1
|
Ke H, Bai F, Li Z, Zhu Y, Zhang C, Li Y, Talifu Z, Pan Y, Liu W, Xu X, Gao F, Yang D, Du L, Yu Y, Li J. Inhibition of phospholipase D promotes neurological function recovery and reduces neuroinflammation after spinal cord injury in mice. Front Cell Neurosci 2024; 18:1352630. [PMID: 38572075 PMCID: PMC10987874 DOI: 10.3389/fncel.2024.1352630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Han Ke
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Bai
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zihan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunjia Zhang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Li
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Zuliyaer Talifu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yunzhu Pan
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Wubo Liu
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Xu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Feng Gao
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Degang Yang
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Liangjie Du
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yan Yu
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Jianjun Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing Bo’ai Hospital, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
López de Frutos L, Almeida F, Murillo-Saich J, Conceição VA, Guma M, Queheberger O, Giraldo P, Miltenberger-Miltenyi G. Serum Phospholipid Profile Changes in Gaucher Disease and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms231810387. [PMID: 36142296 PMCID: PMC9499334 DOI: 10.3390/ijms231810387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Alterations in the levels of serum sphingolipids and phospholipids have been reported in Gaucher disease and in Parkinson's disease, suggesting a potential role of these lipids as biomarkers. This project's objective is to detect novel associations and novel candidate biomarkers in the largest Spanish Gaucher and Parkinson diseases of the Iberian Peninsula. For that, 278 participants were included: 100 sporadic Parkinson's patients, 70 Gaucher patients, 15 GBA1-mutation-carrier Parkinson's patients and 93 controls. A serum lipidomics array including 10 phospholipid groups, 368 species, was performed using high-performance liquid chromatography-mass spectrometry. Lipid levels were compared between groups via multiple-regression analyses controlling for clinical and demographic parameters. Additionally, lipid levels were compared within the Gaucher and Parkinson's groups controlling for medication and/or disease severity. Results were controlled for robustness by filtering of non-detectable lipid values. There was an increase in the levels of phosphatidylcholine, with a simultaneous decrease in lyso-phosphatidylcholine, in the Gaucher, Parkinson's and GBA1-mutation-carrier Parkinson's patients vs. controls. Phosphatidylethanolamine, lyso- and plasmalogen-phosphatidylethanolamine were also increased in Gaucher and Parkinson's. Gaucher patients also showed an increase in lyso-phosphatidylserine and phosphatidylglycerol. While in the Gaucher and Parkinson's groups, velaglucerase alpha and dopamine agonists, respectively, showed positive associations with the lipid changes, miglustat treatment in Gaucher patients normalized the altered phosphatidylcholine/lyso-phosphatidylcholine ratio. In conclusion, Gaucher and Parkinson's patients showed changes in various serum phospholipid levels when compared with healthy controls, further supporting the role of such lipids in disease development and, possibly, as putative biomarkers. This hypothesis was reinforced by the normalizing effect of miglustat, and by controlling for data robustness, even though the limited number of participants, especially in the sub-distribution by treatment groups in GD requires validation in a larger number of patients.
Collapse
Affiliation(s)
- Laura López de Frutos
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50006 Zaragoza, Spain
- GIIS-012, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Francisco Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | | | - Vasco A. Conceição
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- VA Medical Center, San Diego, CA 92093, USA
- Department of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Oswald Queheberger
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Pilar Giraldo
- Fundación para el Estudio y la Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50006 Zaragoza, Spain
- Correspondence: (P.G.); (G.M.-M.); Tel.: +34-670-285-339 (P.G.); +351-21-799-9435 (G.M.-M.)
| | - Gabriel Miltenberger-Miltenyi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
- Laboratório de Genética, Faculdade de Medicina, Universidade de Lisboa, 1649004 Lisbon, Portugal
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
- Genetics Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, 4835-044 Guimarães, Portugal
- Correspondence: (P.G.); (G.M.-M.); Tel.: +34-670-285-339 (P.G.); +351-21-799-9435 (G.M.-M.)
