1
|
Smith ND, Klein N, Sander PM, Schmitz L. A new pseudosuchian from the Favret Formation of Nevada reveals that archosauriforms occupied coastal regions globally during the Middle Triassic. Biol Lett 2024; 20:20240136. [PMID: 38982977 DOI: 10.1098/rsbl.2024.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Recent studies suggest that both stem- and crown-group Archosauria encompassed high ecological diversity during their initial Triassic radiation. We describe a new pseudosuchian archosaur, Benggwigwishingasuchus eremicarminis gen. et sp. nov., from the Anisian (Middle Triassic) Fossil Hill Member of the Favret Formation (Nevada, USA), a pelagic setting in the eastern Panthalassan Ocean characterized by the presence of abundant ammonoids and large-bodied ichthyosaurs. Coupled with archosauriforms from the eastern and western Tethys Ocean, Benggwigwishingasuchus reveals that pseudosuchians were also components of Panthalassan ocean coastal settings, establishing that the group occupied these habitats globally during the Middle Triassic. However, Benggwigwishingasuchus, Qianosuchus, and Ticinosuchus (two other pseudosuchians known from marine sediments) are not recovered in a monophyletic group, demonstrating that a nearshore marine lifestyle occurred widely across Archosauriformes during this time. Benggwigwishingasuchus is recovered as part of an expanded Poposauroidea, including several taxa (e.g. Mandasuchus, Mambawakalae) from the Middle Triassic Manda Beds of Tanzania among its basally branching members. This implies a greater undiscovered diversity of poposauroids during the Early Triassic, and supports that the group, and pseudosuchians more broadly, diversified rapidly following the End-Permian mass extinction.
Collapse
Affiliation(s)
- Nathan D Smith
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles 90007-4057, USA
| | - Nicole Klein
- Institute of Geosciences, Palaeontology, University of Bonn, Bonn 53113, Germany
| | - P Martin Sander
- Institute of Geosciences, Palaeontology, University of Bonn, Bonn 53113, Germany
| | - Lars Schmitz
- Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, USA
| |
Collapse
|
2
|
Desojo JB, von Baczko MB, Ezcurra MD, Fiorelli LE, Martinelli AG, Bona P, Trotteyn MJ, Lacerda M. Cranial osteology and paleoneurology of Tarjadia ruthae: An erpetosuchid pseudosuchian from the Triassic Chañares Formation (late Ladinian-?early Carnian) of Argentina. Anat Rec (Hoboken) 2024; 307:890-924. [PMID: 38263705 DOI: 10.1002/ar.25382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Tarjadia ruthae is a quadrupedal terrestrial pseudosuchian from the Middle-early Upper Triassic of the Chañares Formation, La Rioja Province, Argentina. Originally, this species was identified as an indeterminate archosaur and later as a doswelliid archosauriform based on very fragmentary specimens characterized by the ornamentation of the skull roof and osteoderms. Additional specimens (including skulls and postcrania) recovered in the last decade show that Tarjadia is an erpetosuchid, an enigmatic pseudosuchian group composed of six species registered in Middle-Upper Triassic continental units of Tanzania, Germany, Scotland, North America, Brazil, and Argentina. Tarjadia ruthae from Argentina and Parringtonia gracilis from Tanzania are the best preserved and more abundant species. Although the monophyly of Erpetosuchidae is well supported, alternative high-level positions within Archosauria have been suggested, such as sister taxon to Crocodylomorpha, Aetosauria, or Ornithosuchidae. In order to improve the knowledge about the erpetosuchids, we performed a detailed description and paleoneurological reconstruction of the skull of Tarjadia ruthae, based on two articulated partial skulls (CRILAR-Pv 478 and CRILAR-Pv 495) and other fragmentary specimens. We analyzed the stratigraphic and geographic occurrence of historical and new specimens of Tarjadia and provided a new emended diagnosis (the same for the genus as for the species, due to monotypy) along with a comparative description of the cranial endocast. The skull of Tarjadia is robust, with a thick and strongly ornamented skull roof, triangular in dorsal view, with concave lateral margins at mid-length that form an abrupt widened posterior region. The external nares are the smallest openings of the skull. The antorbital fossa is deeply excavated and has a small heart-shaped fenestra with both lobes pointing anteriorly. The supratemporal fenestrae are as large and rounded as the orbits, and the infratemporal fenestrae are L-shaped with an extensive excavation along the jugal, quadratojugal and quadrate. The hemimandibles are low, slightly concave on the dentigerous region and strongly convex on the posterior region, conferring them a S-shaped profile in dorsal view. The external mandibular fenestra is small and elliptic, being twice longer than high. The maxillary dentition is restricted to the anterior to mid region of the rostrum. Since the braincase of both specimens is partially damaged, the dorsal surface of the brain could not be entirely reconstructed. As a result, the endocast is anteroposteriorly elongated and seemingly flat, and the cephalic flexure seems to be lower than expected for a suchian. The labyrinth is twice wider than high, the semicircular canals are remarkably straight, and the anterior canal is longer than the posterior one.
Collapse
Affiliation(s)
- J B Desojo
- División Paleontología Vertebrados, Facultad de Ciencias Naturales y Museo, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M B von Baczko
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad Autónoma de Buenos Aires, Argentina
| | - M D Ezcurra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad Autónoma de Buenos Aires, Argentina
| | - L E Fiorelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - A G Martinelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad Autónoma de Buenos Aires, Argentina
| | - P Bona
- División Paleontología Vertebrados, Facultad de Ciencias Naturales y Museo, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M J Trotteyn
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - M Lacerda
- Programa de Pós-Graduação em Zoologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Nesbitt SJ, Chatterjee S. The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA. Anat Rec (Hoboken) 2024; 307:1175-1238. [PMID: 38258540 DOI: 10.1002/ar.25376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
A vast array of pseudosuchian body plans evolved during the diversification of the group in the Triassic Period, but few can compare to the toothless, long-necked, and bipedal shuvosaurids. Members of this clade possess theropod-like character states mapped on top of more plesiomorphic pseudosuchian character states, complicating our understanding of the evolutionary history of the skeleton. One taxon in this clade, Shuvosaurus inexpectatus has been assigned to various theropod dinosaur groups based on a partial skull and referred material and its postcranium was assigned to a different taxon in Pseudosuchia. After the discovery of a skeleton of a shuvosaurid with a Shuvosaurus-like skull and a pseudosuchian postcranial skeleton, it became clear Shuvosaurus inexpectatus was a pseudosuchian. Nevertheless, a number of questions have arisen about what skeletal elements belonged to Shuvosaurus inexpectatus, the identification of skull bones, and the resulting implication for pseudosuchian evolution. Here, we detail the anatomy of the skeleton Shuvosaurus inexpectatus through a critical lens, parse out the bones that belong to the taxon or those that clearly do not or may not belong to the taxon, rediagnose the taxon based on these revisions, and compare the taxon to other archosaurs. We find that Shuvosaurus inexpectatus possesses similar anatomy to other shuvosaurids but parts of the skeleton of the taxon clarifies the anatomy of the group given that they are preserved in Shuvosaurus inexpectatus but not in others. Shuvosaurus inexpectatus is represented by at least 14 individuals from the West Texas Post Quarry (Adamanian holochronozone) and all Shuvosaurus inexpectatus skeletal material from the locality pertains to skeletally immature individuals. All of the skeletons are missing most of the neural arches, ribs, and most of the forelimb. We only recognize Shuvosaurus inexpectatus from the Post Quarry and all other material assigned to the taxon previously is better assigned to the broader group Shuvosauridae.
