCID: PMC4396603 DOI: 10.1096/fj.14-259119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/11/2014] [Indexed: 01/19/2023]
Abstract
The integrin-adhesome network, which contains >150 proteins, is mechano-transducing and located at discreet positions along the cell-cell and cell-extracellular matrix interface. A small subset of the integrin-adhesome is known to maintain normal muscle morphology. However, the importance of the entire adhesome for muscle structure and function is unknown. We used RNA interference to knock down 113 putative Caenorhabditis elegans homologs constituting most of the mammalian adhesome and 48 proteins known to localize to attachment sites in C. elegans muscle. In both cases, we found >90% of components were required for normal muscle mitochondrial structure and/or proteostasis vs. empty vector controls. Approximately half of these, mainly proteins that physically interact with each other, were also required for normal sarcomere and/or adhesome structure. Next we confirmed that the dystrophy observed in adhesome mutants associates with impaired maximal mitochondrial ATP production (P < 0.01), as well as reduced probability distribution of muscle movement forces compared with wild-type animals. Our results show that the integrin-adhesome network as a whole is required for maintaining both muscle structure and function and extend the current understanding of the full complexities of the functional adhesome in vivo.—Etheridge, T., Rahman, M., Gaffney, C. J., Shaw, D., Shephard, F., Magudia, J., Solomon, D. E., Milne, T., Blawzdziewicz, J., Constantin-Teodosiu, D., Greenhaff, P. L., Vanapalli, S. A., Szewczyk, N. J. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Timothy Etheridge
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Mizanur Rahman
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Christopher J Gaffney
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Debra Shaw
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Freya Shephard
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jignesh Magudia
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Deepak E Solomon
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Thomas Milne
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Jerzy Blawzdziewicz
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Dumitru Constantin-Teodosiu
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Paul L Greenhaff
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Siva A Vanapalli
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Nathaniel J Szewczyk
- *Department of Sport and Health Science, College of Life and Environmental Sciences, and College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, United Kingdom; Departments of Chemical Engineering and Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA; Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, United Kingdom; and School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
15
|
Gaffney CJ, Bass JJ, Barratt TF, Szewczyk NJ. Methods to assess subcellular compartments of muscle in C. elegans. J Vis Exp 2014:e52043. [PMID: 25489753 PMCID: PMC4354018 DOI: 10.3791/52043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Collapse
Affiliation(s)
| | - Joseph J Bass
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham
| | - Thomas F Barratt
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham
| | | |
Collapse
|
16
|
The ubiquitin proteasome system in Caenorhabditis elegans and its regulation. Redox Biol 2014; 2:333-47. [PMID: 24563851 PMCID: PMC3926112 DOI: 10.1016/j.redox.2014.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/20/2022] Open
Abstract
Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. UPS is one of the main proteolytic systems that orchestrate protein degradation. Proteasome function can be dissected in Caenorhabditis elegans. Nematodes can be used in the identification of major players in the UPS pathway.
