1
|
Pentz AB, O'Connel KS, van Jole O, Timpe CMF, Slapø NB, Melle I, Lagerberg TV, Steen NE, Westlye LT, Haukvik UK, Moberget T, Jönsson EG, Andreassen OA, Elvsåshagen T. Mismatch negativity and polygenic risk scores for schizophrenia and bipolar disorder. Schizophr Res 2024; 264:314-326. [PMID: 38215567 DOI: 10.1016/j.schres.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Auditory mismatch negativity (MMN) impairment is a candidate endophenotype in psychotic disorders, yet the genetic underpinnings remain to be clarified. Here, we examined the relationships between auditory MMN and polygenic risk scores (PRS) for individuals with psychotic disorders, including schizophrenia spectrum disorders (SSD) and bipolar disorder (BD) and in healthy controls (HC). METHODS Genotyped and clinically well-characterized individuals with psychotic disorders (n = 102), including SSD (n = 43) and BD (n = 59), and HC (n = 397) underwent a roving MMN paradigm. In addition MMN, we measured the memory traces of the repetition positivity (RP) and the deviant negativity (DN), which is believed to reflect prediction encoding and prediction error signals, respectively. SCZ and BD PRS were computed using summary statistics from the latest genome-wide association studies. The relationships between the MMN, RP, and DN and the PRSs were assessed with linear regressions. RESULTS We found no significant association between the SCZ or BD PRS and grand average MMN in the psychotic disorders group or in the HCs group (all p > 0.05). SCZ PRS and BD PRS were negatively associated with RP in the psychotic disorders group (β = -0.46, t = -2.86, p = 0.005 and β = -0.29, t = -0.21, p = 0.034, respectively). No significant associations were found between DN and PRS. CONCLUSION These findings suggest that genetic variants associated with SCZ and BD may be associated with MMN subcomponents linked to predictive coding among patients with psychotic disorders. Larger studies are needed to confirm these findings and further elucidate the genetic underpinnings of MMN impairment in psychotic disorders.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Kevin Sean O'Connel
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Oda van Jole
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Clara Maria Fides Timpe
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nora Berz Slapø
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health - Sciences, Oslo Metropolitan University - OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Dondé C, Kantrowitz JT, Medalia A, Saperstein AM, Balla A, Sehatpour P, Martinez A, O'Connell MN, Javitt DC. Early auditory processing dysfunction in schizophrenia: Mechanisms and implications. Neurosci Biobehav Rev 2023; 148:105098. [PMID: 36796472 PMCID: PMC10106448 DOI: 10.1016/j.neubiorev.2023.105098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Schizophrenia is a major mental disorder that affects approximately 1% of the population worldwide. Cognitive deficits are a key feature of the disorder and a primary cause of long-term disability. Over the past decades, significant literature has accumulated demonstrating impairments in early auditory perceptual processes in schizophrenia. In this review, we first describe early auditory dysfunction in schizophrenia from both a behavioral and neurophysiological perspective and examine their interrelationship with both higher order cognitive constructs and social cognitive processes. Then, we provide insights into underlying pathological processes, especially in relationship to glutamatergic and N-methyl-D-aspartate receptor (NMDAR) dysfunction models. Finally, we discuss the utility of early auditory measures as both treatment targets for precision intervention and as translational biomarkers for etiological investigation. Altogether, this review points out the crucial role of early auditory deficits in the pathophysiology of schizophrenia, in addition to major implications for early intervention and auditory-targeted approaches.
Collapse
Affiliation(s)
- Clément Dondé
- Univ. Grenoble Alpes, F-38000 Grenoble, France; INSERM, U1216, F-38000 Grenoble, France; Psychiatry Department, CHU Grenoble Alpes, F-38000 Grenoble, France; Psychiatry Department, CH Alpes-Isère, F-38000 Saint-Egrève, France.
