1
|
Wu X, Li W, Chen Y. Association of rs401681 (C > T) and rs402710 (C > T) polymorphisms in the CLPTM1L region with risk of lung cancer: a systematic review and meta-analysis. Sci Rep 2024; 14:22603. [PMID: 39349641 PMCID: PMC11442442 DOI: 10.1038/s41598-024-73254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Although many genome-wide association studies (GWAS) have confirmed the negative associations between rs401681[T] / rs402710[T] in the Cleft lip and cleft palate transmembrane protein 1 (CLPTM1L) region and lung cancer (LC) susceptibility in Caucasian and Asian populations, some other studies haven't found these negative associations. The purpose of this study is to clarify the associations between them and LC, as well as the differences in these associations between patients of different ethnicities (Caucasians and Asians), LC subtypes and smoking status. Relevant literatures published before July 7, 2023 in PubMed, EMbase, Web of Science, MEDLINE were searched through the Internet. Statistical analysis of data was performed in Revman 5.3, including drawing forest plots, funnel plots and so on. Sensitivity and publication bias were performed in Stata 14.0. TSA software was performed for the trial sequential analysis (TSA) tests to assess the stability of the results. Registration number: CRD42023407890. A total of 41 literatures (containing 44 studies: 16 studies in Caucasians and 28 studies in Asians) were included in this meta-analysis, including 126476 LC patients and 191648 healthy controls. The results showed that the T allele variants of rs401681 and rs402710 were negatively associated with the risk of LC (rs401681[T]: [OR] = 0.87, 95% CI [0.86, 0.88]; rs402710[T]: [OR] = 0.88, 95% CI [0.86, 0.89]), and the negative associations were stronger in Caucasians than in Asians (Subgroup differences: I2 > 50%). In LC subtypes, the rs401681[T] was negatively associated with the risk of Non-small-cell lung carcinoma (NSCLC), Lung adenocarcinoma (LUAD) and Lung squamous cell carcinoma (LUSC) (P < 0.05), and these negative associations were stronger in Caucasians than in Asians (Subgroup differences: I2 > 50%). The rs402710[T] was negatively associated with the risk of NSCLC, LUAD and LUSC (P < 0.05), and these negative associations in Caucasians were the same as in Asians (Subgroup differences: I2 < 50%). The rs401681[T] was negatively associated with the risk of LC in both smokers and non-smokers (P < 0.05), and the negative association for smokers equals to that of non-smokers (Subgroup differences: P = 0.25, I2 = 24.2%). In LC subtypes, the rs401681[T] was negatively associated with the risks of NSCLC and LUAD in both Caucasian smokers and Asian non-smokers (P < 0.05). The rs402710[T] was negatively associated with the risk of LC in both smokers and non-smokers (P < 0.05), and there was no difference in the strength of this negative risk association between them in Caucasians (Subgroup differences: I2 = 0%). In Asians, this negative association was found to be predominantly among smokers ([OR] = 0.80, 95%CI [0.65, 0.99]). In LC subtypes, the rs402710[T]was negatively associated with the risk of NSCLC in non-smokers, and this negative association was found to be predominantly among non-smokers in Asians ([OR] = 0.75, 95%CI [0.60, 0.94]). The T allele variants of rs401681 and rs402710 are both negatively associated with the risk of developing LC, NSCLC (LUAD, LUSC) in the Caucasian and Asian populations, and the negative associations with the risk of LC are higher in Caucasians. Smoking is an important risk factor for inducing the rs401681 and rs402710 variants and causes LC development in both populations. Other factors like non-smoking are mainly responsible for inducing the development of NSCLC in Asians, and is concentrated in LUAD among Asian non-smoking women.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
2
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Wu X, Huang G, Li W, Chen Y. Ethnicity-specific association between TERT rs2736100 (A > C) polymorphism and lung cancer risk: a comprehensive meta-analysis. Sci Rep 2023; 13:13271. [PMID: 37582820 PMCID: PMC10427644 DOI: 10.1038/s41598-023-40504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
The rs2736100 (A > C) polymorphism of the second intron of Telomerase reverse transcriptase (TERT) has been confirmed to be closely associated with the risk of Lung cancer (LC), but there is still no unified conclusion on the results of its association with LC. This study included Genome-wide association studies (GWAS) and case-control studies reported so far on this association between TERT rs2736100 polymorphism and LC to clarify such a correlation with LC and the differences in it between different ethnicities and different types of LC. Relevant literatures published before May 7, 2022 on 'TERT rs2736100 polymorphism and LC susceptibility' in PubMed, EMbase, CENTRAL, MEDLINE databases were searched through the Internet, and data were extracted. Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. Sensitivity and publication bias analysis were performed in Stata 12.0 software. The C allele of TERT rs2736100 was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 /Asians: [OR]) = 1.26). The other gene models also showed similar results. The results of stratified analysis of LC patients showed that the C allele was associated with the risk of Non-small-cell lung carcinoma (NSCLC) and Lung adenocarcinoma (LUAD), and the risk of NSCLC and LUAD in Asians was higher than that in Caucasians. The C allele was associated with the risk of Lung squamous cell carcinoma (LUSC) and Small cell lung carcinoma(SCLC) in Asians but not in Caucasians. NSCLC patients ([OR] = 1.27) had a stronger correlation than SCLC patients ([OR] = 1.03), and LUAD patients ([OR] = 1.32) had a stronger correlation than LUSC patients ([OR] = 1.09).In addition, the C allele of TERT rs2736100 was associated with the risk of LC, NSCLC and LUAD in both smoking groups and non-smoking groups, and the risk of LC in non-smokers of different ethnic groups was higher than that in smokers. In the Asians, non-smoking women were more at risk of developing LUAD. The C allele of TERT rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the Asian population is at a more common risk. The C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. And smoking is not the most critical factor that causes variation in TERT rs2736100 to increase the risk of most LC (NSCLC, LUAD). Therefore, LC is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Gao Huang
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China.
| |
Collapse
|
4
|
Tian J, Wang Y, Dong Y, Chang J, Wu Y, Chang S, Che G. Cumulative Evidence for Relationships Between Multiple Variants in the TERT and CLPTM1L Region and Risk of Cancer and Non-Cancer Disease. Front Oncol 2022; 12:946039. [PMID: 35847915 PMCID: PMC9279858 DOI: 10.3389/fonc.2022.946039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Genetic studies previously reported that variants in TERT-CLPTM1L genes were related to susceptibility of cancer and non-cancer diseases. However, conclusions were not always concordant. Methods We performed meta-analyses to assess correlations between 23 variants within TERT-CLPTM1L region and susceptibility to 12 cancers and 1 non-cancer disease based on data in 109 papers (involving 139,510 cases and 208,530 controls). Two approaches (false-positive report probability test and Venice criteria) were adopted for assessing the cumulative evidence of significant associations. Current study evaluated the potential role of these variants based on data in Encyclopedia of DNA Elements (ENCODE) Project. Results Thirteen variants were statistically associated with susceptibility to 11 cancers and 1 non-cancer disease (p < 0.05). Besides, 12 variants with eight cancers and one non-cancer disease were rated as strong evidence (rs2736098, rs401681, and rs402710 in bladder cancer; rs2736100, rs2853691, and rs401681 in esophageal cancer; rs10069690 in gastric cancer; rs2736100 and rs2853676 in glioma; rs2242652, rs2736098, rs2736100, rs2853677, rs31489, rs401681, rs402710, rs465498, and rs4975616 in lung cancer; rs2736100 in idiopathic pulmonary fibrosis and myeloproliferative neoplasms; and rs401681 in pancreatic and skin cancer). According to data from ENCODE and other public databases, 12 variants with strong evidence might fall within putative functional regions. Conclusions This paper demonstrated that common variants of TERT-CLPTM1L genes were related to susceptibility to bladder, esophageal, gastric, lung, pancreatic, and skin cancer, as well as to glioma, myeloproliferative neoplasms, and idiopathic pulmonary fibrosis, and, besides, the crucial function of the TERT-CLPTM1L region in the genetic predisposition to human diseases is elucidated.