Collapse
Affiliation(s)
- Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia, USA
- Museum of Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
4
|
Desojo JB, Rauhut OWM. Reassessment of the enigmatic "Prestosuchus" loricatus (Archosauria: Pseudosuchia) from the Middle-Late Triassic of southern Brazil. Anat Rec (Hoboken) 2024; 307:974-1000. [PMID: 38344898 DOI: 10.1002/ar.25401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/16/2024]
Abstract
Our knowledge of the diversity and evolution of South American Triassic pseudosuchians has greatly improved in the past 15 years, due to new discoveries, but also to the revision of several historically important specimens. One of the earliest descriptions of pseudosuchians from the Triassic of Brazil stems from the classic work of Huene from the first half of the 20th century, who described several species, including such influential taxa as Rauisuchus tiradentes or Prestosuchus chiniquensis, which have recently been reviewed. The more poorly known proposed second species of Prestosuchus, P. loricatus, is the focus of the present work. The original material included some elements of the axial skeleton (cervical and caudal vertebrae, ribs, osteoderms) and the hindlimb (ischia, calcaneum, metatarsus), collected from the Dinodontosaurus Assemblage Zone of the Chiniquá area, west of São Pedro do Sul. "Prestosuchus" loricatus shows numerous differences to P. chiniquensis, including the shape of cervical neural spines, presence of epipophyses on the cervical vertebrae, presence of a pit in the iliac articulation of the ischium, lack of longitudinal furrows in the dorsolateral surface of the ischial shafts, the more slender calcaneal tuber and a less pronounced ventral pit in the calcaneum, and is thus referred to a new genus, Schultzsuchus gen. nov. Phylogenetic analysis indicates an early branching position within Poposauroidea for Schultzsuchus, making it the oldest known member of this clade in South America.
Collapse
Affiliation(s)
- Julia B Desojo
- División Paleontología Vertebrados, Museo de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- GeoBioCenter, Ludwig-Maximilians-Universität Munich, Munich, Germany
- SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Oliver W M Rauhut
- SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Sektion Paläontologie, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
5
|
Grand Pré CA, Thielicke W, Diaz Jr RE, Hedrick BP, Elsey RM, Schachner ER. Validating osteological correlates for the hepatic piston in the American alligator ( Alligator mississippiensis). PeerJ 2023; 11:e16542. [PMID: 38144194 PMCID: PMC10749092 DOI: 10.7717/peerj.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Unlike the majority of sauropsids, which breathe primarily through costal and abdominal muscle contractions, extant crocodilians have evolved the hepatic piston pump, a unique additional ventilatory mechanism powered by the diaphragmaticus muscle. This muscle originates from the bony pelvis, wrapping around the abdominal viscera, extending cranially to the liver. The liver then attaches to the caudal margin of the lungs, resulting in a sub-fusiform morphology for the entire "pulmo-hepatic-diaphragmatic" structure. When the diaphragmaticus muscle contracts during inspiration, the liver is pulled caudally, lowering pressure in the thoracolumbar cavity, and inflating the lungs. It has been established that the hepatic piston pump requires the liver to be displaced to ventilate the lungs, but it has not been determined if the lungs are freely mobile or if the pleural tissues stretch ventrally. It has been hypothesized that the lungs are able to slide craniocaudally with the liver due to the smooth internal ceiling of the thoracolumbar cavity. We assess this through ultrasound video and demonstrate quantitatively and qualitatively that the pulmonary tissues are sliding craniocaudally across the interior thoracolumbar ceiling in actively ventilating live juvenile, sub-adult, and adult individuals (n = 7) of the American alligator (Alligator mississippiensis) during both natural and induced ventilation. The hepatic piston is a novel ventilatory mechanism with a relatively unknown evolutionary history. Questions related to when and under what conditions the hepatic piston first evolved have previously been left unanswered due to a lack fossilized evidence for its presence or absence. By functionally correlating specific characters in the axial skeleton to the hepatic piston, these osteological correlates can be applied to fossil taxa to reconstruct the evolution of the hepatic piston in extinct crocodylomorph archosaurs.
Collapse
Affiliation(s)
- Clinton A. Grand Pré
- Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Raul E. Diaz Jr
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Brandon P. Hedrick
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
- Murfreesboro, TN, USA
| | - Emma R. Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Ezcurra MD, Bandyopadhyay S, Sengupta DP, Sen K, Sennikov AG, Sookias RB, Nesbitt SJ, Butler RJ. A new archosauriform species from the Panchet Formation of India and the diversification of Proterosuchidae after the end-Permian mass extinction. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230387. [PMID: 37885992 PMCID: PMC10598453 DOI: 10.1098/rsos.230387] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Proterosuchidae represents the oldest substantial diversification of Archosauromorpha and plays a key role in understanding the biotic recovery after the end-Permian mass extinction. Proterosuchidae was long treated as a wastebasket taxon, but recent revisions have reduced its taxonomic content to five valid species from the latest Permian of Russia and the earliest Triassic (Induan) of South Africa and China. In addition to these occurrences, several isolated proterosuchid bones have been reported from the Induan Panchet Formation of India for over 150 years. Following the re-study of historical specimens and newly collected material from this unit, we erect the new proterosuchid species Samsarasuchus pamelae, which is represented by most of the presacral vertebral column. We also describe cf. proterosuchid and proterosuchid cranial, girdle and limb bones that are not referred to Samsarasuchus pamelae. Phylogenetic analyses recovered Samsarasuchus pamelae within the new proterosuchid clade Chasmatosuchinae. The taxonomic diversity of Proterosuchidae is substantially expanded here, with at least 11 nominal species and several currently unnamed specimens, and a biogeographical range encompassing present-day South Africa, China, Russia, India, Brazil, Uruguay and Australia. This indicates a broader taxonomic, phylogenetic and biogeographic diversification of Proterosuchidae than previously thought in the aftermath of the end-Permian mass extinction.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- Sección Paleontología de Vertebrados, CONICET−Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Ciudad Autónoma de Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Saswati Bandyopadhyay
- Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dhurjati P. Sengupta
- Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kasturi Sen
- Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | | | - Roland B. Sookias
- Evolution and Diversity Dynamics laboratory, Département de Géologie, Université de Liège, Liege, Belgium
| | | | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
7
|
Butler RJ, Fernandez V, Nesbitt SJ, Leite JV, Gower DJ. A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211622. [PMID: 35154797 PMCID: PMC8826131 DOI: 10.1098/rsos.211622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 05/03/2023]
Abstract
The Manda Beds of southwest Tanzania have yielded key insights into the early evolutionary radiation of archosaurian reptiles. Many key archosaur specimens were collected from the Manda Beds in the 1930s and 1960s, but until recently, few of these had been formally published. Here, we describe an archosaur specimen collected in 1963 which has previously been referred to informally as Pallisteria angustimentum. We recognize this specimen as the type of a new taxon, Mambawakale ruhuhu gen. et sp. nov. The holotype and only known specimen of M. ruhuhu comprises a partial skull of large size (greater than 75 cm inferred length), lower jaws and fragments of the postcranium, including three anterior cervical vertebrae and a nearly complete left manus. Mambawakale ruhuhu is characterized by several cranial autapomorphies that allow it to be distinguished with confidence from all other Manda Beds archosaurs, with the possible exception of Stagonosuchus nyassicus for which comparisons are highly constrained due to very limited overlapping material. Phylogenetic analysis suggests that M. ruhuhu is an early diverging pseudosuchian, but more precise resolution is hampered by missing data. Mambawakale ruhuhu is one of the largest known pseudosuchians recovered to date from the Middle Triassic.
Collapse
Affiliation(s)
- Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - João Vasco Leite
- Department of Earth Sciences, Natural History Museum, London, UK
| | - David J. Gower
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
8
|
Bestwick J, Jones AS, Nesbitt SJ, Lautenschlager S, Rayfield EJ, Cuff AR, Button DJ, Barrett PM, Porro LB, Butler RJ. Cranial functional morphology of the pseudosuchian Effigia and implications for its ecological role in the Triassic. Anat Rec (Hoboken) 2021; 305:2435-2462. [PMID: 34841701 DOI: 10.1002/ar.24827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.