| | - Joshua T Kantrowitz
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States; Schizophrenia Research Center, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, United States
| | - Alice Medalia
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Alice M Saperstein
- New York State Psychiatric Institute, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York Presbyterian, New York, NY 10032, United States
| | - Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Pejman Sehatpour
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Antigona Martinez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Monica N O'Connell
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
de la Salle S, Shah D, Choueiry J, Bowers H, McIntosh J, Ilivitsky V, Knott V. NMDA Receptor Antagonist Effects on Speech-Related Mismatch Negativity and Its Underlying Oscillatory and Source Activity in Healthy Humans. Front Pharmacol 2019; 10:455. [PMID: 31139075 PMCID: PMC6517681 DOI: 10.3389/fphar.2019.00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/11/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Previous studies in schizophrenia have consistently shown that deficits in the generation of the auditory mismatch negativity (MMN) – a pre-attentive, event-related potential (ERP) typically elicited by changes to simple sound features – are linked to N-methyl-D-aspartate (NMDA) receptor hypofunction. Concomitant with extensive language dysfunction in schizophrenia, patients also exhibit MMN deficits to changes in speech but their relationship to NMDA-mediated neurotransmission is not clear. Accordingly, our study aimed to investigate speech MMNs in healthy humans and their underlying electrophysiological mechanisms in response to NMDA antagonist treatment. We also evaluated the relationship between baseline MMN/electrocortical activity and emergent schizophrenia-like symptoms associated with NMDA receptor blockade. Methods: In a sample of 18 healthy volunteers, a multi-feature Finnish language paradigm incorporating changes in syllables, vowels and consonant stimuli was used to assess the acute effects of the NMDA receptor antagonist ketamine and placebo on the MMN. Further, measures of underlying neural activity, including evoked theta power, theta phase locking and source-localized current density in cortical regions of interest were assessed. Subjective symptoms were assessed with the Clinician Administered Dissociative States Scale (CADSS). Results: Participants exhibited significant ketamine-induced increases in psychosis-like symptoms and depending on temporal or frontal recording region, co-occurred with reductions in MMN generation in response to syllable frequency/intensity, vowel duration, across vowel and consonant deviants. MMN attenuation was associated with decreases in evoked theta power, theta phase locking and diminished current density in auditory and inferior frontal (language-related cortical) regions. Baseline (placebo) MMN and underlying electrophysiological features associated with the processing of changes in syllable intensity correlated with the degree of psychotomimetic response to ketamine. Conclusion: Ketamine-induced impairments in healthy human speech MMNs and their underlying electrocortical mechanisms closely resemble those observed in schizophrenia and support a model of dysfunctional NMDA receptor-mediated neurotransmission of language processing deficits in schizophrenia.
Collapse
Affiliation(s)
| | - Dhrasti Shah
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Joelle Choueiry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hayley Bowers
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Judy McIntosh
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Verner Knott
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| |
Collapse
|
4
|
Lack of correlation between phonetic magnetic mismatch field and plasma d-serine levels in humans. Clin Neurophysiol 2018; 129:1444-1448. [PMID: 29735418 DOI: 10.1016/j.clinph.2018.04.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Uncovering molecular bases for auditory language processing in the human brain is a fundamental scientific challenge. The power and latency of the magnetic mismatch field (MMF) elicited by phoneme change, which are magnetoencephalographic indices of language function in its early stage of information processing, are theoretically thought to be modulated by N-methyl-d-aspartate-type glutamate receptor (NMDAR) function, but no study has yet assessed this possibility. We have thus sought to demonstrate an association between phonetic MMF power/latency and levels of plasma d-serine, an intrinsic co-agonist of glycine binding sites on NMDAR, in adults. METHODS The MMF response to phoneme changes was recorded using 204-channel magnetoencephalography in 61 healthy, right-handed, Japanese adults. Plasma levels of d- and l-serine were measured for each participant. RESULTS We did not find a significant correlation between MMF power/latency and plasma serine levels. CONCLUSIONS Despite a sufficient sample size, we failed to find an association between the physiological markers of the early stage of information processing of language in the auditory cortex and biomarkers indexing glutamatergic function. SIGNIFICANCE Our study did not indicate that a molecular index of glutamatergic function could be a surrogate marker for the early stage of information processing of language in humans.