Collapse
Affiliation(s)
- Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxian Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junke Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che,
| |
Collapse
|
5
|
TERT Gene rs2736100 and rs2736098 Polymorphisms are Associated with Increased Cancer Risk: A Meta-Analysis. Biochem Genet 2021; 60:241-266. [PMID: 34181135 DOI: 10.1007/s10528-021-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Abnormal telomerase activity plays a key role in the development of carcinogenesis. The variants rs2736100 and rs2736098 of the telomerase reverse transcriptase (TERT) gene, which encodes the telomerase catalytic subunit, are associated with the risk of different types of cancers. However, the results remain controversy. We conducted a meta-analysis to more precisely assess this association. We comprehensively searched the PubMed and Web of Science databases up to June 1, 2020, and retrieved a total of 103 studies in 82 articles, including 89,320 cases and 121,654 controls. Among these studies, 69 published studies including 75,274 cases and 10,3248 controls were focused on rs2736100, and 34 published studies including 14,046 cases and 18,362 controls were focused on rs2736098. The results showed a strong association between variant rs2736100 and cancer risk in all populations. (G vs. T: OR 1.18, 95% CI 1.12-1.24; TG+GG vs. TT: OR 1.23, 95% CI 1.15-1.31; GG vs. TG+TT: OR 1.25, 95% CI 1.16-1.36); the variant rs2736098 was associated with cancer risk in all populations as well (A vs. G: OR 1.13, 95% CI 1.05-1.22; GA+AA vs. GG: OR 1.15, 95% CI 1.04-1.27; AA vs. GA+GG: OR 1.22, 95% CI 1.10-1.38). Stratified analysis based on the cancer type indicated that rs2736100 was associated with an increased risk of thyroid cancer, bladder cancer, lung cancer, glioma, and myeloproliferative neoplasms. rs2736098 only increased the risk of bladder cancer and lung cancer. Moreover, the TERT variants rs2736100 and rs2736098 were associated with a decreased risk of breast cancer and colorectal cancer. The variants rs2736098 and rs2736100 located in 5p15.33 around TERT were associated with increased cancer risk in all populations. These two variants had bidirectional effects in different tumors.
Collapse
|
6
|
Yi X, Li W, Wang Y, Chen X, Ye F, Sun G, Chen J. The relationship between CHRNA5/A3/B4 gene cluster polymorphisms and lung cancer risk: An updated meta-analysis and systematic review. Medicine (Baltimore) 2021; 100:e24355. [PMID: 33578531 PMCID: PMC7886493 DOI: 10.1097/md.0000000000024355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Genetic polymorphisms in the 15q25 region have been associated with the risk of lung cancer (LC). However, studies have yielded conflicting results. METHODS Searches were conducted in databases, including PubMed, EMbase, Web of Science, CNKI, and Wanfang, for case-control studies up to August 1, 2019. After retrieving eligible studies and data extraction, we calculated pooled odds ratios with 95% confidence intervals. In the meta-analysis, we included 32 publications with a total of 52,795 patients with LC and 97,493 control cases to evaluate the polymorphisms in the CHRNA5/A3/B4 gene cluster in the 15q25 region. RESULTS Data of the meta-analysis showed a significantly increased risk of LC in the presence of genetic polymorphisms (rs1051730, rs16969968, rs8034191). In the smoking subgroup, the CHRNA3 rs1051730 polymorphism was found to contribute to LC risk using following 5 models: the allelic model, the homozygous model, the heterozygous model, the dominant model, and the recessive model. Thus, the rs1051730 polymorphism may modify LC susceptibility under the condition of smoking. Stratification studies for CHRNA5-rs8034191 showed that Caucasian groups with the wild-type genotype (C/C) may be susceptible to LC in all 5 models. No significant relationship between CHRNA3 rs6495309 or rs3743073 and LC susceptibility was found. However, Asians with the rs3743037 B-allele showed an obviously higher risk of LC susceptibility than the Caucasian population, observed via allelic, heterozygous, and dominant models. CONCLUSIONS The 3 polymorphisms of rs1051730, rs16969968 and rs8034191 in the CHRNA5/A3/B4 gene cluster in the 15q25 region were associated with LC risk, which might be influenced by ethnicity and smoking status.
Collapse
Affiliation(s)
- Xingxu Yi
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Wanzhen Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University
| | - Yiyuan Wang
- Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui
| | - Xueran Chen
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Fang Ye
- Department of Pathology and Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University
| | - Jingxian Chen
- National Clinical Research Center for Respiratory Diseases, Guangzhou Medical University & KingMed Diagnostics Inc., Guangzhou, China
| |
Collapse
|
7
|
Association of TERT, OGG1, and CHRNA5 Polymorphisms and the Predisposition to Lung Cancer in Eastern Algeria. Pulm Med 2020; 2020:7649038. [PMID: 32257438 PMCID: PMC7109590 DOI: 10.1155/2020/7649038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 01/22/2023] Open
Abstract
Lung cancer remains the most common cancer in the world. The genetic polymorphisms (rs2853669 in TERT, rs1052133 in OGG1, and rs16969968 in CHRNA5 genes) were shown to be strongly associated with the risk of lung cancer. Our study's aim is to elucidate whether these polymorphisms predispose Eastern Algerian population to non-small-cell lung cancer (NSCLC). To date, no study has considered this association in the Algerian population. This study included 211 healthy individuals and 144 NSCLC cases. Genotyping was performed using TaqMan probes and Sanger sequencing, and the data were analyzed using multivariate logistic regression adjusted for covariates. The minor allele frequencies (MAFs) of TERT rs2853669, CHRNA5 rs16969968, and OGG1 rs1052133 polymorphisms in controls were C: 20%, A: 31%, and G: 29%, respectively. Of the three polymorphisms, none shows a significant association, but stratified analysis rs16969968 showed that persons carrying the AA genotype are significantly associated with adenocarcinoma risk (pAdj = 0.03, ORAdj = 2.55). Smokers with an AA allele have a larger risk of lung cancer than smokers with GG or GA genotype (pAdj = 0.03, ORAdj = 3.91), which is not the case of nonsmokers. Our study suggests that CHRNA5 rs16969968 polymorphism is associated with a significant increase of lung adenocarcinoma risk and with a nicotinic addiction.
Collapse
|
8
|
Zhou W, Zhu W, Tong X, Ming S, Ding Y, Li Y, Li Y. CHRNA5 rs16969968 polymorphism is associated with lung cancer risk: A meta-analysis. CLINICAL RESPIRATORY JOURNAL 2020; 14:505-513. [PMID: 32049419 DOI: 10.1111/crj.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 02/08/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To evaluate the genetic association between rs16969968 and lung cancer risk by meta-analysis. DATA SOURCE We searched eligible studies from MEDLINE, Web of Science and EMBASE up to Dec, 2017. STUDY SELECTION Association studies concerning rs16969968 and lung cancer risk were included. We assessed the association strength between this polymorphism and risk of lung cancer by calculating odds ratios (OR) and 95% confidence interval (95%CI). RESULTS A total of 26 data sets comprising 30 772 lung cancers and 90 954 controls were included. rs16969968 was found to be associated with lung cancer risk in population of European ancestry in all models (A vs. G: OR = 1.30, 95%CI 1.27-1.33, P < 0.001; AA + GA vs. GG: OR = 1.38, 95%CI 1.33-1.43, P < 0.001; AA vs. GG + GA: OR = 1.45, 95%CI 1.38-1.53, P < 0.001), consistent with previous genome-wide association study (GWAS). However, no association was observed in Asians (A vs. G: OR = 1.19. 95%CI 0.95-1.49, P = 0.131). The minor allele A may increase the risk of lung cancer in both smokers (OR = 1.33, 95%CI 1.29-1.39, P < 0.001) and nonsmokers (OR = 1.25, 95%CI 1.12-1.39, P < 0.001). There was no obvious publication bias in all analyses. CONCLUSIONS Our analysis provided more evidence that rs16969968 is a susceptibility locus of lung cancer in the Caucasians and that it may be not associated with the risk in the Asians.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wenjie Zhu