| |
Collapse
|
3
|
Blazquez-Llorca L, Miguéns M, Montero-Crespo M, Selvas A, Gonzalez-Soriano J, Ambrosio E, DeFelipe J. 3D Synaptic Organization of the Rat CA1 and Alterations Induced by Cocaine Self-Administration. Cereb Cortex 2021; 31:1927-1952. [PMID: 33253368 PMCID: PMC7945021 DOI: 10.1093/cercor/bhaa331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
The hippocampus plays a key role in contextual conditioning and has been proposed as an important component of the cocaine addiction brain circuit. To gain knowledge about cocaine-induced alterations in this circuit, we used focused ion beam milling/scanning electron microscopy to reveal and quantify the three-dimensional synaptic organization of the neuropil of the stratum radiatum of the rat CA1, under normal circumstances and after cocaine-self administration (SA). Most synapses are asymmetric (excitatory), macular-shaped, and in contact with dendritic spine heads. After cocaine-SA, the size and the complexity of the shape of both asymmetric and symmetric (inhibitory) synapses increased but no changes were observed in the synaptic density. This work constitutes the first detailed report on the 3D synaptic organization in the stratum radiatum of the CA1 field of cocaine-SA rats. Our data contribute to the elucidation of the normal and altered synaptic organization of the hippocampus, which is crucial for better understanding the neurobiological mechanisms underlying cocaine addiction.
Collapse
Affiliation(s)
- L Blazquez-Llorca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain.,Sección Departamental de Anatomía y Embriología (Veterinaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M Miguéns
- Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - M Montero-Crespo
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - A Selvas
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - J Gonzalez-Soriano
- Sección Departamental de Anatomía y Embriología (Veterinaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| |
Collapse
|
4
|
Suppressing aberrant phospholipase D1 signaling in 3xTg Alzheimer's disease mouse model promotes synaptic resilience. Sci Rep 2019; 9:18342. [PMID: 31797996 PMCID: PMC6892889 DOI: 10.1038/s41598-019-54974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023] Open
Abstract
Current approaches in treatment of Alzheimer's disease (AD) is focused on early stages of cognitive decline. Identifying therapeutic targets that promote synaptic resilience during early stages may prevent progressive memory deficits by preserving memory mechanisms. We recently reported that the inducible isoform of phospholipase D (PLD1) was significantly increased in synaptosomes from post-mortem AD brains compared to age-matched controls. Using mouse models, we reported that the aberrantly elevated neuronal PLD1 is key for oligomeric amyloid driven synaptic dysfunction and underlying memory deficits. Here, we demonstrate that chronic inhibition using a well-tolerated PLD1 specific small molecule inhibitor is sufficient to prevent the progression of synaptic dysfunction during early stages in the 3xTg-AD mouse model. Firstly, we report prevention of cognitive decline in the inhibitor-treated group using novel object recognition (NOR) and fear conditioning (FC). Secondly, we provide electrophysiological assessment of better synaptic function in the inhibitor-treated group. Lastly, using Golgi staining, we report that preservation of dendritic spine integrity as one of the mechanisms underlying the action of the small molecule inhibitor. Collectively, these studies provide evidence for inhibition of PLD1 as a potential therapeutic strategy in preventing progression of cognitive decline associated with AD and related dementia.