Collapse
|
5
|
Diaz-Beltran L, Esteban FJ, Varma M, Ortuzk A, David M, Wall DP. Cross-disorder comparative analysis of comorbid conditions reveals novel autism candidate genes. BMC Genomics 2017; 18:315. [PMID: 28427329 PMCID: PMC5399393 DOI: 10.1186/s12864-017-3667-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Numerous studies have highlighted the elevated degree of comorbidity associated with autism spectrum disorder (ASD). These comorbid conditions may add further impairments to individuals with autism and are substantially more prevalent compared to neurotypical populations. These high rates of comorbidity are not surprising taking into account the overlap of symptoms that ASD shares with other pathologies. From a research perspective, this suggests common molecular mechanisms involved in these conditions. Therefore, identifying crucial genes in the overlap between ASD and these comorbid disorders may help unravel the common biological processes involved and, ultimately, shed some light in the understanding of autism etiology. RESULTS In this work, we used a two-fold systems biology approach specially focused on biological processes and gene networks to conduct a comparative analysis of autism with 31 frequently comorbid disorders in order to define a multi-disorder subcomponent of ASD and predict new genes of potential relevance to ASD etiology. We validated our predictions by determining the significance of our candidate genes in high throughput transcriptome expression profiling studies. Using prior knowledge of disease-related biological processes and the interaction networks of the disorders related to autism, we identified a set of 19 genes not previously linked to ASD that were significantly differentially regulated in individuals with autism. In addition, these genes were of potential etiologic relevance to autism, given their enriched roles in neurological processes crucial for optimal brain development and function, learning and memory, cognition and social behavior. CONCLUSIONS Taken together, our approach represents a novel perspective of autism from the point of view of related comorbid disorders and proposes a model by which prior knowledge of interaction networks may enlighten and focus the genome-wide search for autism candidate genes to better define the genetic heterogeneity of ASD.
Collapse
Affiliation(s)
- Leticia Diaz-Beltran
- Division of Systems Medicine, Department of Pediatrics, School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5488, USA
- Division of Systems Medicine, Department of Psychiatry, Stanford University, Stanford, CA, USA
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Maya Varma
- Division of Systems Medicine, Department of Pediatrics, School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5488, USA
- Division of Systems Medicine, Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Alp Ortuzk
- Division of Systems Medicine, Department of Pediatrics, School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5488, USA
- Division of Systems Medicine, Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Maude David
- Division of Systems Medicine, Department of Pediatrics, School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5488, USA
- Division of Systems Medicine, Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Dennis P Wall
- Division of Systems Medicine, Department of Pediatrics, School of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5488, USA.
- Division of Systems Medicine, Department of Psychiatry, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Nishimura Y, Kawakubo Y, Suga M, Hashimoto K, Takei Y, Takei K, Inoue H, Yumoto M, Takizawa R, Kasai K. Familial Influences on Mismatch Negativity and Its Association with Plasma Glutamate Level: A Magnetoencephalographic Study in Twins. MOLECULAR NEUROPSYCHIATRY 2016; 2:161-172. [PMID: 27867941 DOI: 10.1159/000449426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 08/25/2016] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) or its magnetic counterpart (magnetic mismatch negativity; MMNm) is regarded as a promising biomarker for schizophrenia. Previous electroencephalographic studies of MMN have demonstrated a moderate-to-high heritability for MMN amplitudes. N-methyl-D-aspartate receptor-dependent glutamatergic neurotransmission is implicated in MMN generation. We hypothesized that the differences between identical twins in MMNm variables might be associated with differences in plasma levels of amino acids involved in glutamatergic neurotransmission. Thirty-three pairs of monozygotic (MZ) and 10 pairs of dizygotic (DZ) twins underwent MMNm recording. The MMNm in response to tone duration changes, tone frequency changes, and phonemic changes was recorded using 204-channel magnetoencephalography. Of these, 26 MZ and 7 DZ twin pairs underwent blood sampling for determination of plasma amino acid levels. MMNm peak strength showed relatively high correlations in both MZ and DZ twin pairs. The differences in MMNm latencies tended to correlate with the differences in plasma amino acid levels within MZ pairs, while no significant correlation was observed after the Bonferroni correction. We observed a familial trait in MMNm strength. The differences in MMN latency in MZ twins might be influenced by changes in glutamate levels and glutamate-glutamine cycling; however, the results need to be replicated.