- Department of Integrative Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xunliang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Shuhong Ming
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yong Ding
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
9
|
Ji X, Bossé Y, Landi MT, Gui J, Xiao X, Qian D, Joubert P, Lamontagne M, Li Y, Gorlov I, de Biasi M, Han Y, Gorlova O, Hung RJ, Wu X, McKay J, Zong X, Carreras-Torres R, Christiani DC, Caporaso N, Johansson M, Liu G, Bojesen SE, Le Marchand L, Albanes D, Bickeböller H, Aldrich MC, Bush WS, Tardon A, Rennert G, Chen C, Teare MD, Field JK, Kiemeney LA, Lazarus P, Haugen A, Lam S, Schabath MB, Andrew AS, Shen H, Hong YC, Yuan JM, Bertazzi PA, Pesatori AC, Ye Y, Diao N, Su L, Zhang R, Brhane Y, Leighl N, Johansen JS, Mellemgaard A, Saliba W, Haiman C, Wilkens L, Fernandez-Somoano A, Fernandez-Tardon G, van der Heijden EHFM, Kim JH, Dai J, Hu Z, Davies MPA, Marcus MW, Brunnström H, Manjer J, Melander O, Muller DC, Overvad K, Trichopoulou A, Tumino R, Doherty J, Goodman GE, Cox A, Taylor F, Woll P, Brüske I, Manz J, Muley T, Risch A, Rosenberger A, Grankvist K, Johansson M, Shepherd F, Tsao MS, Arnold SM, Haura EB, Bolca C, Holcatova I, Janout V, Kontic M, Lissowska J, Mukeria A, Ognjanovic S, Orlowski TM, Scelo G, Swiatkowska B, Zaridze D, Bakke P, Skaug V, Zienolddiny S, Duell EJ, Butler LM, Koh WP, Gao YT, Houlston R, McLaughlin J, Stevens V, Nickle DC, Obeidat M, Timens W, Zhu B, Song L, Artigas MS, Tobin MD, Wain LV, Gu F, Byun J, Kamal A, Zhu D, Tyndale RF, Wei WQ, Chanock S, Brennan P, Amos CI. Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 2018; 9:3221. [PMID: 30104567 PMCID: PMC6089967 DOI: 10.1038/s41467-018-05074-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
Collapse
Grants
- P30 CA023108 NCI NIH HHS
- P30 CA076292 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- R01 CA111703 NCI NIH HHS
- UM1 CA182876 NCI NIH HHS
- UL1 TR000117 NCATS NIH HHS
- P20 CA090578 NCI NIH HHS
- U19 CA148127 NCI NIH HHS
- P20 GM103534 NIGMS NIH HHS
- UL1 TR000445 NCATS NIH HHS
- R01 LM012012 NLM NIH HHS
- R01 CA092824 NCI NIH HHS
- R35 CA197449 NCI NIH HHS
- UM1 CA164973 NCI NIH HHS
- U01 CA167462 NCI NIH HHS
- U19 CA203654 NCI NIH HHS
- R01 CA144034 NCI NIH HHS
- P20 RR018787 NCRR NIH HHS
- S10 RR025141 NCRR NIH HHS
- R01 CA074386 NCI NIH HHS
- R01 CA176568 NCI NIH HHS
- K07 CA172294 NCI NIH HHS
- P50 CA119997 NCI NIH HHS
- G0902313 Medical Research Council
- R01 CA063464 NCI NIH HHS
- P01 CA033619 NCI NIH HHS
- R01 HL133786 NHLBI NIH HHS
- P30 CA177558 NCI NIH HHS
- P50 CA090578 NCI NIH HHS
- U01 HG004798 NHGRI NIH HHS
- R01 CA151989 NCI NIH HHS
- 001 World Health Organization
- 202849/Z/16/Z Wellcome Trust
- UM1 CA167462 NCI NIH HHS
- U01 CA164973 NCI NIH HHS
- This work was supported by National Institutes of Health (NIH) for the research of lung cancer (grant P30CA023108, P20GM103534 and R01LM012012); Trandisciplinary Research in Cancer of the Lung (TRICL) (grant U19CA148127); UICC American Cancer Society Beginning Investigators Fellowship funded by the Union for International Cancer Control (UICC) (to X.Ji). CAPUA study. This work was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03-0365, and FIS-07-BI060604, FICYT/Asturias grant numbers FICYT PB02-67 and FICYT IB09-133, and the University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber de Epidemiologia y Salud Pública. CIBERESP, SPAIN. The work performed in the CARET study was supported by the The National Institute of Health / National Cancer Institute: UM1 CA167462 (PI: Goodman), National Institute of Health UO1-CA6367307 (PIs Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National Institute of Health 5R01 CA151989-01A1(PI Doherty). The Liverpool Lung project is supported by the Roy Castle Lung Cancer Foundation. The Harvard Lung Cancer Study was supported by the NIH (National Cancer Institute) grants CA092824, CA090578, CA074386 The Multiethnic Cohort Study was partially supported by NIH Grants CA164973, CA033619, CA63464 and CA148127 The work performed in MSH-PMH study was supported by The Canadian Cancer Society Research Institute (020214), Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and G.L. and the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital Foundation. NJLCS was funded by the State Key Program of National Natural Science of China (81230067), the National Key Basic Research Program Grant (2011CB503805), the Major Program of the National Natural Science Foundation of China (81390543). Norway study was supported by Norwegian Cancer Society, Norwegian Research Council The Shanghai Cohort Study (SCS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The Singapore Chinese Health Study (SCHS) was supported by National Institutes of Health R01 CA144034 (PI: Yuan) and UM1 CA182876 (PI: Yuan). The work in TLC study has been supported in part the James & Esther King Biomedical Research Program (09KN-15), National Institutes of Health Specialized Programs of Research Excellence (SPORE) Grant (P50 CA119997), and by a Cancer Center Support Grant (CCSG) at the H. Lee Moffitt Cancer Center and Research Institute, an NCI designated Comprehensive Cancer Center (grant number P30-CA76292) The Vanderbilt Lung Cancer Study – BioVU dataset used for the analyses described was obtained from Vanderbilt University Medical Center’s BioVU, which is supported by institutional funding, the 1S10RR025141-01 instrumentation award, and by the Vanderbilt CTSA grant UL1TR000445 from NCATS/NIH. Dr. Aldrich was supported by NIH/National Cancer Institute K07CA172294 (PI: Aldrich) and Dr. Bush was supported by NHGRI/NIH U01HG004798 (PI: Crawford). The Copenhagen General Population Study (CGPS) was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The NELCS study: Grant Number P20RR018787 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). The MDACC study was supported in part by grants from the NIH (P50 CA070907, R01 CA176568) (to X. Wu), Cancer Prevention & Research Institute of Texas (RP130502) (to X. Wu), and The University of Texas MD Anderson Cancer Center institutional support for the Center for Translational and Public Health Genomics. The study in Lodz center was partially funded by Nofer Institute of Occupational Medicine, under task NIOM 10.13: Predictors of mortality from non-small cell lung cancer - field study. Kentucky Lung Cancer Research Initiative was supported by the Department of Defense [Congressionally Directed Medical Research Program, U.S. Army Medical Research and Materiel Command Program] under award number: 10153006 (W81XWH-11-1-0781). Views and opinions of, and endorsements by the author(s) do not reflect those of the US Army or the Department of Defense. This research was also supported by unrestricted infrastructure funds from the UK Center for Clinical and Translational Science, NIH grant UL1TR000117 and Markey Cancer Center NCI Cancer Center Support Grant (P30 CA177558) Shared Resource Facilities: Cancer Research Informatics, Biospecimen and Tissue Procurement, and Biostatistics and Bioinformatics. The Resource for the Study of Lung Cancer Epidemiology in North Trent (ReSoLuCENT) study was funded by the Sheffield Hospitals Charity, Sheffield Experimental Cancer Medicine Centre and Weston Park Hospital Cancer Charity. FT was supported by a clinical PhD fellowship funded by the Yorkshire Cancer Research/Cancer Research UK Sheffield Cancer Centre. The authors would like to thank the staff at the Respiratory Health Network Tissue Bank of the FRQS for their valuable assistance with the lung eQTL dataset at Laval University. The lung eQTL study at Laval University was supported by the Fondation de l’Institut universitaire de cardiologie et de pneumologie de Québec, the Respiratory Health Network of the FRQS, the Canadian Institutes of Health Research (MOP - 123369). Y.B. holds a Canada Research Chair in Genomics of Heart and Lung Diseases. The research undertaken by M.D.T., L.V.W. and M.S.A. was partly funded by the National Institute for Health Research (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.D.T. holds a Medical Research Council Senior Clinical Fellowship (G0902313).