Collapse
|
5
|
Krishnan B, Kayed R, Taglialatela G. Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:89-102. [PMID: 29560412 PMCID: PMC5857521 DOI: 10.1016/j.trci.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Phospholipase D (PLD), a lipolytic enzyme that breaks down membrane phospholipids, is also involved in signaling mechanisms downstream of seven transmembrane receptors. Abnormally elevated levels of PLD activity are well-established in Alzheimer's disease (AD), implicating the two isoforms of mammalian phosphatidylcholine cleaving PLD (PC-PLD1 and PC-PLD2). Therefore, we took a systematic approach of investigating isoform-specific expression in human synaptosomes and further investigated the possibility of therapeutic intervention using preclinical studies. Methods Synaptosomal Western blot analyses on the postmortem human hippocampus, temporal cortex, and frontal cortex of AD patient brains/age-matched controls and the 3XTg-AD mice hippocampus (mouse model with overexpression of human amyloid precursor protein, presenilin-1 gene, and microtubule-associated protein tau causing neuropathology progressing comparable to that in human AD patients) were used to detect the levels of neuronal PLD1 expression. Mouse hippocampal long-term potentiation of PLD1-dependent changes was studied using pharmacological approaches in ex vivo slice preparations from wild-type and transgenic mouse models. Finally, PLD1-dependent changes in novel object recognition memory were assessed following PLD1 inhibition. Results We observed elevated synaptosomal PLD1 in the hippocampus/temporal cortex from postmortem tissues of AD patients compared to age-matched controls and age-dependent hippocampal PLD1 increases in 3XTg-AD mice. PLD1 inhibition blocked effects of oligomeric amyloid β or toxic oligomeric tau species on high-frequency stimulation long-term potentiation and novel object recognition deficits in wild-type mice. Finally, PLD1 inhibition blocked long-term potentiation deficits normally observed in aging 3XTg-AD mice. Discussion Using human studies, we propose a novel role for PLD1-dependent signaling as a critical mechanism underlying oligomer-driven synaptic dysfunction and consequent memory disruption in AD. We, further, provide the first set of preclinical studies toward future therapeutics targeting PLD1 in slowing down/stopping the progression of AD-related memory deficits as a complementary approach to immunoscavenging clinical trials that are currently in progress.
Collapse
Affiliation(s)
- Balaji Krishnan
- Corresponding author. Tel.: 409 772 8069; Fax: 409 747 0015.
| | | | | |
Collapse
|
6
|
Jiang L, Gu H, Lin Y, Xu W, Zhu R, Kong J, Luo L, Long H, Liu B, Chen B, Zhao Y, Cen X. Remodeling of brain lipidome in methamphetamine-sensitized mice. Toxicol Lett 2017; 279:67-76. [PMID: 28689763 DOI: 10.1016/j.toxlet.2017.07.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023]
Abstract
Lipids are predominant components of the brain and key regulators for neural structure and function. The effect of methamphetamine (METH) on behavior, cognition as well as memory has been intensively investigated; however, the impact of METH on brain lipid profiles is largely unknown. Here, we used a global lipidomic approach to investigate brain lipidome of METH-sensitized mice. We found that repeated METH significantly modified the lipidome in the hippocampus, prefrontal cortex (PFC) and striatum. Interestingly, nucleus accumbens showed no obvious alteration in lipidomic profiling. Phospholipid and sphingolipid metabolisms were profoundly modified in the hippocampus of METH-sensitized mice, exhibiting increased phosphatidic acid and ether phosphatidylcholine but decreased lysophosphatidylethanolamine, lactosylceramide and triglycerides. The fatty acyl length of phospholipids and diacylglycerol longer than 40 carbon were clearly decreased in the hippocampus, and that 36 carbon was decreased in the PFC. These results indicate METH can profoundly affect the metabolism of phospholipids, sphingolipids and glycerolipids in the brain. Our findings reveal a link between remodeled brain lipidome and neurobehavior induced by METH.
Collapse
Affiliation(s)
- Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yiyun Lin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ruiming Zhu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jueying Kong
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Luo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bing Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
7
|
Šmidák R, Köfeler HC, Hoeger H, Lubec G. Comprehensive identification of age-related lipidome changes in rat amygdala during normal aging. PLoS One 2017; 12:e0180675. [PMID: 28672041 PMCID: PMC5495493 DOI: 10.1371/journal.pone.0180675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Brain lipids are integral components of brain structure and function. However, only recent advancements of chromatographic techniques together with mass spectrometry allow comprehensive identification of lipid species in complex brain tissue. Lipid composition varies between the individual areas and the majority of previous reports was focusing on individual lipids rather than a lipidome. Herein, a mass spectrometry-based approach was used to evaluate age-related changes in the lipidome of the rat amygdala obtained from young (3 months) and old (20 months) males of the Sprague-Dawley rat strain. A total number of 70 lipid species with significantly changed levels between the two animal groups were identified spanning four main lipid classes, i.e. glycerolipids, glycerophospholipids, sphingolipids and sterol lipids. These included phospholipids with pleiotropic brain function, such as derivatives of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. The analysis also revealed significant level changes of phosphatidic acid, diacylglycerol, sphingomyelin and ceramide that directly represent lipid signaling and affect amygdala neuronal activity. The amygdala is a crucial brain region for cognitive functions and former studies on rats and humans showed that this region changes its activity during normal aging. As the information on amygdala lipidome is very limited the results obtained in the present study represent a significant novelty and may contribute to further studies on the role of lipid molecules in age-associated changes of amygdala function.