Collapse
Affiliation(s)
- Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew S Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Andrew R Cuff
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York, UK
| | - David J Button
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Paul M Barrett
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, London, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
10
|
Petti FM, Furrer H, Collo E, Martinetto E, Bernardi M, Delfino M, Romano M, Piazza M. Archosauriform footprints in the Lower Triassic of Western Alps and their role in understanding the effects of the Permian-Triassic hyperthermal. PeerJ 2020; 8:e10522. [PMID: 33384899 PMCID: PMC7751423 DOI: 10.7717/peerj.10522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
The most accepted killing model for the Permian-Triassic mass extinction (PTME) postulates that massive volcanic eruption (i.e., the Siberian Traps Large Igneous Province) led to geologically rapid global warming, acid rain and ocean anoxia. On land, habitable zones were drastically reduced, due to the combined effects of heating, drought and acid rains. This hyperthermal had severe effects also on the paleobiogeography of several groups of organisms. Among those, the tetrapods, whose geographical distribution across the end-Permian mass extinction (EPME) was the subject of controversy in a number of recent papers. We here describe and interpret a new Early Triassic (?Olenekian) archosauriform track assemblage from the Gardetta Plateau (Briançonnais, Western Alps, Italy) which, at the Permian-Triassic boundary, was placed at about 11° North. The tracks, both arranged in trackways and documented by single, well-preserved imprints, are assigned to Isochirotherium gardettensis ichnosp. nov., and are here interpreted as produced by a non-archosaurian archosauriform (erytrosuchid?) trackmaker. This new discovery provides further evidence for the presence of archosauriformes at low latitudes during the Early Triassic epoch, supporting a model in which the PTME did not completely vacate low-latitude lands from tetrapods that therefore would have been able to cope with the extreme hot temperatures of Pangaea mainland.
Collapse
Affiliation(s)
| | - Heinz Furrer
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| | | | - Edoardo Martinetto
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy
| | | | - Massimo Delfino
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Turin, Italy.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona. Edifici ICTA-ICP, Barcelona, Spain
| | - Marco Romano
- Dipartimento di Scienze della Terra, Sapienza, University of Rome, Rome, Italy
| | - Michele Piazza
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genoa, Italy
| |
Collapse
|
11
|
Nesbitt SJ, Zawiskie JM, Dawley RM. The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia) Heptasuchus clarki, from the ?Mid-Upper Triassic, southeastern Big Horn Mountains, Central Wyoming (USA). PeerJ 2020; 8:e10101. [PMID: 33194383 PMCID: PMC7597643 DOI: 10.7717/peerj.10101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
Loricatan pseudosuchians (known as "rauisuchians") typically consist of poorly understood fragmentary remains known worldwide from the Middle Triassic to the end of the Triassic Period. Renewed interest and the discovery of more complete specimens recently revolutionized our understanding of the relationships of archosaurs, the origin of Crocodylomorpha, and the paleobiology of these animals. However, there are still few loricatans known from the Middle to early portion of the Late Triassic and the forms that occur during this time are largely known from southern Pangea or Europe. Heptasuchus clarki was the first formally recognized North American "rauisuchian" and was collected from a poorly sampled and disparately fossiliferous sequence of Triassic strata in North America. Exposed along the trend of the Casper Arch flanking the southeastern Big Horn Mountains, the type locality of Heptasuchus clarki occurs within a sequence of red beds above the Alcova Limestone and Crow Mountain formations within the Chugwater Group. The age of the type locality is poorly constrained to the Middle-early Late Triassic and is likely similar to or just older than that of the Popo Agie Formation assemblage from the western portion of Wyoming. The holotype consists of associated cranial elements found in situ, and the referred specimens consist of crania and postcrania. Thus, about 30% of the osteology of the taxon is preserved. All of the pseudosuchian elements collected at the locality appear to belong to Heptasuchus clarki and the taxon is not a chimera as previously hypothesized. Heptasuchus clarki is distinct from all other archosaurs by the presence of large, posteriorly directed flanges on the parabasisphenoid and a distinct, orbit-overhanging postfrontal. Our phylogenetic hypothesis posits a sister-taxon relationship between Heptasuchus clarki and the Ladinian-aged Batrachotomus kupferzellensis from current-day Germany within Loricata. These two taxa share a number of apomorphies from across the skull and their phylogenetic position further supports 'rauisuchian' paraphyly. A minimum of three individuals of Heptasuchus are present at the type locality suggesting that a group of individuals died together, similar to other aggregations of loricatans (e.g., Heptasuchus, Batrachotomus, Decuriasuchus, Postosuchus).
Collapse
Affiliation(s)
| | - John M. Zawiskie
- Cranbrook Institute of Science, Bloomfield Hills, MI, USA
- Department of Geology, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
12
|
Schachner ER, Irmis RB, Huttenlocker AK, Sanders K, Cieri RL, Fox M, Nesbitt SJ. Osteology of the Late Triassic Bipedal Archosaur Poposaurus gracilis (Archosauria: Pseudosuchia) from Western North America. Anat Rec (Hoboken) 2020; 303:874-917. [PMID: 31814308 DOI: 10.1002/ar.24298] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022]
Abstract
Poposaurus gracilis is a bipedal pseudosuchian archosaur that has been poorly understood since the discovery of the holotype fragmentary partial postcranial skeleton in 1915. Poposaurus. gracilis is a member of Poposauroidea, an unusually morphologically divergent clade of pseudosuchians containing taxa that are bipedal, quadrupedal, toothed, edentulous, and some individuals with elongated thoracic neural spines (i.e., sails). In 2003, a well preserved, fully articulated, and nearly complete postcranial skeleton of P. gracilis was discovered with some fragmentary cranial elements from the Upper Triassic Chinle Formation of Grand Staircase-Escalante National Monument of southern Utah, USA. The aim of this work is to describe the osteology of this specimen in detail and compare P. gracilis to other closely related pseudosuchian archosaurs. The open neurocentral sutures throughout the majority of the vertebral column, the small size of this individual, and the presence of seven evenly spaced cyclic growth marks in the histologically sectioned femur indicate that this specimen was a skeletally immature juvenile, or subadult when it died. The pes of P. gracilis contains multiple skeletal adaptations and osteological correlates for soft tissue structures that support a hypothesis of digitigrady for this taxon. When coupled with the numerous postcranial characters associated with cursoriality, and the many anatomical traits convergent with theropod dinosaurs, this animal likely occupied a similar ecological niche with contemporaneous theropods during the Late Triassic Period. Anat Rec, 303:874-917, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, Utah
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah
| | - Adam K Huttenlocker
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kent Sanders
- Department of Diagnostic Imaging, North Canyon Medical Center, Gooding, Idaho
| | - Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Marilyn Fox
- Department of Vertebrate Paleontology, Yale Peabody Museum, Yale University, New Haven, Connecticut
| | | |
Collapse
|
13
|
Bernardi M, Petti FM, Benton MJ. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction. Proc Biol Sci 2019; 285:rspb.2017.2331. [PMID: 29321300 PMCID: PMC5784198 DOI: 10.1098/rspb.2017.2331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
The Permian–Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an ‘equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10–15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs.
Collapse
Affiliation(s)
- Massimo Bernardi
- MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy .,School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Fabio Massimo Petti
- MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122 Trento, Italy.,PaleoFactory - Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Rome 00185, Italy
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| |
Collapse
|
14
|
Iwasaki SI, Erdoğan S, Asami T. Evolutionary Specialization of the Tongue in Vertebrates: Structure and Function. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Ezcurra MD, Gower DJ, Sennikov AG, Butler RJ. The osteology of the holotype of the early erythrosuchid Garjainia prima (Diapsida: Archosauromorpha) from the upper Lower Triassic of European Russia. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET – Museo Argentino de Ciencias Naturlaes ‘Bernardino Rivadavia’, Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Andrey G Sennikov
- Borissiak Paleontological Institute RAS, Moscow, Russia
- Kazan Federal University, Institute of Geology and Petroleum Technologies, Kazan, Russia
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
16
|
Ezcurra MD, Butler RJ. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction. Proc Biol Sci 2018; 285:20180361. [PMID: 29899066 PMCID: PMC6015845 DOI: 10.1098/rspb.2018.0361] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023] Open
Abstract
One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction (ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas.