Collapse
Affiliation(s)
- Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motomu Suga
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Hashimoto
- Department of Division of Clinical Neuroscience, Chiba University Centre for Forensic Mental Health, Chiba, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kunio Takei
- Department of Office for Mental Health Support, Division for Counselling and Support, The University of Tokyo, Tokyo, Japan
| | - Hideyuki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Suga M, Nishimura Y, Kawakubo Y, Yumoto M, Kasai K. Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiatry Clin Neurosci 2016; 70:295-302. [PMID: 27162140 DOI: 10.1111/pcn.12397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
AIM Auditory mismatch negativity (MMN) and its magnetoencephalographic (MEG) counterpart (MMNm) are an established biological index in schizophrenia research. MMN in response to duration and frequency deviants may have differential relevance to the pathophysiology and clinical stages of schizophrenia. MEG has advantage in that it almost purely detects MMNm arising from the auditory cortex. However, few previous MEG studies on schizophrenia have simultaneously assessed MMNm in response to duration and frequency deviants or examined the effect of chronicity on the group difference. METHODS Forty-two patients with chronic schizophrenia and 74 matched control subjects participated in the study. Using a whole-head MEG, MMNm in response to duration and frequency deviants of tones was recorded while participants passively listened to an auditory sequence. RESULTS Compared to healthy subjects, patients with schizophrenia exhibited significantly reduced powers of MMNm in response to duration deviant in both hemispheres, whereas MMNm in response to frequency deviant did not differ between the two groups. These results did not change according to the chronicity of the illness. CONCLUSION These results, obtained by using a sequence-enabling simultaneous assessment of both types of MMNm, suggest that MEG recording of MMN in response to duration deviant may be a more sensitive biological marker of schizophrenia than MMN in response to frequency deviant. Our findings represent an important first step towards establishment of MMN as a biomarker for schizophrenia in real-world clinical psychiatry settings.
Collapse
Affiliation(s)
- Motomu Suga
- Department of Rehabilitation, The University of Tokyo, Tokyo, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Full-field electroretinogram in autism spectrum disorder. Doc Ophthalmol 2016; 132:83-99. [DOI: 10.1007/s10633-016-9529-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
9
|
Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev 2015; 58:19-35. [DOI: 10.1016/j.neubiorev.2015.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/03/2023]
|
10
|
Kinoshita A, Takizawa R, Koike S, Satomura Y, Kawasaki S, Kawakubo Y, Marumo K, Tochigi M, Sasaki T, Nishimura Y, Kasai K. Effect of metabotropic glutamate receptor-3 variants on prefrontal brain activity in schizophrenia: An imaging genetics study using multi-channel near-infrared spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:14-21. [PMID: 25914064 DOI: 10.1016/j.pnpbp.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The glutamatergic system is essential for learning and memory through its crucial role in neural development and synaptic plasticity. Genes associated with the glutamatergic system, including metabotropic glutamate receptor (mGluR or GRM) genes, have been implicated in the pathophysiology of schizophrenia. Few studies, however, have investigated a relationship between polymorphism of glutamate-related genes and cortical function in vivo in patients with schizophrenia. We thus explored an association between genetic variations in GRM3 and brain activation driven by a cognitive task in the prefrontal cortex in patients with schizophrenia. MATERIALS AND METHODS Thirty-one outpatients with schizophrenia and 48 healthy controls participated in this study. We measured four candidate single nucleotide polymorphisms (rs274622, rs2299225, rs1468412, and rs6465084) of GRM3, and activity in the prefrontal and temporal cortices during a category version of a verbal fluency task, using a 52-channel near-infrared spectroscopy instrument. RESULTS AND DISCUSSION The rs274622 C carriers with schizophrenia were associated with significantly smaller prefrontal activation than patients with TT genotype. This between-genotype difference tended to be confined to the patient group. GRM3 polymorphisms are associated with prefrontal activation during cognitive task in schizophrenia.