Collapse
Affiliation(s)
- Xuemei Ji
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec, G1V 4G5, Canada
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiang Gui
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Xiangjun Xiao
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - David Qian
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Maxime Lamontagne
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, G1V 4G5, Canada
| | - Yafang Li
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ivan Gorlov
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Mariella de Biasi
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Younghun Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Olga Gorlova
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Robert Carreras-Torres
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, 02115, MA, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Herlev 2730, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200 København N, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Ringvej 75, Copenhagen, Herlev 2730, Denmark
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
| | - William S Bush
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37203, TN, USA
- Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Adonina Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Chu Chen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - M Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, S1 4DA, UK
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Lambertus A Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, 99210-1495, WA, USA
| | - Aage Haugen
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Stephen Lam
- British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z1L3, Canada
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, FL, USA
| | - Angeline S Andrew
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, 1 Gwanak-ro, Gwanak-gu, Seoul, 151 742, Republic of Korea
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Pier A Bertazzi
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Angela C Pesatori
- Department of Preventive Medicine, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, Milan, 20133, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, 20133, Italy
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Nancy Diao
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
| | - Ruyang Zhang
- Department of Environmental Health, Harvard School of Public Health, Boston, 02115, MA, USA
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, M5T 3L9, Canada
| | - Natasha Leighl
- University Health Network-The Princess Margaret Cancer Centre, 600 University Avenue, Toronto, M5G 2C4, Canada
| | - Jakob S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Anders Mellemgaard
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark
| | - Walid Saliba
- Clalit National Cancer Control Center, Carmel Medical Center, Haifa, 34361, Israel
- Faculty of Medicine, Technion, Haifa, 34361, Israel
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, CA, USA
| | - Lynne Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Ana Fernandez-Somoano
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Guillermo Fernandez-Tardon
- Faculty of Medicine, University of Oviedo, Oviedo, 33006, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Campus del Cristo s/n, Oviedo, 33006, Spain
| | - Erik H F M van der Heijden
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, 6525 EZ, The Netherlands
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Nanjing, 211166, PR China
| | - Michael P A Davies
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Michael W Marcus
- Roy Castle Lung Cancer Research Programme, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK
| | - Hans Brunnström
- Department of Pathology, Lund University, Lund, 222 41, Sweden
| | - Jonas Manjer
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - Olle Melander
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | - David C Muller
- School of Public Health, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Kim Overvad
- Faculty of Medicine, Lund University, Lund, 22100, Sweden
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, "Civic-M.P. Arezzo" Hospital, ASP, Ragusa, 97100, Italy
| | - Jennifer Doherty
- Department of Epidemiology, Geisel School of Medicine, 1 Medical Center Drive, Hanover, 03755, NH, USA
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
| | - Gary E Goodman
- Fred Hutchinson Cancer Research Center, Seattle, 98109-1024, WA, USA
- Swedish Medical Group, Arnold Pavilion, Suite 200, Seattle, 98104, WA, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Penella Woll
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Irene Brüske
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Judith Manz
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, D-85764, Germany
| | - Thomas Muley
- Thoraxklinik at University Hospital Heidelberg, Heidelberg, 69126, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, 69120, Germany
| | - Angela Risch
- Cancer Cluster Salzburg, University of Salzburg, Salzburg, 5020, Austria
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, 901 85, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umeå, 901 85, Sweden
| | | | | | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, First Floor, 800 Rose Street, Lexington, 40508, KY, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, KY, USA
| | - Ciprian Bolca
- Institute of Pneumology "Marius Nasta", Bucharest, RO-050159, Romania
| | - Ivana Holcatova
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Vladimir Janout
- 1st Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08 Praha 2, Czech Republic
| | - Milica Kontic
- Clinical Center of Serbia, Clinic for Pulmonology, School of Medicine, University of Belgrade, Belgrade, 11000, Serbia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Institute-Oncology Center, Warsaw, 02-781, Poland
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, 11070, Serbia
| | - Tadeusz M Orlowski
- Department of Surgery, National Tuberculosis and Lung Diseases Research Institute, Warsaw, PL-01-138, Poland
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, 91-348, Poland
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Vidar Skaug
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, 0033, Gydas vei 8, 0033, Oslo, Norway
| | - Eric J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, 08908, Spain
| | - Lesley M Butler
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, 119077, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, 2200, China
| | | | | | | | - David C Nickle
- Department of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, 02115-5727, MA, USA
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, St Paul's Hospital, The University of British Columbia, Vancouver, V6Z 1Y6, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, GRIAC, University of Groningen, University Medical Center Groningen, Groningen, NL - 9713 GZ, The Netherlands
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - María Soler Artigas
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Unit, National Institute for Health Research (NIHR), Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Fangyi Gu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jinyoung Byun
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Ahsan Kamal
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Dakai Zhu
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, ON, Canada
| | - Wei-Qi Wei
- Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 CEDEX 08, France
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03750, NH, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, 77030, TX, USA.
| |
Collapse
|
10
|
The TERT rs2736100 polymorphism increases cancer risk: A meta-analysis. Oncotarget 2018; 8:38693-38705. [PMID: 28418878 PMCID: PMC5503564 DOI: 10.18632/oncotarget.16309] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
Abnormal telomerase activity is implicated in cancer initiation and development. The rs2736100 T > G polymorphism in the telomerase reverse transcriptase (TERT) gene, which encodes the telomerase catalytic subunit, has been associated with increased cancer risk. We conducted a meta-analysis to more precisely assess this association. After a comprehensive literature search of the PubMed and EMBASE databases up to November 1, 2016, 61 articles with 72 studies comprising 108,248 cases and 161,472 controls were included in our meta-analysis. Studies were conducted on various cancer types. The TERT rs2736100 polymorphism was associated with increased overall cancer risk in five genetic models [homozygous model (GG vs. TT): odds ratio (OR) = 1.39, 95% confidence interval (95% CI) = 1.26-1.54, P < 0.001; heterozygous model (TG vs. TT): OR = 1.16, 95% CI = 1.11-1.23, P < 0.001; dominant model (TG + GG vs. TT): OR = 1.23, 95% CI = 1.15-1.31, P < 0.001; recessive model (GG vs. TG + TT): OR = 1.25, 95% CI = 1.16-1.35, P < 0.001; and allele contrast model (G vs. T): OR = 1.17, 95% CI = 1.12-1.23, P < 0.001]. A stratified analysis based on cancer type associated the polymorphism with elevated risk of thyroid cancer, bladder cancer, lung cancer, glioma, myeloproliferative neoplasms, and acute myeloid leukemia. Our results confirm that the TERT rs2736100 polymorphism confers increased overall cancer risk.
Collapse
|
11
|
Zhou M, Jiang B, Xiong M, Zhu X. Association Between TERT rs2736098 Polymorphisms and Cancer Risk-A Meta-Analysis. Front Physiol 2018; 9:377. [PMID: 29695979 PMCID: PMC5905241 DOI: 10.3389/fphys.2018.00377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Cancer remains a leading cause of death and constitutes an enormous burden on society worldwide. The association between the human telomerase reverse transcriptase (TERT) gene variant rs2736098 polymorphisms and cancer predisposition remain inconclusive. Objective and methods: Databases including Pubmed and Embase were systematically searched from inception to September 15, 2017 to retrieve studies investigating the association between the TERT variant rs2736098 polymorphisms and cancer risk in accordance with previously determined exclusion and inclusion criteria. The pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were evaluated using random or fixed effects models. Results: Thirty-one case-control studies from 29 articles with 15,837 cases and 19,263 controls were screened out after a systematic search. Pooled analysis demonstrated that the TERT variant rs2736098 G > A polymorphism was significantly correlated with cancer risk in all populations (A vs. G: OR = 1.134, 95% CI = 1.051-1.224, P = 0.001; AA vs. GG: OR = 1.280, 95% CI = 1.087-1.508, P = 0.003; GA vs. GG: OR = 1.125, 95% CI = 1.020-1.240, P = 0.018; GA/AA vs. GG: OR = 1.159, 95% CI = 1.047-1.283, P = 0.004). In the subgroup analysis based on cancer type, the TERT rs2736098 with the A allele was 1.299 times more frequent than that with the G allele (OR = 1.299, 95% CI = 1.216-1.386) under the allelic genetic model in lung cancer, and 1.152 times (OR = 1.152, 95% CI = 1.032-1.286) that in bladder cancer. Conclusions: This meta-analysis demonstrated significant correlations between the TERT variant rs2736098 polymorphisms and cancer susceptibility. The A allele in the rs2736098 G > A polymorphism contributes to susceptibility in many types of cancer, especially lung cancer and bladder cancer.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Jiang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mao Xiong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Li D, Zhang R, Jin T, He N, Ren L, Zhang Z, Zhang Q, Xu R, Tao H, Zeng G, Gao J. ADH1B and CDH1 polymorphisms predict prognosis in male patients with non-metastatic laryngeal cancer. Oncotarget 2018; 7:73216-73228. [PMID: 27689323 PMCID: PMC5341974 DOI: 10.18632/oncotarget.12301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
In this study, we assessed the association between single nucleotide polymorphisms (SNPs) in candidate genes and the prognosis of laryngeal cancer (LC) patients. Thirty-seven SNPs in 26 genes were genotyped in 170 male Han Chinese patients with LC. The effects of the candidate genes on the prognosis of LC patients were evaluated using Kaplan-Meier curves and Cox proportional hazards regression models. The GA genotype of rs1229984 (hazard ratio [HR], 0.537; 95% confidence interval [CI], 0.340-0.848; p = 0.008) in alcohol dehydrogenase 1B (ADH1B), and the AA genotype of rs9929218 (HR, 6.074; 95% CI, 1.426-25.870; p = 0.015) in CDH1 were associated with overall survival. Our data suggest that polymorphisms in ADH1B and CDH1 may be prognostic indicators in LC.