Collapse
Affiliation(s)
- Roman Šmidák
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Harald C. Köfeler
- Center for Medical Research (ZMF), Medical University Graz, Graz, Austria
| | - Harald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Neuroproteomics Laboratory, Science Park, Ilkovicova 8, Bratislava, Slovakia
- * E-mail:
| |
Collapse
|
8
|
Arguello AA, Richardson BD, Hall JL, Wang R, Hodges MA, Mitchell MP, Stuber GD, Rossi DJ, Fuchs RA. Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior. Neuropsychopharmacology 2017; 42:727-735. [PMID: 27534268 PMCID: PMC5240178 DOI: 10.1038/npp.2016.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
Cocaine addiction is a disease characterized by chronic relapse despite long periods of abstinence. The lateral orbitofrontal cortex (lOFC) and basolateral amygdala (BLA) promote cocaine-seeking behavior in response to drug-associated conditioned stimuli (CS) and share dense reciprocal connections. Hence, we hypothesized that monosynaptic projections between these brain regions mediate CS-induced cocaine-seeking behavior. Male Sprague-Dawley rats received bilateral infusions of a Cre-dependent adeno-associated viral (AAV) vector expressing enhanced halorhodopsin 3.0 fused with a reporter protein (NpHR-mCherry) or a control AAV (mCherry) plus optic fiber implants into the lOFC (Experiment 1) or BLA (Experiment 2). The same rats also received bilateral infusions of a retrogradely transported AAV vector expressing Cre recombinase (Retro-Cre-GFP) into the BLA (Experiment 1) or lOFC (Experiment 2). Thus, NpHR-mCherry or mCherry expression was targeted to lOFC neurons that project to the BLA or to BLA neurons that project to the lOFC in different groups. Rats were trained to lever press for cocaine infusions paired with 5-s CS presentations. Responding was then extinguished. At test, response-contingent CS presentation was discretely coupled with optogenetic inhibition (5-s laser activation) or no optogenetic inhibition while lever responding was assessed without cocaine/food reinforcement. Optogenetic inhibition of lOFC to BLA, but not BLA to lOFC, projections in the NpHR-mCherry groups disrupted CS-induced reinstatement of cocaine-seeking behavior relative to (i) no optogenetic inhibition or (ii) manipulations in mCherry control or (iii) NpHR-mCherry food control groups. These findings suggest that the lOFC sends requisite input to the BLA, via monosynaptic connections, to promote CS-induced cocaine-seeking behavior.
Collapse
Affiliation(s)
- Amy A Arguello
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Ben D Richardson
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Jacob L Hall
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Rong Wang
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Matthew A Hodges
- Department of Psychiatry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marshall P Mitchell
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Garret D Stuber
- Department of Psychiatry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Rossi
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, Pullman, WA, USA,Department of Integrative Physiology and Neuroscience, Washington State University, College of Veterinary Medicine, PO Box 647620, Pullman, WA 99164-7620, USA, Tel: +509 335 6164, Fax: +509 335 4650, E-mail:
| |
Collapse
|
9
|
Zhang Y, Xue Y, Meng S, Luo Y, Liang J, Li J, Ai S, Sun C, Shen H, Zhu W, Wu P, Lu L, Shi J. Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse. Biol Psychiatry 2016; 79:928-39. [PMID: 26293178 DOI: 10.1016/j.biopsych.2015.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. METHODS Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. RESULTS Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. CONCLUSIONS Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory.