Collapse
Affiliation(s)
- Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales, Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 2018; 557:706-709. [PMID: 29849156 DOI: 10.1038/s41586-018-0093-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/28/2018] [Indexed: 11/08/2022]
Abstract
Modern squamates (lizards, snakes and amphisbaenians) are the world's most diverse group of tetrapods along with birds 1 and have a long evolutionary history, with the oldest known fossils dating from the Middle Jurassic period-168 million years ago2-4. The evolutionary origin of squamates is contentious because of several issues: (1) a fossil gap of approximately 70 million years exists between the oldest known fossils and their estimated origin5-7; (2) limited sampling of squamates in reptile phylogenies; and (3) conflicts between morphological and molecular hypotheses regarding the origin of crown squamates6,8,9. Here we shed light on these problems by using high-resolution microfocus X-ray computed tomography data from the articulated fossil reptile Megachirella wachtleri (Middle Triassic period, Italian Alps 10 ). We also present a phylogenetic dataset, combining fossils and extant taxa, and morphological and molecular data. We analysed this dataset under different optimality criteria to assess diapsid reptile relationships and the origins of squamates. Our results re-shape the diapsid phylogeny and present evidence that M. wachtleri is the oldest known stem squamate. Megachirella is 75 million years older than the previously known oldest squamate fossils, partially filling the fossil gap in the origin of lizards, and indicates a more gradual acquisition of squamatan features in diapsid evolution than previously thought. For the first time, to our knowledge, morphological and molecular data are in agreement regarding early squamate evolution, with geckoes-and not iguanians-as the earliest crown clade squamates. Divergence time estimates using relaxed combined morphological and molecular clocks show that lepidosaurs and most other diapsids originated before the Permian/Triassic extinction event, indicating that the Triassic was a period of radiation, not origin, for several diapsid lineages.
Collapse
|
18
|
Lacerda MB, de França MAG, Schultz CL. A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil. Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Marcel B Lacerda
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marco A G de França
- Universidade Federal do Vale do São Francisco, Campus de Ciências Agrárias/Colegiado de Ciências Biológicas, Petrolina, PE, Brazil
| | - Cesar L Schultz
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Button DJ, Lloyd GT, Ezcurra MD, Butler RJ. Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea. Nat Commun 2017; 8:733. [PMID: 29018290 PMCID: PMC5635108 DOI: 10.1038/s41467-017-00827-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems. Mass extinctions are thought to produce ‘disaster faunas’, communities dominated by a small number of widespread species. Here, Button et al. develop a phylogenetic network approach to test this hypothesis and find that mass extinctions did increase faunal cosmopolitanism across Pangaea during the late Palaeozoic and early Mesozoic.
Collapse
Affiliation(s)
- David J Button
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,North Carolina Museum of Natural Sciences, Raleigh, NC, 27607, USA. .,Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC, 27695, USA.
| | - Graeme T Lloyd
- School of Earth and Environment, Maths/Earth and Environment Building, The University of Leeds, Leeds, LS2 9JT, UK
| | - Martín D Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Avenida Ángel Gallardo 470, Buenos Aires, C1405DJR, Argentina
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 2017; 544:484-487. [PMID: 28405026 DOI: 10.1038/nature22037] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
Abstract
The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.
Collapse
|
21
|
A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria. Sci Rep 2017; 7:46028. [PMID: 28393843 PMCID: PMC5385495 DOI: 10.1038/srep46028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/08/2017] [Indexed: 11/16/2022] Open
Abstract
Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.
Collapse
|
22
|
Foth C, Ezcurra MD, Sookias RB, Brusatte SL, Butler RJ. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs. BMC Evol Biol 2016; 16:188. [PMID: 27628503 PMCID: PMC5024528 DOI: 10.1186/s12862-016-0761-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. RESULTS Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. CONCLUSIONS Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.
Collapse
Affiliation(s)
- Christian Foth
- Department of Geosciences, University of Fribourg/Freiburg, Fribourg, Switzerland.
- SNSB, Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany.
- Department of Earth and Environmental Sciences and GeoBio-Center, Ludwig-Maximilians-Universität, München, Germany.
| | - Martín D Ezcurra
- CONICET, Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Roland B Sookias
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Drymala SM, Zanno LE. Osteology of Carnufex carolinensis (Archosauria: Psuedosuchia) from the Pekin Formation of North Carolina and Its Implications for Early Crocodylomorph Evolution. PLoS One 2016; 11:e0157528. [PMID: 27304665 PMCID: PMC4909254 DOI: 10.1371/journal.pone.0157528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Crocodylomorphs originated in the Late Triassic and were the only crocodile-line archosaurs to survive the end-Triassic extinction. Recent phylogenetic analyses suggest that the closest relatives of these generally gracile, small-bodied taxa were a group of robust, large-bodied predators known as rauisuchids implying a problematic morphological gap between early crocodylomorphs and their closest relatives. Here we provide a detailed osteological description of the recently named early diverging crocodylomorph Carnufex carolinensis from the Upper Triassic Pekin Formation of North Carolina and assess its phylogenetic position within the Paracrocodylomorpha. Carnufex displays a mosaic of crocodylomorph, rauisuchid, and dinosaurian characters, as well as highly laminar cranial elements and vertebrae, ornamented dermal skull bones, a large, subtriangular antorbital fenestra, and a reduced forelimb. A phylogenetic analysis utilizing a comprehensive dataset of early paracrocodylomorphs and including seven new characters and numerous modifications to characters culled from the literature recovers Carnufex carolinensis as one of the most basal members of Crocodylomorpha, in a polytomy with two other large bodied taxa (CM 73372 and Redondavenator). The analysis also resulted in increased resolution within Crocodylomorpha and a monophyletic clade containing the holotype and two referred specimens of Hesperosuchus as well as Dromicosuchus. Carnufex occupies a key transition at the origin of Crocodylomorpha, indicating that the morphology typifying early crocodylomorphs appeared before the shift to small body size.
Collapse
Affiliation(s)
- Susan M. Drymala
- Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Lindsay E. Zanno
- Research & Collections, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
24
|
Gignac P, O'Brien H. Suchian Feeding Success at the Interface of Ontogeny and Macroevolution. Integr Comp Biol 2016; 56:449-58. [PMID: 27252224 PMCID: PMC4990708 DOI: 10.1093/icb/icw041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There have been a number of attempts to explain how crocodylian bite-force performance covaries with cranial form and diet. However, the mechanics and morphologies of crocodylian jaws have thus far remained incongruent with data on their performance and evolution. For example, it is largely assumed that the functional anatomy and performance of adults tightly fits the adult niche. At odds with this precept are groups with resource-dependent growth, whose juvenile stages undergo shifts in mass, morphology, and resource usage to overcome strong selection related to issues of small body size, as compared to adults. Crocodylians are an example of such a group. As living suchians, they also have a long and fossil-rich evolutionary history, characterized by analogous increases in body size, diversifications in rostrodental form, and shifts in diet. Here we use biomechanical and evolutionary modeling techniques to study the development and evolution of the suchian feeding apparatus and to formally assess the impact of potential ontogenetic-evolutionary parallels on clade dynamics. We show that patterns of ontogenetic and evolutionary bite-force changes exhibit inverted patterns of heterochrony, indicating that early ontogenetic trends are established as macroevolutionary patterns within Neosuchia, prior to the origin of Eusuchia. Although selection can act on any life-history stage, our findings suggest that selection on neonates and juveniles, in particular, can contribute to functionally important morphologies that aid individual and clade success without being strongly tied to their adult niche.