Collapse
Affiliation(s)
- Daxu Li
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ruizhi Zhang
- Department of Stomatology, Ankang Central Hospital, Ankang 725000, Shaanxi
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Na He
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Le Ren
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Zhe Zhang
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Qingna Zhang
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ran Xu
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hong Tao
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Guang Zeng
- Department of Plastic and Burn Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
13
|
Snetselaar R, van Oosterhout MFM, Grutters JC, van Moorsel CHM. Telomerase Reverse Transcriptase Polymorphism rs2736100: A Balancing Act between Cancer and Non-Cancer Disease, a Meta-Analysis. Front Med (Lausanne) 2018. [PMID: 29536006 PMCID: PMC5835035 DOI: 10.3389/fmed.2018.00041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enzyme telomerase reverse transcriptase (TERT) is essential for telomere maintenance. In replicating cells, maintenance of telomere length is important for the preservation of vital genetic information and prevention of genomic instability. A common genetic variant in TERT, rs2736100 C/A, is associated with both telomere length and multiple diseases. Carriage of the C allele is associated with longer telomere length, while carriage of the A allele is associated with shorter telomere length. Furthermore, some diseases have a positive association with the C and some with the A allele. In this study, meta-analyses were performed for two groups of diseases, cancerous diseases, e.g., lung cancer and non-cancerous diseases, e.g., pulmonary fibrosis, using data from genome-wide association studies and case-control studies. In the meta-analysis it was found that cancer positively associated with the C allele (pooled OR 1.16 [95% CI 1.09–1.23]) and non-cancerous diseases negatively associated with the C allele (pooled OR 0.81 [95% CI 0.65–0.99]). This observation illustrates that the ambiguous role of telomere maintenance in disease hinges, at least in part, on a single locus in telomerase genes. The dual role of this single nucleotide polymorphism also emphasizes that therapeutic agents aimed at influencing telomere maintenance should be used with caution.
Collapse
Affiliation(s)
- Reinier Snetselaar
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Matthijs F M van Oosterhout
- Interstitial Lung Diseases Center of Excellence, Department of Pathology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Jan C Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Tang J, Hu C, Mei H, Peng L, Li H. CLPTM1L gene rs402710 (C > T) and rs401681 (C > T) polymorphisms associate with decreased cancer risk: a meta-analysis. Oncotarget 2017; 8:102446-102457. [PMID: 29254260 PMCID: PMC5731970 DOI: 10.18632/oncotarget.22268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
Cleft lip and palate transmembrane 1-like (CLPTM1L) gene rs402710 (C > T) and rs401681 (C > T) polymorphisms have been widely studied for their potential relation to cancer risk, but studies have produced conflicting results. To systematically evaluate the association between these two polymorphisms and overall cancer risk, we conducted a comprehensive meta-analysis on all relevant articles found in the PubMed and EMBASE databases published prior to May 1, 2017. There were 26 articles with 28 studies, including 30,770 cases and 34,089 controls, for the rs402710 polymorphism and 38 articles with 48 studies, including 67,849 cases and 328,226 controls, for the rs401681 polymorphism. The pooled results indicated that both rs402710 and rs401681 polymorphisms are significantly associated with decreased overall cancer risk. In our stratification analysis, a significant association of the rs402710 polymorphism with lung and bladder cancers was identified among Asian and Caucasian populations in both hospital-based and population-based studies. The rs401681 polymorphism was significantly associated with a decreased risk of lung cancer, bladder cancer, and basal cell carcinoma in Asians and in hospital-based studies. CLPTM1L gene rs402710 and rs401681 polymorphisms thus have a protective association with various types of cancer, especially lung cancer among Asians.
Collapse
Affiliation(s)
- Jianzhou Tang
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China
| | - Changming Hu
- Department of Molecular Pathology, Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou 510000, Guangdong, China
| | - Hua Mei
- Department of Somatic Stem Cell, Hunan Guangxiu Hospital, Changsha 410002, Hunan, China
| | - Liang Peng
- Department of Biological and Environmental Engineering, Changsha University, Changsha 410003, Hunan, China
| | - Hui Li
- Department of Microbiology and Immunology, Medical School of Jishou University, Jishou 416000, Hunan, China
| |
Collapse
|
15
|
Liu C, Cui H, Gu D, Zhang M, Fang Y, Chen S, Tang M, Zhang B, Chen H. Genetic polymorphisms and lung cancer risk: Evidence from meta-analyses and genome-wide association studies. Lung Cancer 2017; 113:18-29. [PMID: 29110844 DOI: 10.1016/j.lungcan.2017.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 01/30/2023]
Abstract
A growing number of studies investigating the association between Single Nucleotide Polymorphisms (SNPs) and lung cancer risk have been published since over a decade ago. An updated integrative assessment on the credibility and strength of the associations is required. We searched PubMed, Medline, and Web of Science on or before August 29th, 2016. A total of 198 articles were deemed eligible for inclusion, which addressed the associations between 108 variants and lung cancer. Among the 108 variants, 63 were reported to be significantly associated with lung cancer while the remaining 45 were reported non-significant. Further evaluation integrating the Venice Criteria and false-positive report probability (FPRP) was performed to determine the strength of cumulative epidemiological evidence for the 63 significant associations. As a result, 15 SNPs on or near 12 genes and one miRNA with strong evidence of association with lung cancer risk were identified, including TERT (rs2736098), CHRNA3 (rs1051730), AGPHD1 (rs8034191), CLPTM1L (rs401681 and rs402710), BAT3 (rs3117582), TRNAA (rs4324798), ERCC2 (Lys751Gln), miR-146a2 (rs2910164), CYP1B1 (Arg48Gly), GSTM1 (null/present), SOD2 (C47T), IL-10 (-592C/A and -819C/T), and TP53 (intron 6). 19 SNPs were given moderate rating and 17 SNPs were rated as having weak evidence. In addition, all of the 29 SNPs identified in 12 genome-wide association studies (GWAS) were proved to be noteworthy based on FPRP value. This review summarizes and evaluates the cumulative evidence of genetic polymorphisms and lung cancer risk, which can serve as a general and useful reference for further genetic studies.
Collapse
Affiliation(s)
- Caiyang Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cui
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dongqing Gu
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yanfei Fang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Siyu Chen
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mingshuang Tang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ben Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
16
|
Xu ZW, Wang GN, Dong ZZ, Li TH, Cao C, Jin YH. CHRNA5 rs16969968 Polymorphism Association with Risk of Lung Cancer - Evidence from 17,962 Lung Cancer Cases and 77,216 Control Subjects. Asian Pac J Cancer Prev 2015; 16:6685-90. [DOI: 10.7314/apjcp.2015.16.15.6685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Zhang L, Jin TB, Gao Y, Wang HJ, Yang H, Feng T, Chen C, Kang LL, Chen C. Meta-analysis of the association between the rs8034191 polymorphism in AGPHD1 and lung cancer risk. Asian Pac J Cancer Prev 2015; 16:2713-7. [PMID: 25854352 DOI: 10.7314/apjcp.2015.16.7.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Possible associations between the single nucleotide polymorphism (SNP) rs8034191 in the aminoglycosidephosphotransferase domain containing 1 (AGPHD1) gene and lung cancer risk have been studied by many researchers but the results have been contradictory. MATERIALS AND METHODS A computerized search for publications on rs8034191 and lung cancer risk was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association between rs8034191 and lung cancer risk with 13 selected case-control studies. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were also performed. RESULTS A significant association between rs8034191 and lung cancer susceptibility was found using the dominant genetic model (OR=1.344, 95% CI: 1.285-1.406), the additive genetic model (OR=1.613, 95% CI: 1.503-1.730), and the recessive genetic model (OR=1.408, 95% CI: 1.319-1.503). Moreover, an increased lung cancer risk was found with all genetic models after stratification of ethnicity. CONCLUSIONS The association between rs8034191 and lung cancer risk was significant using multiple genetic models, suggesting that rs8034191 is a risk factor for lung cancer. Further functional studies of this polymorphism and lung cancer risk are warranted.