Collapse
Affiliation(s)
- Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Yixiao Luo
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Jie Liang
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Jiali Li
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Sizhi Ai
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Chengyu Sun
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Haowei Shen
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Weili Zhu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China; Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China; Peking-Tsinghua Center for Life Sciences and Peking University-International Data Group/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Beijing, China.
| |
Collapse
|
10
|
Krishnan B. Amygdala-Hippocampal Phospholipase D (PLD) Signaling As Novel Mechanism of Cocaine-Environment Maladaptive Conditioned Responses. Int J Neuropsychopharmacol 2016; 19:pyv139. [PMID: 26802567 PMCID: PMC4926798 DOI: 10.1093/ijnp/pyv139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Drug-environment associative memory mechanisms and the resulting conditioned behaviors are key contributors in relapse to cocaine dependence. Recently, we reported rat amygdala phospholipase D as a key convergent downstream signaling partner in the expression of cocaine-conditioned behaviors mediated by glutamatergic and dopaminergic pathways. In the present study, 1 of the 2 known upstream serotonergic targets of phospholipase D, the serotonin (5-hydroxytryptamine) 2C receptor, was investigated for its role in recruiting phospholipase D signaling in cocaine-conditioned behaviors altered in the rat amygdala and dorsal hippocampus. METHODS Using Western-blot analysis, amygdala phospholipase D phosphorylation and total expression of phospholipase D/5-hydroxytryptamine 2C receptor were observed in early (Day-1) and late (Day-14) withdrawal (cocaine-free) states among male Sprague-Dawley rats subjected to 7-day cocaine-conditioned hyperactivity training. Functional studies were conducted using Chinese Hamster Ovary cells with stably transfected human unedited isoform of 5-hydroxytryptamine 2C receptor. RESULTS Phosphorylation of phospholipase D isoforms was altered in the Day-1 group of cocaine-conditioned animals, while increased amygdala and decreased dorsal hippocampus phospholipase D/5-hydroxytryptamine 2C receptor protein expression were observed in the Day-14 cocaine-conditioned rats. Functional cellular studies established that increased p phospholipase D is a mechanistic response to 5-HT2CR activation and provided the first evidence of a biased agonism by specific 5-hydroxytryptamine 2C receptor agonist, WAY163909 in phospholipase D phosphorylation 2, but not phospholipase D phosphorylation 1 activation. CONCLUSIONS Phospholipase D signaling, activated by dopaminergic, glutamatergic, and serotonergic signaling, can be a common downstream element recruited in associative memory mechanisms altered by cocaine, where increased expression in amygdala and decreased expression in dorsal hippocampus may result in altered anxiety states and increased locomotor responses, respectively.
Collapse
|
11
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
12
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
13
|
Phan NTN, Fletcher JS, Ewing AG. Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal Chem 2015; 87:4063-71. [PMID: 25856152 DOI: 10.1021/acs.analchem.5b00555] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging to investigate the effects of orally administrated methylphenidate on lipids in the brain of Drosophila melanogaster (fruit fly), a major invertebrate model system in biological study and neuroscience. TOF-SIMS imaging was carried out using a recently designed high energy 40 keV Ar4000(+) gas cluster ion gun which demonstrated improved sensitivity for intact lipids in the fly brain compared to the 40 keV C60(+) primary ion gun. In addition, correlation of TOF-SIMS and SEM imaging on the same fly brain showed that there is specific localization that is related to biological functions of various biomolecules. Different lipids distribute in different parts of the brain, central brain, optical lobes, and proboscis, depending on the length of the carbon chain and saturation level of fatty acid (FA) branches. Furthermore, data analysis using image principal components analysis (PCA) showed that methylphenidate dramatically affected both the distribution and abundance of lipids and their derivatives, particularly fatty acids, diacylglycerides, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol in the fly brains. Our approach using TOF-SIMS imaging successfully visualizes the effects of methylphenidate on the chemical structure of the fly brain.