Collapse
Affiliation(s)
- Paul Gignac
- *Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma 74107-1898, USA
| | - Haley O'Brien
- *Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma 74107-1898, USA Department of Biological Sciences (Graduate Program in Ecology and Evolutionary Biology), Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
25
|
Ezcurra MD. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 2016; 4:e1778. [PMID: 27162705 PMCID: PMC4860341 DOI: 10.7717/peerj.1778] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
The early evolution of archosauromorphs during the Permo-Triassic constitutes an excellent empirical case study to shed light on evolutionary radiations in deep time and the timing and processes of recovery of terrestrial faunas after a mass extinction. However, macroevolutionary studies of early archosauromorphs are currently limited by poor knowledge of their phylogenetic relationships. In particular, one of the main early archosauromorph groups that need an exhaustive phylogenetic study is "Proterosuchia," which as historically conceived includes members of both Proterosuchidae and Erythrosuchidae. A new data matrix composed of 96 separate taxa (several of them not included in a quantitative phylogenetic analysis before) and 600 osteological characters was assembled and analysed to generate a comprehensive higher-level phylogenetic hypothesis of basal archosauromorphs and shed light on the species-level interrelationships of taxa historically identified as proterosuchian archosauriforms. The results of the analysis using maximum parsimony include a polyphyletic "Prolacertiformes" and "Protorosauria," in which the Permian Aenigmastropheus and Protorosaurus are the most basal archosauromorphs. The enigmatic choristoderans are either found as the sister-taxa of all other lepidosauromorphs or archosauromorphs, but consistently placed within Sauria. Prolacertids, rhynchosaurs, allokotosaurians and tanystropheids are the major successive sister clades of Archosauriformes. The Early Triassic Tasmaniosaurus is recovered as the sister-taxon of Archosauriformes. Proterosuchidae is unambiguosly restricted to five species that occur immediately after and before the Permo-Triassic boundary, thus implying that they are a short-lived "disaster" clade. Erythrosuchidae is composed of eight nominal species that occur during the Early and Middle Triassic. "Proterosuchia" is polyphyletic, in which erythrosuchids are more closely related to Euparkeria and more crownward archosauriforms than to proterosuchids, and several species are found widespread along the archosauromorph tree, some being nested within Archosauria (e.g., "Chasmatosaurus ultimus," Youngosuchus). Doswelliids and proterochampsids are recovered as more closely related to each other than to other archosauromorphs, forming a large clade (Proterochampsia) of semi-aquatic to aquatic forms that includes the bizarre genus Vancleavea. Euparkeria is one of the sister-taxa of the clade composed of proterochampsians and archosaurs. The putative Indian archosaur Yarasuchus is recovered in a polytomy with Euparkeria and more crownward archosauriforms, and as more closely related to the Russian Dongusuchus than to other species. Phytosaurs are recovered as the sister-taxa of all other pseudosuchians, thus being nested within Archosauria.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Lacerda MB, Mastrantonio BM, Fortier DC, Schultz CL. New insights on Prestosuchus chiniquensis Huene, 1942 (Pseudosuchia, Loricata) based on new specimens from the "Tree Sanga" Outcrop, Chiniquá Region, Rio Grande do Sul, Brazil. PeerJ 2016; 4:e1622. [PMID: 26855866 PMCID: PMC4741083 DOI: 10.7717/peerj.1622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022] Open
Abstract
The ‘rauisuchians’ are a group of Triassic pseudosuchian archosaurs that displayed a near global distribution. Their problematic taxonomic resolution comes from the fact that most taxa are represented only by a few and/or mostly incomplete specimens. In the last few decades, renewed interest in early archosaur evolution has helped to clarify some of these problems, but further studies on the taxonomic and paleobiological aspects are still needed. In the present work, we describe new material attributed to the ‘rauisuchian’ taxon Prestosuchus chiniquensis, of the Dinodontosaurus Assemblage Zone, Middle Triassic (Ladinian) of the Santa Maria Supersequence of southern Brazil, based on a comparative osteologic analysis. Additionally, we present well supported evidence that these represent juvenile forms, due to differences in osteological features (i.e., a subnarial fenestra) that when compared to previously described specimens can be attributed to ontogeny and indicate variation within a single taxon of a problematic but important osteological structure in the study of ‘rauisuchians.’
Collapse
Affiliation(s)
- Marcel B Lacerda
- Instituto de Geociências, Laboratório de Paleovertebrados, Universidade Federal do Rio Grande do Sul-UFRGS , Porto Alegre, Rio Grande do Sul , Brazil
| | - Bianca M Mastrantonio
- Instituto de Geociências, Laboratório de Paleovertebrados, Universidade Federal do Rio Grande do Sul-UFRGS , Porto Alegre, Rio Grande do Sul , Brazil
| | - Daniel C Fortier
- CHNUFPI, Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí , Floriano, Piauí , Brazil
| | - Cesar L Schultz
- Instituto de Geociências, Laboratório de Paleovertebrados, Universidade Federal do Rio Grande do Sul-UFRGS , Porto Alegre, Rio Grande do Sul , Brazil
| |
Collapse
|
27
|
Nesbitt SJ, Flynn JJ, Pritchard AC, Parrish JM, Ranivoharimanana L, Wyss AR. Postcranial Osteology ofAzendohsaurus madagaskarensis(?Middle to Upper Triassic, Isalo Group, Madagascar) and its Systematic Position Among Stem Archosaur Reptiles. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2015. [DOI: 10.1206/amnb-899-00-1-126.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Climate constrains the evolutionary history and biodiversity of crocodylians. Nat Commun 2015; 6:8438. [PMID: 26399170 PMCID: PMC4598718 DOI: 10.1038/ncomms9438] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/20/2015] [Indexed: 11/08/2022] Open
Abstract
The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A ‘modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. Crocodylians and their relatives have a rich evolutionary history. Here the authors show long-term decline of terrestrial crocodylians driven by decreasing temperatures but no relationship between temperature and biodiversity for marine crocodylians over their 250 million year history.
Collapse
|
29
|
Bernardi M, Klein H, Petti FM, Ezcurra MD. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record. PLoS One 2015; 10:e0128449. [PMID: 26083612 PMCID: PMC4471049 DOI: 10.1371/journal.pone.0128449] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/27/2015] [Indexed: 11/22/2022] Open
Abstract
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.
Collapse
Affiliation(s)
- Massimo Bernardi
- MuSe–Museo delle Scienze, Trento, Italy
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Hendrik Klein
- Saurierwelt Paläontologisches Museum, Neumarkt, Germany
| | | | - Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Ezcurra MD, Butler RJ. Post-hatchling cranial ontogeny in the Early Triassic diapsid reptile Proterosuchus fergusi. J Anat 2015; 226:387-402. [PMID: 25913624 PMCID: PMC4450940 DOI: 10.1111/joa.12300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2015] [Indexed: 11/30/2022] Open
Abstract
The phylogenetic position of Proterosuchus fergusi (Lower Triassic of South Africa) as one of the most basal archosauriforms means that it is critically important for understanding the successful evolutionary radiation of archosaurs during the Mesozoic. The excellent sample of the species provides a unique opportunity to understand early archosauriform ontogeny. Qualitative and quantitative analyses of cranial ontogenetic variation were conducted on an ontogenetic sequence, in which the smallest individual is 37% of the size of the largest one and osteohistological evidence suggests that four of 11 collected specimens had not reached sexual maturity. Through ontogeny the skull of Proterosuchus became proportionally taller, the infratemporal fenestra larger, and the teeth more isodont and numerous but with smaller crowns. The sequence of somatic maturity supports relatively high growth rates during early ontogeny. The skull of juvenile specimens of Proterosuchus closely resembles adults of the basal archosauromorph Prolacerta, whereas adult specimens resemble adults of more derived archosauriforms. As a result, a plausible hypothesis is that ontogenetic modification events (e.g., heterochrony) may have been key drivers of the evolution of the general shape of the skull at the base of Archosauriformes. These changes may have contributed to the occupation of a new morphospace by the clade around the Permo-Triassic boundary.
Collapse
Affiliation(s)
- Martín D Ezcurra
- School of Geography, Earth and Environmental Sciences, University of BirminghamEdgbaston, Birmingham, UK
- GeoBio-Center, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of BirminghamEdgbaston, Birmingham, UK
- GeoBio-Center, Ludwig-Maximilians-Universität MünchenMunich, Germany
| |
Collapse
|
31
|
Lacerda MB, Schultz CL, Bertoni-Machado C. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon assemblage zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil. PLoS One 2015; 10:e0118563. [PMID: 25714091 PMCID: PMC4340915 DOI: 10.1371/journal.pone.0118563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.