Collapse
|
17
|
Muñoz-Lobato F, Rodríguez-Palero MJ, Naranjo-Galindo FJ, Shephard F, Gaffney CJ, Szewczyk NJ, Hamamichi S, Caldwell KA, Caldwell GA, Link CD, Miranda-Vizuete A. Protective role of DNJ-27/ERdj5 in Caenorhabditis elegans models of human neurodegenerative diseases. Antioxid Redox Signal 2014; 20:217-35. [PMID: 23641861 PMCID: PMC3887457 DOI: 10.1089/ars.2012.5051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS Cells have developed quality control systems for protection against proteotoxicity. Misfolded and aggregation-prone proteins, which are behind the initiation and progression of many neurodegenerative diseases (ND), are known to challenge the proteostasis network of the cells. We aimed to explore the role of DNJ-27/ERdj5, an endoplasmic reticulum (ER)-resident thioredoxin protein required as a disulfide reductase for the degradation of misfolded proteins, in well-established Caenorhabditis elegans models of Alzheimer, Parkinson and Huntington diseases. RESULTS We demonstrate that DNJ-27 is an ER luminal protein and that its expression is induced upon ER stress via IRE-1/XBP-1. When dnj-27 expression is downregulated by RNA interference we find an increase in the aggregation and associated pathological phenotypes (paralysis and motility impairment) caused by human β-amyloid peptide (Aβ), α-synuclein (α-syn) and polyglutamine (polyQ) proteins. In turn, DNJ-27 overexpression ameliorates these deleterious phenotypes. Surprisingly, despite being an ER-resident protein, we show that dnj-27 downregulation alters cytoplasmic protein homeostasis and causes mitochondrial fragmentation. We further demonstrate that DNJ-27 overexpression substantially protects against the mitochondrial fragmentation caused by human Aβ and α-syn peptides in these worm models. INNOVATION We identify C. elegans dnj-27 as a novel protective gene for the toxicity associated with the expression of human Aβ, α-syn and polyQ proteins, implying a protective role of ERdj5 in Alzheimer, Parkinson and Huntington diseases. CONCLUSION Our data support a scenario where the levels of DNJ-27/ERdj5 in the ER impact cytoplasmic protein homeostasis and the integrity of the mitochondrial network which might underlie its protective effects in models of proteotoxicity associated to human ND.
Collapse
Affiliation(s)
- Fernando Muñoz-Lobato
- 1 Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Depto. de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide , Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lehmann S, Bass JJ, Szewczyk NJ. Knockdown of the C. elegans kinome identifies kinases required for normal protein homeostasis, mitochondrial network structure, and sarcomere structure in muscle. Cell Commun Signal 2013; 11:71. [PMID: 24060339 PMCID: PMC3849176 DOI: 10.1186/1478-811x-11-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/15/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Kinases are important signalling molecules for modulating cellular processes and major targets of drug discovery programs. However, functional information for roughly half the human kinome is lacking. We conducted three kinome wide, >90%, RNAi screens and epistasis testing of some identified kinases against known intramuscular signalling systems to increase the functional annotation of the C. elegans kinome and expand our understanding of kinome influence upon muscle protein degradation. RESULTS 96 kinases were identified as required for normal protein homeostasis, 74 for normal mitochondrial networks and 50 for normal sarcomere structure. Knockdown of kinases required only for normal protein homeostasis and/or mitochondrial structure was significantly less likely to produce a developmental or behavioural phenotype than knockdown of kinases required for normal sarcomere structure and/or other sub-cellular processes. Lastly, assessment of kinases for which knockdown produced muscle protein degradation against the known regulatory pathways in C. elegans muscle revealed that close to half of kinase knockdowns activated autophagy in a MAPK dependent fashion. CONCLUSIONS Roughly 40% of kinases studied, 159 of 397, are important in establishing or maintaining muscle cell health, with most required for both. For kinases where decreased expression triggers protein degradation, autophagy is most commonly activated. These results increase the annotation of the C. elegans kinome to roughly 75% and enable future kinome research. As 33% of kinases identified have orthologues expressed in human muscle, our results also enable testing of whether identified kinases function similarly in maintaining human muscle homeostasis.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| | - Joseph J Bass
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| | - Nathaniel J Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, England
| |
Collapse
|
19
|
Pronovost SM, Beckerle MC, Kadrmas JL. Elevated expression of the integrin-associated protein PINCH suppresses the defects of Drosophila melanogaster muscle hypercontraction mutants. PLoS Genet 2013; 9:e1003406. [PMID: 23555310 PMCID: PMC3610608 DOI: 10.1371/journal.pgen.1003406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