Collapse
Affiliation(s)
- Akihide Kinoshita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shingo Kawasaki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Application Development Office, Hitachi Medical Corporation, Kashiwa City, Chiba 277-0804, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kohei Marumo
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
11
|
Lainiola M, Procaccini C, Linden AM. mGluR3 knockout mice show a working memory defect and an enhanced response to MK-801 in the T- and Y-maze cognitive tests. Behav Brain Res 2014; 266:94-103. [DOI: 10.1016/j.bbr.2014.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 12/29/2022]
|
12
|
Association of variants in DRD2 and GRM3 with motor and cognitive function in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2014; 264:345-55. [PMID: 24682224 PMCID: PMC4290665 DOI: 10.1007/s00406-013-0464-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
Similar smooth pursuit eye tracking dysfunctions are present across psychotic disorders. They include pursuit initiation and maintenance deficits that implicate different functional brain systems. This candidate gene study examined psychosis-related genotypes regulating dopamine and glutamate neurotransmission in relation to these pursuit deficits. One hundred and thirty-eight untreated first-episode patients with a psychotic disorder were genotyped for four markers in DRD2 and four markers in GRM3. The magnitude of eye movement abnormality in patients was defined in relation to performance of matched healthy controls (N = 130). Eighty three patients were followed after 6 weeks of antipsychotic treatment. At baseline, patients with a -141C deletion in DRD2 rs1799732 had slower initiation eye velocity and longer pursuit latency than CC insertion carriers. Further, GRM3 rs274622_CC carriers had poorer pursuit maintenance than T-carriers. Antipsychotic treatment resulted in prolonged pursuit latency in DRD2 rs1799732_CC insertion carriers and a decline in pursuit maintenance in GRM3 rs6465084_GG carriers. The present study demonstrates for the first time that neurophysiological measures of motor and neurocognitive deficits in patients with psychotic disorders have different associations with genes regulating dopamine and glutamate systems, respectively. Alterations in striatal D2 receptor activity through the -141C Ins/Del polymorphism could contribute to pursuit initiation deficits in psychotic disorders. Alterations in GRM3 coding for the mGluR3 protein may impair pursuit maintenance by compromising higher perceptual and cognitive processes that depend on optimal glutamate signaling in corticocortical circuits. DRD2 and GRM3 genotypes also selectively modulated the severity of adverse motor and neurocognitive changes resulting from antipsychotic treatment.
Collapse
|
13
|
Metabotropic glutamate receptor 3 is associated with heroin dependence but not depression or schizophrenia in a Chinese population. PLoS One 2014; 9:e87247. [PMID: 24498053 PMCID: PMC3909071 DOI: 10.1371/journal.pone.0087247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023] Open
Abstract
Metabotropic glutamate receptor subtype 3 (mGluR3, encoded by GRM3) plays important roles in the pathophysiology of schizophrenia, depression, and drug dependence. GRM3 polymorphisms were reported to be associated with prefrontal activity, cognitive shifting, and memory capability in healthy subjects, as well as susceptibility to schizophrenia and depression. The goal of this study was to replicate the association of GRM3 with schizophrenia and depression and to explore GRM3's potential association with heroin dependence (HD) in a Chinese population. Seventeen SNPs throughout the GRM3 gene were genotyped using MALDI-TOF within the MassARRAY system, and the allele and genotype distributions were compared between 619 healthy controls and 433 patients with schizophrenia, 409 patients with major depression, and 584 unrelated addicts. We found that GRM3 polymorphisms modulate the susceptibility to HD but do not significantly influence the risk for schizophrenia or depression. An increased risk of HD was significantly associated with the minor alleles of two GRM3 SNPs, including the T allele of rs274618 (Odds ratio (OR) = 1.631, 95% confidence interval (95%CI): 1.317-2.005), the T allele of rs274622 (OR = 1.652, 95% CI: 1.336-2.036), compared with the major alleles. The addicts carrying the minor allele of rs274618 or rs274622 had a shortened duration for transition from first use to dependence (DTFUD) in comparison to homozygote for major allele (P<0.0001 for each SNP using log rank test). Additionally, a 6-SNP haplotype within 5' region of the GRM3 including the minor alleles of the two aforementioned SNPs was significantly associated with an increased risk of HD (P = 0.00001, OR = 1.668, 95% CI: 1.335-2.084). Our data indicated that GRM3 polymorphisms do not contribute to genetic susceptibility to schizophrenia and depression, but they confer an increased risk of HD in a Chinese population.
Collapse
|
14
|
Kasai K. Toward an interdisciplinary science of adolescence: Insights from schizophrenia research. Neurosci Res 2013; 75:89-93. [DOI: 10.1016/j.neures.2012.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/10/2023]
|