Collapse
Affiliation(s)
- Marcel B. Lacerda
- Instituto de Geociências, Laboratório de Paleovertebrados, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| | - Cesar L. Schultz
- Instituto de Geociências, Laboratório de Paleovertebrados, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
32
|
Ezcurra MD, Velozo P, Meneghel M, Piñeiro G. Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay. PeerJ 2015; 3:e776. [PMID: 25737816 PMCID: PMC4338774 DOI: 10.7717/peerj.776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/28/2015] [Indexed: 11/23/2022] Open
Abstract
The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo-Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeastern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a 'proterosuchid-grade' animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of 'proterosuchid grade' diapsids in Permo-Triassic beds worldwide.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Pablo Velozo
- Departamento de Evolución de Cuencas, Facultad de Ciencias, Iguá, Montevideo, Uruguay
| | - Melitta Meneghel
- Laboratorio de Sistemática e Historia Natural de Vertebrados, Facultad de Ciencias, Iguá, Montevideo, Uruguay
| | - Graciela Piñeiro
- Departamento de Evolución de Cuencas, Facultad de Ciencias, Iguá, Montevideo, Uruguay
| |
Collapse
|
33
|
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA, Kern C, Fujita MK, Opazo JC, Jurka J, Kojima KK, Caballero J, Hubley RM, Smit AF, Platt RN, Lavoie CA, Ramakodi MP, Finger JW, Suh A, Isberg SR, Miles L, Chong AY, Jaratlerdsiri W, Gongora J, Moran C, Iriarte A, McCormack J, Burgess SC, Edwards SV, Lyons E, Williams C, Breen M, Howard JT, Gresham CR, Peterson DG, Schmitz J, Pollock DD, Haussler D, Triplett EW, Zhang G, Irie N, Jarvis ED, Brochu CA, Schmidt CJ, McCarthy FM, Faircloth BC, Hoffmann FG, Glenn TC, Gabaldón T, Paten B, Ray DA. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 2014; 346:1254449. [PMID: 25504731 PMCID: PMC4386873 DOI: 10.1126/science.1254449] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA.
| | - Edward L Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Dent Earl
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Ngan Nguyen
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Glenn Hickey
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA. Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John A St John
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Salvador Capella-Gutiérrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Todd A Castoe
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Colin Kern
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19717, USA
| | - Matthew K Fujita
- Department of Biology, University of Texas, Arlington, TX 76019, USA
| | - Juan C Opazo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | - Kenji K Kojima
- Genetic Information Research Institute, Mountain View, CA 94043, USA
| | | | | | - Arian F Smit
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christine A Lavoie
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Meganathan P Ramakodi
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - John W Finger
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany. Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Sally R Isberg
- Porosus Pty. Ltd., Palmerston, NT 0831, Australia. Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia. Centre for Crocodile Research, Noonamah, NT 0837, Australia
| | - Lee Miles
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda Y Chong
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Jaime Gongora
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher Moran
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrés Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - John McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Shane C Burgess
- College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christina Williams
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jason T Howard
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cathy R Gresham
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA. Howard Hughes Medical Institute, Bethesda, MD 20814, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China. Center for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Erich D Jarvis
- Howard Hughes Medical Institute, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Brant C Faircloth
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90019, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA 95064, USA
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
34
|
Lautenschlager S, Rauhut OWM. Osteology ofRauisuchus tiradentesfrom the Late Triassic (Carnian) Santa Maria Formation of Brazil, and its implications for rauisuchid anatomy and phylogeny. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Oliver W. M. Rauhut
- SNSB; Bayerische Staatssammlung für Paläontologie und Geologie; Department of Earth and Environmental Sciences; Ludwig-Maximilians-University; Richard-Wagner-Str. 10 80333 Munich Germany
| |
Collapse
|
35
|
Sookias RB, Sullivan C, Liu J, Butler RJ. Systematics of putative euparkeriids (Diapsida: Archosauriformes) from the Triassic of China. PeerJ 2014; 2:e658. [PMID: 25469319 PMCID: PMC4250070 DOI: 10.7717/peerj.658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022] Open
Abstract
The South African species Euparkeria capensis is of great importance for understanding the early radiation of archosauromorphs (including archosaurs) following the Permo-Triassic mass extinction, as most phylogenetic analyses place it as the sister taxon to crown group Archosauria within the clade Archosauriformes. Although a number of species from Lower-Middle Triassic deposits worldwide have been referred to the putative clade Euparkeriidae, the monophyly of Euparkeriidae is controversial and has yet to be demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently suggested to be euparkeriids: Halazhaisuchus qiaoensis, 'Turfanosuchus shageduensis', and Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying Formation of northern China. Here, we reassess the taxonomy and systematics of these taxa. We regard Wangisuchus tzeyii as a nomen dubium, because the holotype is undiagnostic and there is no convincing evidence that the previously referred additional specimens represent the same taxon as the holotype. We also regard 'Turfanosuchus shageduensis' as a nomen dubium as we are unable to identify any diagnostic features. We refer the holotype to Archosauriformes, and more tentatively to Euparkeriidae. Halazhaisuchus qiaoensis and the holotype of 'Turfanosuchus shageduensis' are resolved as sister taxa in a phylogenetic analysis, and are in turn the sister taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae that is the sister to Archosauria+Phytosauria. This is the first quantitative phylogenetic analysis to recover a non-monospecific, monophyletic Euparkeriidae, but euparkeriid monophyly is only weakly supported and will require additional examination. Given their similar sizes, stratigraphic positions and phylogenetic placement, the holotype of 'Turfanosuchus shageduensis' may represent a second individual of Halazhaisuchus qiaoensis, but no apomorphies or unique character combination can be identified to unambiguously unite the two. Our results have important implications for understanding the species richness and palaeobiogeographical distribution of early archosauriforms.
Collapse
Affiliation(s)
- Roland B. Sookias
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corwin Sullivan
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Jun Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Richard J. Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
36
|
Abstract
Dinosaurs arose in the early Triassic in the aftermath of the greatest mass extinction ever and became hugely successful in the Mesozoic. Their initial diversification is a classic example of a large-scale macroevolutionary change. Diversifications at such deep-time scales can now be dissected, modelled and tested. New fossils suggest that dinosaurs originated early in the Middle Triassic, during the recovery of life from the devastating Permo-Triassic mass extinction. Improvements in stratigraphic dating and a new suite of morphometric and comparative evolutionary numerical methods now allow a forensic dissection of one of the greatest turnovers in the history of life. Such studies mark a move from the narrative to the analytical in macroevolutionary research, and they allow us to begin to answer the proposal of George Gaylord Simpson, to explore adaptive radiations using numerical methods.
Collapse
|
37
|
Butler RJ, Sullivan C, Ezcurra MD, Liu J, Lecuona A, Sookias RB. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation. BMC Evol Biol 2014; 14:128. [PMID: 24916124 PMCID: PMC4061117 DOI: 10.1186/1471-2148-14-128] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable ‘wildcards’ in morphological phylogenetic analyses, reducing phylogenetic resolution. Results We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Conclusions Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early archosaurs were distributed over much or all of Pangaea although they may have initially been relatively rare members of faunal assemblages.