Collapse
Affiliation(s)
- Le Zhang
- School of Life Sciences, Northwest University, Xi'an, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yu PJ, Chen WG, Feng QL, Chen W, Jiang MJ, Li ZQ. Association between CYP1B1 gene polymorphisms and risk factors and susceptibility to laryngeal cancer. Med Sci Monit 2015; 21:239-45. [PMID: 25619313 PMCID: PMC4307736 DOI: 10.12659/msm.893084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to investigate the association between polymorphism of the cytochrome P450 1B1 (CYP1B1) gene, a metabolic enzyme gene, and the susceptibility to laryngeal cancer among the Chinese Han population. Material/Methods In a case-control study, we investigated polymorphisms in the CYP1B1 gene (rs10012, rs1056827, and rs1056836) with a real-time quantitative polymerase chain reaction (PCR) assay (TaqMan). The study was conducted with 300 Chinese Han patients with laryngeal cancer and 300 healthy Chinese Han subjects in a control group. We also studied the interactions between genetic polymorphism and risk factors such as smoking and alcohol consumption in the pathogenesis of laryngeal cancer. Results There were statistically significant differences in the distributions of the rs1056827 and rs1056836 genotypes between the 2 groups. Regarding rs1056827, carriers of the T allele had a significantly higher risk of laryngeal cancer than the G-allele carriers (OR=1.4339, 95% CI: 1.1268–1.8247; P=0.0034). The difference was still statistically significant after adjusting for factors such as age, sex, smoking, and drinking (adjusted OR=1.743, 95% CI: 1.124–3.743, P<0.001). However, regarding rs1056836, the G allele carriers had a significantly lower risk of laryngeal cancer than the C allele carriers (OR=0.5557, 95% CI: 0.3787–0.8154; P=0.0027). The difference was statistically significant even after adjusting for factors such as age, sex, smoking, and drinking (adjusted OR=0.5641, 95% CI: 0.3212–0.8121, P=0.001). Subjects who carry the C-T-C haplotype have a significantly increased incidence of laryngeal cancer. We also found that CYP1B1 rs1056827 polymorphism had synergistic effects with smoking or alcohol consumption regarding the risk of laryngeal cancer. Conclusions CYP1B1 gene polymorphism is closely related to the onset of laryngeal cancer. There is a mutually synergistic effect between smoking, alcohol consumption, and CYP1B1 gene polymorphisms regarding laryngeal cancer.
Collapse
Affiliation(s)
- Peng-Ju Yu
- Department of Otolaryngology, Jiangsu Province Academy of Traditional Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| | - Wei-Guan Chen
- Operation Room, Jiangsu Province Academy of Traditional Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| | - Quan-Lin Feng
- Department of Tumor Surgical, Jiangsu Province Academy of Traditional Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| | - Wei Chen
- Department of Otolaryngology - Head and Neck Surgery, Jiangsu Province Academy of Traditional Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| | - Man-Jie Jiang
- Department of Otolaryngology - Head and Neck Surgery, Jiangsu Province Academy of Traditional Chinese Medicine, Kunshan, Jiangsu, China (mainland)
| | - Ze-Qing Li
- Department of Otolaryngology - Head and Neck Surgery, China Jiangsu Province Traditional Chinese Medicine Hospital, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
19
|
Contribution of Variants in CHRNA5/A3/B4 Gene Cluster on Chromosome 15 to Tobacco Smoking: From Genetic Association to Mechanism. Mol Neurobiol 2014; 53:472-484. [PMID: 25471942 DOI: 10.1007/s12035-014-8997-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Cigarette smoking is the major cause of preventable death and morbidity throughout the world. Many compounds are present in tobacco, but nicotine is the primary addictive one. Nicotine exerts its physiological and pharmacological roles in the brain through neuronal nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels consisting of five membrane-spanning subunits that can modulate the release of neurotransmitters, such as dopamine, glutamate, and GABA and mediate fast signal transmission at synapses. Considering that there are 12 nAChR subunits, it is highly likely that subunits other than α4 and β2, which have been intensively investigated, also are involved in nicotine addiction. Consistent with this hypothesis, a number of genome-wide association studies (GWAS) and subsequent candidate gene-based associated studies investigating the genetic variants associated with nicotine dependence (ND) and smoking-related phenotypes have shed light on the CHRNA5/A3/B4 gene cluster on chromosome 15, which encodes the α5, α3, and β4 nAChR subunits, respectively. These studies demonstrate two groups of risk variants in this region. The first one is marked by single nucleotide polymorphism (SNP) rs16969968 in exon 5 of CHRNA5, which changes an aspartic acid residue into asparagine at position 398 (D398N) of the α5 subunit protein sequence, and it is tightly linked SNP rs1051730 in CHRNA3. The second one is SNP rs578776 in the 3'-untranslated region (UTR) of CHRNA3, which has a low correlation with rs16969968. Although the detailed molecular mechanisms underlying these associations remain to be further elucidated, recent findings have shown that α5* (where "*" indicates the presence of additional subunits) nAChRs located in the medial habenulo-interpeduncular nucleus (mHb-IPN) are involved in the control of nicotine self-administration in rodents. Disruption of α5* nAChR signaling diminishes the aversive effects of nicotine on the mHb-IPN pathway and thereby permits more nicotine consumption. To gain a better understanding of the function of the highly significant genetic variants identified in this region in controlling smoking-related behaviors, in this communication, we provide an up-to-date review of the progress of studies focusing on the CHRNA5/A3/B4 gene cluster and its role in ND.
Collapse
|
20
|
Association between CLPTM1L polymorphisms (rs402710 and rs401681) and lung cancer susceptibility: evidence from 27 case–control studies. Mol Genet Genomics 2014; 289:1001-12. [DOI: 10.1007/s00438-014-0868-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023]
|
21
|
Zhu KJ, Quan C, Zhang C, Liu Z, Liu H, Li M, Li SJ, Zhu CY, Shi G, Li KS, Fan YM. Combined effect between CHRNB3-CHRNA6 region gene variant (rs6474412) and smoking in psoriasis vulgaris severity. Gene 2014; 544:123-7. [PMID: 24792900 DOI: 10.1016/j.gene.2014.04.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/22/2014] [Accepted: 04/29/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Many factors associated with causing psoriasis have been reported, such as the genetic and environmental factors. Smoking is one of the well-established environmental risk factors for psoriasis and also associated with the disease severity. In addition, several studies of psoriasis and psoriatic arthritis have documented gene-environment interactions involving smoking behavior. Although gene polymorphisms on nicotinic acetylcholine receptor subunits CHRNB3-CHRNA6 region gene have been found to correlate with smoking behavior and lung cancer susceptibility in Chinese Han population, the combined effect between the smoking-related genetic variants and smoking behavior on psoriasis vulgaris (PV) has been unreported. OBJECTIVE To evaluate the combined effect of the smoking-related (rs6474412-C/T) polymorphism on CHRNB3-CHRNA6 region gene and smoking behavior on PV risk and clinic traits in Chinese Han population. METHODS A hospital-based case-control study including 672 subjects (355 PV cases and 317 controls) was conducted. The variant of rs6474412 was typed by SNaPshot Multiplex Kit (Applied Biosystems Co., USA). RESULTS The higher body mass index (BMI≥25), smoking behavior and alcohol consumption were risk factors for PV, and the estimated ORs were 1.55 (95% CI, 1.09-2.29), 1.74 (95% CI, 1.22-2.49) and 1.81 (95% CI, 1.25-2.62) respectively. The smoking patients had more severe conditions than non-smokers (OR=1.71, 95% CI, 1.08-2.70, P=0.020). The alleles and genotypes of rs6474412 were not associated with risk of PV, but the combined effect of rs6474412 genotype (TT) and smoking behavior increased severity of PV (OR=5.95; 95% CI, 1.39-25.31; P<0.05; adjusted OR=2.20; 95% CI, 1.55-3.14; P<0.001). CONCLUSIONS Our results demonstrate that the combined effect of rs6474412-C/T polymorphism in smoking-related CHRNB3-CHRNA6 region gene and smoking behavior may not confer risk to PV, but may have impact on PV severity in Chinese Han population.
Collapse
Affiliation(s)
- Kun-Ju Zhu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China.
| | - Cheng Quan
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Chi Zhang
- Department of Dermatology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Zhong Liu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Huan Liu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shi-Jie Li
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Cheng-Yao Zhu
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ge Shi
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ke-Shen Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | - Yi-Ming Fan
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| |
Collapse
|
22
|
Azad AK, Qiu X, Boyd K, Kuang Q, Emami M, Perera N, Palepu P, Patel D, Chen Z, Cheng D, Feld R, Leighl NB, Shepherd FA, Tsao MS, Xu W, Liu G, Cuffe S. A genetic sequence variant (GSV) at susceptibility loci of 5p15.33 (TERT-CLPTM1L) is associated with survival outcome in locally advanced and metastatic non-small-cell lung cancer (NSCLC). Lung Cancer 2014; 84:289-94. [PMID: 24679952 DOI: 10.1016/j.lungcan.2014.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is a leading cause of cancer-related mortality in North America. In addition to tobacco smoking, inherited genetic factors can also influence the development of lung cancer. These genetic factors may lead to biologically distinct subsets of cancers that have different outcomes. We evaluated whether genetic sequence variants (GSVs) associated with lung cancer risk are associated with overall survival (OS) and progression-free survival (PFS) in stage-III-IV non-small-cell lung cancer (NSCLC) patients. METHODS A total of 20 candidate GSVs in 12 genes previously reported to be associated with lung cancer risk were genotyped in 564 patients with stage-III or IV NSCLC. Multivariate Cox proportional hazard models adjusted for potential clinical prognostic factors were generated for OS and PFS. RESULTS After taking into account multiple comparisons, one GSV remained significant: rs4975616 on chromosome 5p15.33, located near the TERT-CLPTM1L gene. The adjusted hazard ratio (aHR) for OS was 0.75 (0.69-0.91), p = 0.002; for PFS aHR was 0.74 (0.62-0.89), p < 0.001 for each protective variant allele. Results were similar in both Stage III (OS: aHR = 0.70; PFS: aHR = 0.71) and Stage IV patients (OS: aHR = 0.81; PFS: aHR = 0.77). CONCLUSION A GSV on 5p15.33 is not only a risk factor for lung cancer but may also be associated with survival in patients with late stage NSCLC. If validated, GSVs may define subsets of patients with different risk and prognosis of NSCLC.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xin Qiu
- Department of Biostatistics, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Boyd
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Qin Kuang
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marjan Emami
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Perera
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Prakruthi Palepu
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Devalben Patel
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zhuo Chen
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dangxiao Cheng
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Feld
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Natasha B Leighl
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Pathology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Ontario, Canada.