A variety of human diseases arise from mutations that alter muscle contraction. Evolutionary conservation allows genetic studies in Drosophila melanogaster to be used to better understand these myopathies and suggest novel therapeutic strategies. Integrin-mediated adhesion is required to support muscle structure and function, and expression of Integrin adhesive complex (IAC) proteins is modulated to adapt to varying levels of mechanical stress within muscle. Mutations in flapwing (flw), a catalytic subunit of myosin phosphatase, result in non-muscle myosin hyperphosphorylation, as well as muscle hypercontraction, defects in size, motility, muscle attachment, and subsequent larval and pupal lethality. We find that moderately elevated expression of the IAC protein PINCH significantly rescues flw phenotypes. Rescue requires PINCH be bound to its partners, Integrin-linked kinase and Ras suppressor 1. Rescue is not achieved through dephosphorylation of non-muscle myosin, suggesting a mechanism in which elevated PINCH expression strengthens integrin adhesion. In support of this, elevated expression of PINCH rescues an independent muscle hypercontraction mutant in muscle myosin heavy chain, MhcSamba1. By testing a panel of IAC proteins, we show specificity for PINCH expression in the rescue of hypercontraction mutants. These data are consistent with a model in which PINCH is present in limiting quantities within IACs, with increasing PINCH expression reinforcing existing adhesions or allowing for the de novo assembly of new adhesion complexes. Moreover, in myopathies that exhibit hypercontraction, strategic PINCH expression may have therapeutic potential in preserving muscle structure and function. A wide variety of diseases of the muscle are caused by mutations that alter either the actin and myosin contractile machinery or its regulation. One class of mutations of interest results in hypercontraction of the muscle—actin and myosin fibers contract, but cannot efficiently relax. We have used the fruit fly as a model to study these mutations because of the striking similarity of fly and human muscle and because of the many genetic techniques that are available in the fly. Using a genetic approach we identified a protein, PINCH, whose increased expression can rescue the defects observed in hypercontraction mutants. PINCH is a component of integrin adhesion complexes, responsible for anchoring cells in their environment. This suggests that strengthening the anchorage of muscles via PINCH may be an effective strategy to prevent or reduce the muscle damage that occurs in diseases of muscle hypercontraction.
Collapse
Affiliation(s)
- Stephen M. Pronovost
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary C. Beckerle
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Julie L. Kadrmas
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
20
|
Using Multiple Phenotype Assays and Epistasis Testing to Enhance the Reliability of RNAi Screening and Identify Regulators of Muscle Protein Degradation. Genes (Basel) 2012; 3:686-701. [PMID: 23152949 PMCID: PMC3495584 DOI: 10.3390/genes3040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RNAi is a convenient, widely used tool for screening for genes of interest. We have recently used this technology to screen roughly 750 candidate genes, in C. elegans, for potential roles in regulating muscle protein degradation in vivo. To maximize confidence and assess reproducibility, we have only used previously validated RNAi constructs and have included time courses and replicates. To maximize mechanistic understanding, we have examined multiple sub-cellular phenotypes in multiple compartments in muscle. We have also tested knockdowns of putative regulators of degradation in the context of mutations or drugs that were previously shown to inhibit protein degradation by diverse mechanisms. Here we discuss how assaying multiple phenotypes, multiplexing RNAi screens with use of mutations and drugs, and use of bioinformatics can provide more data on rates of potential false positives and negatives as well as more mechanistic insight than simple RNAi screening.
Collapse
|
21
|
Genes down-regulated in spaceflight are involved in the control of longevity in Caenorhabditis elegans. Sci Rep 2012; 2:487. [PMID: 22768380 PMCID: PMC3390002 DOI: 10.1038/srep00487] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/26/2012] [Indexed: 11/24/2022] Open
Abstract
How microgravitational space environments affect aging is not well understood. We observed that, in Caenorhabditis elegans, spaceflight suppressed the formation of transgenically expressed polyglutamine aggregates, which normally accumulate with increasing age. Moreover, the inactivation of each of seven genes that were down-regulated in space extended lifespan on the ground. These genes encode proteins that are likely related to neuronal or endocrine signaling: acetylcholine receptor, acetylcholine transporter, choline acetyltransferase, rhodopsin-like receptor, glutamate-gated chloride channel, shaker family of potassium channel, and insulin-like peptide. Most of them mediated lifespan control through the key longevity-regulating transcription factors DAF-16 or SKN-1 or through dietary-restriction signaling, singly or in combination. These results suggest that aging in C. elegans is slowed through neuronal and endocrine response to space environmental cues.