Collapse
Affiliation(s)
- Nhu T N Phan
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,‡National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - John S Fletcher
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,‡National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,§Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- †Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,‡National Center Imaging Mass Spectrometry, Kemivägen 10, SE-412 96 Gothenburg, Sweden.,§Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
14
|
Fole A, Miguens M, Higuera-Matas A, Alguacil LF, Ambrosio E, Del Olmo N. Cocaine facilitates protein synthesis-dependent LTP: the role of metabotropic glutamate receptors. Eur Neuropsychopharmacol 2014; 24:621-9. [PMID: 24268515 DOI: 10.1016/j.euroneuro.2013.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/10/2013] [Accepted: 10/25/2013] [Indexed: 11/27/2022]
Abstract
Cocaine addiction alters synaptic plasticity in many brain areas involved in learning and memory processes, including the hippocampus. Long-term potentiation (LTP) is one of the best studied examples of hippocampal synaptic plasticity and it is considered as one of the molecular basis of learning and memory. We previously demonstrated that in the presence of cocaine, a long lasting form of hippocampal LTP is induced by a single pulse of high frequency stimulation, which in normal conditions evokes only an early form of LTP. In this study, we further explore the molecular basis of this modulation of synaptic plasticity by cocaine. By performing pharmacological experiments on hippocampal slices, we were able to show that cocaine converts early LTP to a form of LTP dependent on protein synthesis, probably through the cAMP-dependent protein kinase and extracellular signal-regulated kinase signaling cascades. We also found that metabotropic glutamate receptors are involved in this phenomenon. These studies further clarify the molecular machinery used by cocaine to alter synaptic plasticity and modulate learning and memory processes.
Collapse
Affiliation(s)
- A Fole
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - M Miguens
- Departamento de Psicología Básica I, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - A Higuera-Matas
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - L F Alguacil
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain; Unidad de Investigación Traslacional, Hospital de Ciudad Real, Spain
| | - E Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, UNED, 28040 Madrid, Spain
| | - N Del Olmo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
15
|
Luo YX, Xue YX, Shen HW, Lu L. Role of amygdala in drug memory. Neurobiol Learn Mem 2013; 105:159-73. [PMID: 23831499 DOI: 10.1016/j.nlm.2013.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/25/2013] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse. Disrupting these long-lasting memories by administering amnestic agents or other manipulations during specific phases of drug memory is a promising strategy for relapse prevention. Recent studies on the processes of drug addiction and relapse have demonstrated that the amygdala is involved in associative drug addiction learning processes. In this review, we focus on preclinical studies that used conditioned place preference and self-administration models to investigate the differential roles of the amygdala in each phase of drug-related memory, including acquisition, consolidation, retrieval, reconsolidation, and extinction. These studies indicate that the amygdala plays a critical role in both cue-associative learning and the expression of cue-induced relapse to drug-seeking behavior.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | | | | | | |
Collapse
|
16
|
Silberman Y, Winder DG. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology 2013; 70:316-23. [PMID: 23470280 DOI: 10.1016/j.neuropharm.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/14/2023]
Abstract
Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
17
|
Hozumi Y, Goto K. Diacylglycerol kinase β in neurons: functional implications at the synapse and in disease. Adv Biol Regul 2012; 52:315-25. [PMID: 22781745 DOI: 10.1016/j.jbior.2012.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 11/18/2022]
Abstract
Phosphoinositide cycle plays a pivotal role in neuronal signal transduction. In this cycle, diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to yield phosphatidic acid (PA). DG and PA acts as important second messengers that regulate distinct cascade of cellular events. Previous studies have disclosed that DGK consists of a family of isozymes that differ in their structure, enzymatic property, gene expression, subcellular localization, and binding partner. Intriguingly, most if not all DGK isozymes are abundantly expressed in the brain, suggesting important roles of this enzyme family in brain function. Of DGKs, DGKβ was the first enzyme identified as being expressed in a neuronal population in the brain. This review focuses on recent findings of DGKβ at the molecular, cellular, and organismal levels together with pathological implications in brain function and disease.
Collapse
Affiliation(s)
- Yasukazu Hozumi
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585, Japan.
| | | |
Collapse
|