| | - Sinead Cuffe
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center/University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Wu H, Zhu R. Quantitative assessment of common genetic variants on chromosome 5p15 and lung cancer risk. Tumour Biol 2014; 35:6055-63. [PMID: 24615522 DOI: 10.1007/s13277-014-1802-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/25/2014] [Indexed: 01/17/2023] Open
Abstract
Several genome-wide association studies on lung cancer (LC) have reported similar findings of a new susceptibility locus, 5p15. After that, a number of studies reported that the rs2736100, rs401681, rs402710, and rs31489 polymorphisms at chromosome 5p15 have been implicated in LC risk. However, the studies have yielded contradictory results. To derive a more precise estimation of the relationship, we performed this meta-analysis. Databases including MEDLINE, PubMed, EMBASE, ISI Web of Science, and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of association. The random effect model was applied, addressing heterogeneity and publication bias. A total of 31 articles involving 72,401 cases and 141,258 controls were included. Overall, significantly elevated LC risk was associated with rs2736100, rs401681, rs402710, and rs31489 polymorphisms when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, sample size, histology, sex, and smoking behavior, significantly increased risks were also detected for these polymorphisms. Our findings demonstrated that these common variations at 5p15 are a risk factor associated with increased LC susceptibility. However, these associations vary between different ethnicity.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People's Republic of China,
| | | |
Collapse
|
24
|
Anantharaman D, Chabrier A, Gaborieau V, Franceschi S, Herrero R, Rajkumar T, Samant T, Mahimkar MB, Brennan P, McKay JD. Genetic variants in nicotine addiction and alcohol metabolism genes, oral cancer risk and the propensity to smoke and drink alcohol: a replication study in India. PLoS One 2014; 9:e88240. [PMID: 24505444 PMCID: PMC3914962 DOI: 10.1371/journal.pone.0088240] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/08/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Genetic variants in nicotinic acetylcholine receptor and alcohol metabolism genes have been associated with propensity to smoke tobacco and drink alcohol, respectively, and also implicated in genetic susceptibility to head and neck cancer. In addition to smoking and alcohol, tobacco chewing is an important oral cancer risk factor in India. It is not known if these genetic variants influence propensity or oral cancer susceptibility in the context of this distinct etiology. METHODS We examined 639 oral and pharyngeal cancer cases and 791 controls from two case-control studies conducted in India. We investigated six variants known to influence nicotine addiction or alcohol metabolism, including rs16969968 (CHRNA5), rs578776 (CHRNA3), rs1229984 (ADH1B), rs698 (ADH1C), rs1573496 (ADH7), and rs4767364 (ALDH2). RESULTS The CHRN variants were associated with the number of chewing events per day, including in those who chewed tobacco but never smoked (P = 0.003, P = 0.01 for rs16969968 and rs578776 respectively). Presence of the variant allele contributed to approximately 13% difference in chewing frequency compared to non-carriers. While no association was observed between rs16969968 and oral cancer risk (OR = 1.01, 95% CI = 0.83- 1.22), rs578776 was modestly associated with a 16% decreased risk of oral cancer (OR = 0.84, 95% CI = 0.72- 0.98). There was little evidence for association between polymorphisms in genes encoding alcohol metabolism and oral cancer in this population. CONCLUSION The association between rs16969968 and number of chewing events implies that the effect on smoking propensity conferred by this gene variant extends to the use of smokeless tobacco.
Collapse
Affiliation(s)
- Devasena Anantharaman
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Amélie Chabrier
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - Valérie Gaborieau
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Silvia Franceschi
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Rolando Herrero
- Prevention and Implementation Group, International Agency for Research on Cancer, Lyon, France
| | | | - Tanuja Samant
- Mahimkar Lab, Advanced Center for Treatment Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Manoj B. Mahimkar
- Mahimkar Lab, Advanced Center for Treatment Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - James D. McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
25
|
Association between TERT rs2736100 polymorphism and lung cancer susceptibility: evidence from 22 case-control studies. Tumour Biol 2014; 35:4435-42. [PMID: 24390616 DOI: 10.1007/s13277-013-1583-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
The 5p15.33 locus has been recently identified to associate with multiple cancer types including lung, urinary bladder, prostate, and cervical cancer, based on its critical role in the maintenance of telomere, chromosome stability, and ultimately preventing normal cell malignance. TERT (human telomerase reverse transcriptase) is an attractive candidate gene for the 5p15.33 locus. Recently, a number of case-control studies have been carried out to investigate the relationship between the rs2736100 polymorphism in TERT and genetic susceptibility to lung cancer. However, the results have been inconclusive. To investigate this inconsistency and derive a more precise estimation of the relationship, we conducted a comprehensive meta-analysis of 56,223 cases and 86,680 controls from 22 published studies. Using the random-effects model, we found a significant association between rs2736100 polymorphism and lung cancer risk with per-allele OR of 1.20 (95% CI, 1.16-1.23; P < 10(-5)). Significant results were also observed using dominant and recessive genetic model. Significant results were found in East Asians and Caucasians when stratified by ethnicity in all genetic models. In addition, our data indicate that rs2736100 is involved in lung cancer susceptibility and confer its effect primarily in adenocarcinoma in the subgroup analyses by histological subtype. In the stratified analysis according to sample size, smoking behavior, sex, and age, risks significantly increased for the polymorphism. In conclusion, this meta-analysis demonstrated that TERT rs2736100 polymorphism is a risk factor associated with increased lung cancer susceptibility, particularly for lung adenocarcinoma.
Collapse
|
26
|
Ren JH, Jin M, He WS, Liu CW, Jiang S, Chen WH, Yang KY, Wu G, Zhang T. Association between CHRNA3 rs1051730 genotype and lung cancer risk in Chinese Han population: a case-control study. ACTA ACUST UNITED AC 2013; 33:897-901. [PMID: 24337855 DOI: 10.1007/s11596-013-1218-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 11/06/2013] [Indexed: 01/01/2023]
Abstract
Recent population-based genome wide association studies have revealed potential susceptibility loci of lung cancer at the region of chromosome 15q25.1 containing nicotinic acetylcholine receptor genes. The loci increasing lung cancer risk has been widely identified in Caucasians, but whether this association also exists in Asians and whether this association is a direct role or mediated via tobacco smoking indirectly has not been fully established. We conducted a case-control study comprising of 210 histologically confirmed lung cancer cases and 200 healthy controls to examine rs1051730 genotyping, a single nucleotide polymorphism receiving much attention recently, and its influence on lung cancer risk as well as nicotine dependence in a Chinese Han population. Our results showed that the heterozygous C/T genotype and minor allele T conferred a significant higher risk of lung cancer than the CC homozygotes and allele C (adjusted OR=2.25, 95% CI=1.04-4.89, P=0.040 and OR=2.18, 95% CI=1.02-4.67, P=0.045 respectively). However, no association between the smoking habit and the CHRNA3 rs1051730 polymorphism was observed in this study. The results suggested that the rs1051730 polymorphism may modify susceptibility to lung cancer via a smoking-independent manner among Chinese Han population. Additional studies in vitro and in vivo are warranted to further elucidate the impact of rs1051730 on lung cancer susceptibility.