Collapse
Affiliation(s)
- Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Ezcurra MD. The osteology of the basal archosauromorph Tasmaniosaurus triassicus from the Lower Triassic of Tasmania, Australia. PLoS One 2014; 9:e86864. [PMID: 24497988 PMCID: PMC3907582 DOI: 10.1371/journal.pone.0086864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022] Open
Abstract
Proterosuchidae are the most taxonomically diverse archosauromorph reptiles sampled in the immediate aftermath of the Permo-Triassic mass extinction and represent the earliest radiation of Archosauriformes (archosaurs and closely related species). Proterosuchids are potentially represented by approximately 15 nominal species collected from South Africa, China, Russia, Australia and India, but the taxonomic content of the group is currently in a state of flux because of the poor anatomic and systematic information available for several of its putative members. Here, the putative proterosuchid Tasmaniosaurus triassicus from the Lower Triassic of Hobart, Tasmania (Australia), is redescribed. The holotype and currently only known specimen includes cranial and postcranial remains and the revision of this material sheds new light on the anatomy of the animal, including new data on the cranial endocast. Several bones are re-identified or reinterpreted, contrasting with the descriptions of previous authors. The new information provided here shows that Tasmaniosaurus closely resembles the South African proterosuchid Proterosuchus, but it differed in the presence of, for example, a slightly downturned premaxilla, a shorter anterior process of maxilla, and a diamond-shaped anterior end of interclavicle. Previous claims for the presence of gut contents in the holotype of Tasmaniosaurus are considered ambiguous. The description of the cranial endocast of Tasmaniosaurus provides for the first time information about the anatomy of this region in proterosuchids. The cranial endocast preserves possibly part of the vomero-nasal ( = Jacobson's) system laterally to the olfactory bulbs. Previous claims of the absence of the vomero-nasal organs in archosaurs, which is suggested by the extant phylogenetic bracket, are questioned because its absence in both clades of extant archosaurs seems to be directly related with the independent acquisition of a non-ground living mode of life.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- GeoBio-Center, Ludwig-Maximilian-Universität München, Munich, Germany
| |
Collapse
|
39
|
Farlow JO, Schachner ER, Sarrazin JC, Klein H, Currie PJ. Pedal proportions of Poposaurus gracilis: convergence and divergence in the feet of archosaurs. Anat Rec (Hoboken) 2014; 297:1022-46. [PMID: 24421153 DOI: 10.1002/ar.22863] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/19/2013] [Accepted: 11/22/2013] [Indexed: 11/07/2022]
Abstract
The crocodile-line basal suchian Poposaurus gracilis had body proportions suggesting that it was an erect, bipedal form like many dinosaurs, prompting questions of whether its pedal proportions, and the shape of its footprint, would likewise "mimic" those of bipedal dinosaurs. We addressed these questions through a comparison of phalangeal, digital, and metatarsal proportions of Poposaurus with those of extinct and extant crocodile-line archosaurs, obligate or facultatively bipedal non-avian dinosaurs, and ground birds of several clades, as well as a comparison of the footprint reconstructed from the foot skeleton of Poposaurus with known early Mesozoic archosaurian ichnotaxa. Bivariate and multivariate analyses of phalangeal and digital dimensions showed numerous instances of convergence in pedal morphology among disparate archosaurian clades. Overall, the foot of Poposaurus is indeed more like that of bipedal dinosaurs than other archosaur groups, but is not exactly like the foot of any particular bipedal dinosaur clade. Poposaurus likely had a digitigrade stance, and its footprint shape could have resembled grallatorid ichnotaxa, unless digit I of the foot of Poposaurus commonly left an impression.
Collapse
Affiliation(s)
- James O Farlow
- Department of Geosciences, Indiana-Purdue University, Fort Wayne, Indiana
| | | | | | | | | |
Collapse
|
40
|
Butler RJ, Rauhut OWM, Stocker MR, Bronowicz R. Redescription of the phytosaursPaleorhinus(‘Francosuchus’)angustifronsandEbrachosuchus neukamifrom Germany, with implications for Late Triassic biochronology. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard J. Butler
- School of Geography; Earth and Environmental Sciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
- GeoBio-Center; Ludwig-Maximilians-Universität München; Richard-Wagner-Straße 10 D-80333 Munich Germany
| | - Oliver W. M. Rauhut
- Bayerische Staatssammlung für Paläontologie und Geologie; Richard-Wagner-Straße 10 D-80333 Munich Germany
| | - Michelle R. Stocker
- Department of Geological Sciences; Jackson School of Geosciences; The University of Texas at Austin; 1 University Station C1100 Austin TX 78712 USA
| | - Robert Bronowicz
- Faculty of Geology; University of Warsaw; Al. Żwirki i Wigury 93 02-089 Warsaw Poland
| |
Collapse
|
41
|
Nesbitt SJ, Butler RJ, Gower DJ. A new archosauriform (Reptilia: Diapsida) from the Manda beds (Middle Triassic) of southwestern Tanzania. PLoS One 2013; 8:e72753. [PMID: 24086264 PMCID: PMC3785487 DOI: 10.1371/journal.pone.0072753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Archosauria and their closest relatives, the non-archosaurian archosauriforms, diversified in the Early and Middle Triassic, soon after the end-Permian extinction. This diversification is poorly documented in most Lower and Middle Triassic rock sequences because fossils of early groups of archosauriforms are relatively rare compared to those of other amniotes. The early Middle Triassic (? late Anisian) Manda beds of southwestern Tanzania form an exception, with early archosaur skeletons being relatively common and preserved as articulated or associated specimens. The Manda archosaur assemblage is exceptionally diverse for the Middle Triassic. However, to date, no non-archosaurian archosauriforms have been reported from these rocks. METHODOLOGY/PRINCIPAL FINDINGS Here, we name a new taxon, Asperoris mnyama gen. et sp. nov., from the Manda beds and thoroughly describe the only known specimen. The specimen consists of a well-preserved partial skull including tooth-bearing elements (premaxilla, maxilla), the nasal, partial skull roof, and several incomplete elements. All skull elements are covered in an autapomorphic highly rugose sculpturing. A unique combination of character states indicates that A. mnyama lies just outside Archosauria as a stem archosaur within Archosauriformes, but more precise relationships of A. mnyama relative to other early archosauriform clades (e.g., Erythrosuchidae) cannot be determined currently. CONCLUSIONS/SIGNIFICANCE Asperoris mnyama is the first confirmed non-archosaurian archosauriform from the Manda beds and increases the morphological and taxonomic diversity of early archosauriforms known from the Middle Triassic. The direct association of A. mnyama with species referable to Archosauria demonstrates that non-archosaurian archosauriforms were present during the rise and early diversification of Archosauria. Non-archosaurian archosauriforms and archosaurs co-occur in fossil reptile assemblages across Pangaea from the late Early Triassic to the end of the Late Triassic.
Collapse
Affiliation(s)
- Sterling J. Nesbitt
- Burke Museum and Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Richard J. Butler
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David J. Gower
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, United Kingdom
| |
Collapse
|
42
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013; 13:208. [PMID: 24063680 PMCID: PMC4016551 DOI: 10.1186/1471-2148-13-208] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc EH Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
- School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Cajsa Lisa Anderson
- University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
| | - Christy A Hipsley
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
| | - Rainer R Schoch
- Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
| |
Collapse
|
43
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013. [PMID: 24063680 DOI: 10.1186/1471-2148-23-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Nesbitt SJ, Desojo JB, Irmis RB. Anatomy, phylogeny and palaeobiology of early archosaurs and their kin. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.21] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Julia B. Desojo
- CONICET, Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470, Buenos Aires, C1405DRJ, Argentina
| | - Randall B. Irmis
- Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
- Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112-0102, USA
| |
Collapse
|
45
|
Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc Natl Acad Sci U S A 2013; 110:8129-33. [PMID: 23630295 DOI: 10.1073/pnas.1302323110] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to their devastating effects on global biodiversity, mass extinctions have had a long-term influence on the history of life by eliminating dominant lineages that suppressed ecological change. Here, we test whether the end-Permian mass extinction (252.3 Ma) affected the distribution of tetrapod faunas within the southern hemisphere and apply quantitative methods to analyze four components of biogeographic structure: connectedness, clustering, range size, and endemism. For all four components, we detected increased provincialism between our Permian and Triassic datasets. In southern Pangea, a more homogeneous and broadly distributed fauna in the Late Permian (Wuchiapingian, ∼257 Ma) was replaced by a provincial and biogeographically fragmented fauna by Middle Triassic times (Anisian, ∼242 Ma). Importantly in the Triassic, lower latitude basins in Tanzania and Zambia included dinosaur predecessors and other archosaurs unknown elsewhere. The recognition of heterogeneous tetrapod communities in the Triassic implies that the end-Permian mass extinction afforded ecologically marginalized lineages the ecospace to diversify, and that biotic controls (i.e., evolutionary incumbency) were fundamentally reset. Archosaurs, which began diversifying in the Early Triassic, were likely beneficiaries of this ecological release and remained dominant for much of the later Mesozoic.