Collapse
|
22
|
Large isoforms of UNC-89 (obscurin) are required for muscle cell architecture and optimal calcium release in Caenorhabditis elegans. PLoS One 2012; 7:e40182. [PMID: 22768340 PMCID: PMC3388081 DOI: 10.1371/journal.pone.0040182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction.
Collapse
|
23
|
Lehmann S, Shephard F, Jacobson LA, Szewczyk NJ. Integrated control of protein degradation in C. elegans muscle. WORM 2012; 1:141-50. [PMID: 23457662 PMCID: PMC3583358 DOI: 10.4161/worm.20465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/14/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Freya Shephard
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Lewis A. Jacobson
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Nathaniel J. Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| |
Collapse
|
24
|
Estevez AO, Mueller CL, Morgan KL, Szewczyk NJ, Teece L, Miranda-Vizuete A, Estevez M. Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 2012; 33:1021-32. [PMID: 22560997 DOI: 10.1016/j.neuro.2012.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/06/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
Selenium is an essential micronutrient required for cellular antioxidant systems, yet at higher doses it induces oxidative stress. Additionally, in vertebrates environmental exposures to toxic levels of selenium can cause paralysis and death. Here we show that selenium-induced oxidative stress leads to decreased cholinergic signaling and degeneration of cholinergic neurons required for movement and egg-laying in Caenorhabditis elegans. Exposure to high levels of selenium leads to proteolysis of a soluble muscle protein through mechanisms suppressible by two pharmacological agents, levamisole and aldicarb which enhance cholinergic signaling in muscle. In addition, animals with reduction-of-function mutations in genes encoding post-synaptic levamisole-sensitive acetylcholine receptor subunits or the vesicular acetylcholine transporter developed impaired forward movement faster during selenium-exposure than normal animals, again confirming that selenium reduces cholinergic signaling. Finally, the antioxidant reduced glutathione, inhibits selenium-induced reductions in egg-laying through a cellular protective mechanism dependent on the C. elegans glutaredoxin, GLRX-21. These studies provide evidence that the environmental toxicant selenium induces neurodegeneration of cholinergic neurons through depletion of glutathione, a mechanism linked to the neuropathology of Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Arizona, Tucson, AZ 85724-5023, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Etheridge T, Oczypok EA, Lehmann S, Fields BD, Shephard F, Jacobson LA, Szewczyk NJ. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002471. [PMID: 22253611 PMCID: PMC3257289 DOI: 10.1371/journal.pgen.1002471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/23/2011] [Indexed: 11/23/2022] Open
Abstract
Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans. Muscle is a dynamic tissue that grows in response to use and nutrition and shrinks in response to lack of use, poor nutrition, or disease. Loss of muscle mass is an important public health problem, but we understand little of the genes that regulate muscle shrinkage. We have found that, in adult worm muscle, attachment to the basement membrane is continuously required to prevent catastrophic sub-cellular defects that result in impaired ability of muscle to function. We have also identified a group of proteases that are activated when the attachment fails to be properly maintained. Conversely, when these proteases are lacking in adult muscle, the muscles fail to maintain attachment to the basement membrane. Thus, we have discovered a group of proteases that appear to act to maintain attachment to the basement membrane and therefore to maintain muscle itself. Because these worms lack satellite cells, this maintenance system is intrinsic to muscle, thus raising the question whether a similar or identical system also works in humans.
Collapse
Affiliation(s)
- Timothy Etheridge
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Elizabeth A. Oczypok
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susann Lehmann
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Brandon D. Fields
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Freya Shephard
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Lewis A. Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathaniel J. Szewczyk
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|