Collapse
Affiliation(s)
- Jing-Hua Ren
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Jin
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Shan He
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cui-Wei Liu
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shun Jiang
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei-Hong Chen
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun-Yu Yang
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhang
- Cancer Center, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
27
|
Hu B, Huang Y, Yu RH, Mao HJ, Guan C, Zhao J. Quantitative assessment of the influence of common variations (rs8034191 and rs1051730) at 15q25 and lung cancer risk. Tumour Biol 2013; 35:2777-85. [PMID: 24254305 DOI: 10.1007/s13277-013-1369-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023] Open
Abstract
Several genome-wide association studies on lung cancer (LC) have reported similar findings of a new susceptibility locus, 15q25. After that, a number of studies reported that rs8034191 and rs1051730 polymorphisms at chromosome 15q25 have been implicated in LC risk. However, studies have yielded contradictory results. To derive a more precise estimation of the relationship, a meta-analysis of 43,742 LC cases and 58,967 controls from 17 published case-control studies was performed. Overall, significantly elevated LC risk was associated with rs8034191-C (OR = 1.26, 95% CI 1.22-1.31, P < 10(-5)) and rs105173-A variant (OR = 1.28, 95% CI 1.20-1.36, P < 10(-5)) when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, significantly increased risks were found for rs8034191 and rs105173 polymorphisms among Caucasians and African American, while no significant associations were observed for the two polymorphisms in East Asians. In addition, we found that rs8034191 and rs105173 confer risk, for both adenocarcinoma and squamous cell carcinoma when stratified by histological types of LC. Furthermore, our results on stratified analysis according to smoking status showed an increased LC risk in ever-smokers, while no associations were detected among never-smokers for the two polymorphisms. In conclusion, this meta-analysis demonstrated that the two common variations (rs8034191 and rs1051730) at 15q25 are a risk factor associated with increased LC susceptibility, but these associations vary in different ethnic populations.
Collapse
Affiliation(s)
- Bin Hu
- Department of Respiratory Medicine, Shanghai Xuhui District Center Hospital, Shanghai, 200031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
The SNP rs402710 in 5p15.33 is associated with lung cancer risk: a replication study in Chinese population and a meta-analysis. PLoS One 2013; 8:e76252. [PMID: 24194831 PMCID: PMC3806805 DOI: 10.1371/journal.pone.0076252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/21/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lung cancer is the most commonly diagnosed cancer and leading cause of cancer mortality in the world. A single nucleotide polymorphism (SNP), rs402710, located in 5p15.33, was firstly identified to be associated with the lung cancer risk in a genome-wide association study. However, some following replication studies yielded inconsistent results. Methodology and Findings A case-control study of 611 cases and 1062 controls in a Chinese population was conducted, and then a meta-analysis integrating the current and previously published studies with a total 31811 cases and 36333 controls was performed to explore the real effect of rs402710 on lung cancer susceptibility. Significant associations between the SNP rs402710 and lung cancer risk were observed in both case-control study and meta-analysis, with ORs equal to 0.77 (95%CI = 0.63–0.95) and 0.83 (95%CI = 0.81–0.86) in dominant model, respectively. By stratified analysis of our case-control study, the associations were also observed in never smoker group and non-small cell lung cancer(NSCLC) group with ORs equal to 0.71 (95%CI = 0.53–0.95) and 0.69 (95%CI = 0.55–0.87), which was remarkable that larger effect of the minor allele T was seen in the two groups than that in overall lung cancer. Besides, the sensitive and cumulative analysis indicated the robust stability of the current results of meta-analysis. Conclusion The results from our replication study and the meta-analysis provided firm evidence that rs402710 T allele significantly contributed to decreased lung cancer risk, and the case-control study implied that the variant may yield stronger effect on NSCLC and never smokers. However, the mechanism underlying the polymorphism conferring susceptibility to lung cancer is warranted to clarify in the follow-up studies.
Collapse
|
29
|
Li C, Yin Z, Wu W, Li X, Zhou B. Genetic variants in TERT–CLPTM1L genetic region associated with several types of cancer: A meta-analysis. Gene 2013; 526:390-9. [DOI: 10.1016/j.gene.2013.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/08/2023]
|
30
|
Quantitative assessment of the influence of common variations on 6p21 and lung cancer risk. Tumour Biol 2013; 35:689-94. [DOI: 10.1007/s13277-013-1094-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022] Open
|
31
|
Ware JJ, van den Bree M, Munafò MR. From men to mice: CHRNA5/CHRNA3, smoking behavior and disease. Nicotine Tob Res 2012; 14:1291-9. [PMID: 22544838 PMCID: PMC3482013 DOI: 10.1093/ntr/nts106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/08/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The nicotinic acetylcholine receptor (nAChR) gene cluster CHRNA5-A3-B4 on chromosome 15 has been the subject of a considerable body of research over recent years. Two highly correlated single nucleotide polymorphisms (SNPs) within this region--rs16969968 in CHRNA5 and rs1051730 in CHRNA3--have generated particular interest. METHODS We reviewed the literature relating to SNPs rs16969968 and rs1051730 and smoking-related phenotypes, and clinical and preclinical studies, which shed light on the mechanisms underlying these associations. RESULTS Following the initial discovery of an association between this locus and smoking behavior, further associations with numerous phenotypes have been subsequently identified, including smoking-related behaviors, diseases, and cognitive phenotypes. Potential mechanisms thought to underlie these have also been described, as well as possible gene × environment interaction effects. CONCLUSIONS Perhaps counter to the usual route of scientific inquiry, these initial findings, based exclusively on human samples and strengthened by their identification through agnostic genome-wide methods, have led to preclinical research focused on determining the mechanism underlying these associations. Progress has been made using knockout mouse models, highlighting the importance of α5 nAChR subunits in regulating nicotine intake, particularly those localized to the habenula-interpeduncular nucleus pathway. Translational research seeking to evaluate the effect of nicotine challenge on brain activation as a function of rs16969968 genotype using neuroimaging technologies is now called for, which may point to new targets for novel smoking cessation therapies.
Collapse
Affiliation(s)
- Jennifer J Ware
- Department of Psychological Medicine, Cardiff University, 1st Floor Neuadd Meirionnydd, Heath Park Campus, Cardiff CF14 4YS, United Kingdom.
| | | | | |
Collapse
|
32
|
Fachiroh J, Sangrajrang S, Johansson M, Renard H, Gaborieau V, Chabrier A, Chindavijak S, Brennan P, McKay JD. Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand. Cancer Causes Control 2012; 23:1995-2002. [DOI: 10.1007/s10552-012-0077-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/05/2012] [Indexed: 01/01/2023]
|
33
|
Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, Bickeböller H, Risch A, McKay JD, Wang Y, Dai J, Gaborieau V, McLaughlin J, Brenner D, Narod SA, Caporaso NE, Albanes D, Thun M, Eisen T, Wichmann HE, Rosenberger A, Han Y, Chen W, Zhu D, Spitz M, Wu X, Pande M, Zhao Y, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Krokan HE, Gabrielsen ME, Skorpen F, Vatten L, Njølstad I, Chen C, Goodman G, Lathrop M, Benhamou S, Vooder T, Välk K, Nelis M, Metspalu A, Raji O, Chen Y, Gosney J, Liloglou T, Muley T, Dienemann H, Thorleifsson G, Shen H, Stefansson K, Brennan P, Amos CI, Houlston R, Landi MT. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 2012; 21:4980-95. [PMID: 22899653 PMCID: PMC3607485 DOI: 10.1093/hmg/dds334] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10(-16)), 6p21 (P = 2.3 × 10(-14)) and 15q25 (P = 2.2 × 10(-63)). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16(INK4A)/p14(ARF)/CDKN2B/p15(INK4B)/ANRIL; rs1333040, P = 3.0 × 10(-7)) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10(-8)). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cancer.
Collapse
|
34
|
The association between ATM IVS 22-77 T>C and cancer risk: a meta-analysis. PLoS One 2012; 7:e29479. [PMID: 22276117 PMCID: PMC3261868 DOI: 10.1371/journal.pone.0029479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/29/2011] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives It has become increasingly clear that ATM (ataxia-telangiectasia-mutated) safeguards genome stability, which is a cornerstone of cellular homeostasis, and ATM IVS 22-77 T>C affects the normal activity of ATM proteins. However, the association between the ATM IVS 22-77 T>C genetic variant and cancer risk is controversial. Therefore, we conducted a systematic meta-analysis to estimate the overall cancer risk associated with the polymorphism and to quantify any potential between-study heterogeneity. Methods A total of nine studies including 4,470 cases and 4,862 controls were analyzed for ATM IVS 22-77 T>C association with cancer risk in this meta-analysis. Heterogeneity among articles and their publication bias were also tested. Results Our results showed that no association reached the level of statistical significance in the overall risk. Interestingly, in the stratified analyses, we observed an inverse relationship in lung and breast cancer. Conclusion Further functional research on the ATM mechanism should be performed to explain the inconsistent results in different cancer types.
Collapse
|