Collapse
|
46
|
Turner AH, Nesbitt SJ. Body size evolution during the Triassic archosauriform radiation. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe first large (>1 m) diapsids appeared near the Permian–Triassic extinction and a subset of diapsids, the archosauriforms, expanded their body size range soon after in the Early–Middle Triassic. Here, we examine body size at key evolutionary events within Archosauriformes during the Triassic and through the end-Triassic extinction. Using femoral length as a body size proxy and a temporally calibrated phylogeny of Archosauriformes, we estimate ancestral body sizes using a maximum likelihood approach and test for the presence of an adapative radiation by comparing the fit of competing evolutionary models. Archosauriform body size is characterized by punctuated change with more change occurring early in the Triassic. Archosaurs crossing the Triassic–Jurassic boundary show a wide range in ancestral size, and dinosaurs (sauropodomorphs and theropods) are considerably larger in the Jurassic. Crocodylomorph origins are characterized by a drop in body size; however, both the relative amount of change and the rate of change are matched among other archosaur clades. Archosauriforms increase in absolute body size through the Triassic and evidence suggests that a directional trend in size increase occurred in the early Mesozoic. The morphological signature of adaptive radiation is rare in comparative data from extant animals but is present at the origination of Archosauriformes.
Collapse
Affiliation(s)
- Alan H. Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|
47
|
Ezcurra MD, Butler RJ, Gower DJ. ‘Proterosuchia’: the origin and early history of Archosauriformes. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe earliest history of Archosauriformes is mainly represented by members of Proterosuchidae and Erythrosuchidae, which are known worldwide from latest Permian to Middle Triassic beds. These two groups were historically combined within ‘Proterosuchia’, with approximately 30 nominal species. Two morphotypes have been recognized among proterosuchians: proterosuchids with a generally more sprawling gait and elongated and low skulls with an overhanging premaxilla, and the more heavily built erythrosuchids, with a probably less sprawling gait and large, presumably hypercarnivorous, skulls. The systematics of ‘Proterosuchia’ was relatively chaotic throughout most of the twentieth century, but currently there exists consensus regarding the non-monophyly of proterosuchians and their phylogenetic position outside all other archosauriforms. In contrast, the delimitation and taxonomic content of Proterosuchidae and Erythrosuchidae remain unstable. Few studies of proterosuchian palaeobiology have been carried out. Current lines of evidence favour a predominantly terrestrial lifestyle for proterosuchians. Limb bone histology indicates rapid continuous growth rates in Proterosuchus and Erythrosuchus before reaching sexual maturity. A better knowledge of proterosuchian anatomy, systematics, evolution and ecology is important for advancing understanding of the origin and early radiation of Archosauriformes and the patterns of biotic recovery following the Permo-Triassic mass extinction event. There remains much research to be carried out in proterosuchian palaeobiology.
Collapse
Affiliation(s)
- Martín D. Ezcurra
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| | - Richard J. Butler
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
| | - David J. Gower
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
48
|
Weinbaum JC. Postcranial skeleton of Postosuchus kirkpatricki (Archosauria: Paracrocodylomorpha), from the Upper Triassic of the United States. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractPostosuchus kirkpatricki is a Late Triassic (Norian) ‘rauisuchid’ archosaur from North America. The initial description of the Postosuchus type material included elements from two poposaurids. This confusion has prevented adequate description of the material. Recent examination of the type material and other specimens of Postosuchus, and of related taxa, has helped clarify the osteology of Postosuchus. The type specimens represent c. 75% of the skeleton. Together with other referred material, Postosuchus remains one of the most completely known rauisuchids. The paratype skeleton, which is relatively complete, would have been c. 3.5–4 m in length, and the holotype would have been closer to 5–6 m.Analysis of the postcranial skeleton of Postosuchus suggests that it may have been an obligate biped (based in part on limb proportions, which are similar to some theropod dinosaurs, the size of the manus (30% of the size of the pes) and the highly reduced nature of the digits and vertebral measurements). Possible postcranial autapomorphies of Postosuchus include a large, rugose triangular supra-acetabular buttress confluent with the dorsal margin of the iliac blade, and a symmetrical pes with digits two and three being roughly equal in length.
Collapse
Affiliation(s)
- Jonathan C. Weinbaum
- Biology Department, Southern Connecticut State University, New Haven, CT 06515, USA (e-mail: )
| |
Collapse
|
49
|
Langer MC, Nesbitt SJ, Bittencourt JS, Irmis RB. Non-dinosaurian Dinosauromorpha. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIchnological evidence suggests that dinosauromorphs originated by the Early Triassic, and skeletal remains of non-dinosaur representatives of the clade occur from the Anisian to the end of the Triassic. These taxa are small- to medium-sized, vary in feeding and locomotor features, and occurred over most of western Pangaea. They include the small lagerpetids from the Mid–Late Triassic of Argentina and the United States, and the larger, quadrupedal Silesauridae, with records in the Middle Triassic of Africa and Argentina, and in the Late Triassic of Europe, the Americas and northern Africa. The former group represents the earliest diverging dinosauromorphs, whereas silesaurids are more closely related to Dinosauria. Other dinosauromorphs include the archetypal early dinosauriform Marasuchus lilloensis (Middle Triassic of Argentina) and poorly known/controversial taxa such as Lewisuchus admixtus and Saltopus elginensis. The earliest diverging dinosauromorphs may have preyed on small animals (including insects), but cranio-dental remains are rare; by contrast, most silesaurids probably included plant material in their diet, as indicated by their modified jaw apparatus and teeth. Our knowledge of the anatomy and thus relationships of non-dinosaurian Dinosauromorpha is still deficient, and we suspect that future discoveries will continue to reveal novel patterns and hypotheses of palaeobiology and biogeography.
Collapse
Affiliation(s)
- Max C. Langer
- Departamento de Biologia-FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | - Sterling J. Nesbitt
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jonathas S. Bittencourt
- Departamento de Biologia-FFCLRP, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
- Instituto de Geociências, Universidade Federal de Minas Gerais,31270-901 Belo Horizonte, Brazil
| | - Randall B. Irmis
- Natural History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, UT 84108-1214, USA
| |
Collapse
|
50
|
Parker WG, Nesbitt SJ. Cranial remains of Poposaurus gracilis (Pseudosuchia: Poposauroidea) from the Upper Triassic, the distribution of the taxon, and its implications for poposauroid evolution. ACTA ACUST UNITED AC 2013. [DOI: 10.1144/sp379.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe partial postcrania of Poposaurus gracilis, a bipedal poposauroid convergent with theropod dinosaurs, has been known for nearly a century, but the skull of P. gracilis has proven elusive. P. gracilis is part of a clade of morphologically divergent pseudosuchians (poposauroids) whose members are sometimes bipedal, lack dentition (i.e. beaks) and some have elongated neural spines (i.e. sails). However, the timing and acquisition of these character states is unknown given the uncertainty of the skull morphology of the ‘mid-grade’ poposauroid P. gracilis. Here, we present the first confirmed skull remains of P. gracilis directly associated with diagnostic pelvic elements that overlap with the holotype. The incomplete skeleton (PEFO 34865) from the Chinle Formation of Petrified Forest National Park (Arizona, USA) includes a left maxilla with a large, mediolaterally compressed tooth, left dentary, right prearticular and a partial postcranium. The character states of P. gracilis (bipedal, ‘sail-less’ and toothed) demonstrate that the evolution of bipedalism, the origin/loss of a dorsal ‘sail’ and the shift to an edentulous beak are complex in poposauroids. P. gracilis is widespread in the Upper Triassic formations in the western USA and is restricted temporally prior to the Adamanian–Revueltian faunal turnover during the Norian.
Collapse
Affiliation(s)
- William G. Parker
- Jackson School of Geosciences, the University of Texas at Austin, 1 University Station, C1100, Austin, TX 78712, USA
- Petrified Forest National Park, PO Box 2217, Petrified Forest, AZ 86028, USA
| | | |
Collapse
|