1
|
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and Perspectives in Relation to the Molecular Basis of Diabetic Retinopathy-A Review. Biomedicines 2023; 11:2951. [PMID: 38001952 PMCID: PMC10669459 DOI: 10.3390/biomedicines11112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus (DM) is a growing problem nowadays, and diabetic retinopathy (DR) is its predominant complication. Currently, DR diagnosis primarily relies on fundoscopic examination; however, novel biomarkers may facilitate that process and make it widely available. In this current review, we delve into the intricate roles of various factors and mechanisms in DR development, progression, prediction, and their association with therapeutic approaches linked to the underlying pathogenic pathways. Specifically, we focus on advanced glycation end products, vascular endothelial growth factor (VEGF), asymmetric dimethylarginine, endothelin-1, and the epigenetic regulation mediated by microRNAs (miRNAs) in the context of DR.
Collapse
Affiliation(s)
- Michał Błaszkiewicz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Agata Walulik
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Kamila Florek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Ignacy Górecki
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Olga Sławatyniec
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
2
|
Nordahl KML, Fedulov V, Holm A, Haanes KA. Intraocular Adeno-Associated Virus-Mediated Transgene Endothelin-1 Delivery to the Rat Eye Induces Functional Changes Indicative of Retinal Ischemia-A Potential Chronic Glaucoma Model. Cells 2023; 12:1987. [PMID: 37566067 PMCID: PMC10417058 DOI: 10.3390/cells12151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Endothelin-1 (ET-1) overactivity has been implicated as a factor contributing to glaucomatous neuropathy, and it has been utilized in animal models of retinal ischemia. The functional effects of long-term ET-1 exposure and possible compensatory mechanisms have, however, not been investigated. This was therefore the purpose of our study. ET-1 was delivered into rat eyes via a single intravitreal injection of 500 µM or via transgene delivery using an adeno-associated viral (AAV) vector. Retinal function was assessed using electroretinography (ERG) and the retinal expression of potentially compensatory genes was evaluated by means of qRT-PCR. Acute ET-1 delivery led to vasoconstriction and a significant reduction in the ERG response. AAV-ET-1 resulted in substantial transgene expression and ERG results similar to the acute ET-1 injections and comparable to other models of retinal ischemia. Compensatory changes were observed, including an increase in calcitonin gene-related peptide (CGRP) gene expression, which may both counterbalance the vasoconstrictive effects of ET-1 and provide neuroprotection. This chronic ET-1 ischemia model might be especially relevant to glaucoma research, mimicking the mild and repeated ischemic events in patients with long-term vascular dysfunction. The compensatory mechanisms, and particularly the role of vasodilatory CGRP in mitigating the retinal damage, warrant further investigation with the aim of evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Karin M. L. Nordahl
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| | - Vadim Fedulov
- Clinical and Medical Affairs, Radiometer, 2700 Brønshøj, Denmark;
| | - Anja Holm
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Kristian A. Haanes
- Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark; (A.H.); (K.A.H.)
| |
Collapse
|
3
|
Han L, Zhang M, Yang Z, Diao K, Jia X, Li M, Tian G. Huoxue-Tongluo-Lishui-Decoction is visual-protective against retinal ischemia-reperfusion injury. Pharmacotherapy 2020; 125:109998. [PMID: 32070875 DOI: 10.1016/j.biopha.2020.109998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
Retinal ischemia reperfusion injury (IRI) is a leading cause of visual impairment or blindness, and an effective way to prevent the visual loss needs to be developed. Although decades of clinical application of Huoxue-Tongluo-Lishui-Decoction (HTLD) has demonstrated its reliable clinical efficacy against retinal IRI, no convincing randomized controlled trials were conducted in humans or animals, and the associated mechanism still needs to be explored. To confirm the protective effect of HTLD against retinal IRI and to explore its underlying mechanisms, a standard retinal IRI animal model, randomized controlled trials, objective evaluation and examination methods were adopted in this study. Flash visual evoked potentials (F-VEP) was performed 8 weeks post-reperfusion. The results showed that the medium dose of HTLD had better treatment effects than low dose of HTLD. High dose of HTLD did not further improve visual function relative to medium dose of HTLD, but had poor performance in the latency of P2 wave. The angio-optical coherence tomography (angio-OCT) examination showed that retinal nerve fiber layer (RNFL) became edematous in the early stage, then the edema subsided, and RNFL became thinning in the late stage. HTLD reduced the swelling of RNFL in the early stage and prevented the thinning of RNFL in the late stage. Similar to F-VEP, medium dose of HTLD has the best neural-protective effects against retinal IRI. In mechanisms, HTLD treatment not only enhanced autophagy at 6 h after reperfusion, but extended the enhancing effect until at least 24 h. HTLD treatment significantly reduced the cleaved Caspase-3, cleaved PARP and Caspase-3 activity at 48 h after reperfusion. HTLD inhibited neuro-toxic cytokines expression in retinal IRI by modulating Akt/NF-kB signaling. HTLD treatment enhanced the expressions of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS), and lower the concentration of free glutamate in retina after reperfusion. The phosphorylation of iNOS increased significantly in retinal IRI at 6 h, and HTLD treatment suppressed the phosphorylation of Inducible nitric oxide synthetase (iNOS). In conclusion, HTLD is visual-protective against retinal IRI, and the regulation of autophagy, apoptosis and neuro-toxic mediators may be the underlying mechanisms. These findings may provide new ideas for the clinical treatment of retinal IRI related diseases.
Collapse
Affiliation(s)
- Longhui Han
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China; Tianjin Medical University Eye Hospital/Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China.
| | - Zanzhang Yang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Ke Diao
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Xin Jia
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Mingran Li
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Genquan Tian
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| |
Collapse
|
4
|
Hernández C, Simó-Servat A, Bogdanov P, Simó R. Diabetic retinopathy: new therapeutic perspectives based on pathogenic mechanisms. J Endocrinol Invest 2017; 40:925-935. [PMID: 28357783 DOI: 10.1007/s40618-017-0648-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and preventable blindness and represents a significant socioeconomic cost for healthcare systems worldwide. In early stages of DR the only therapeutic strategy that physicians can offer is a tight control of the risk factors for DR (mainly blood glucose and blood pressure). The currently available treatments for DR are applicable only at advanced stages of the disease and are associated with significant adverse effects. Therefore, new treatments for the early stages of DR are needed. However, in early stages of DR invasive treatments such as intravitreal injections are too aggressive, and topical treatment seems to be an emerging route. In the present review, therapeutic strategies based on the main pathogenic mechanisms involved in the development of DR are reviewed. The main gap in the clinical setting is the treatment of early stages of DR and, therefore, this review emphasizes in this issue by giving an overview of potential druggable targets. By understanding of disease-specific pathogenic mechanisms, biological heterogeneity and progression patterns in early and advanced DR a more personalised approach to patient treatment will be implemented.
Collapse
Affiliation(s)
- C Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - A Simó-Servat
- Servicio de Endocrinología y Nutrición, Hospital Universitario de Bellvitge, Universitat de Barcelona, L'Hospitalet del LLobregat, Barcelona, Spain
| | - P Bogdanov
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - R Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
5
|
Solà-Adell C, Bogdanov P, Hernández C, Sampedro J, Valeri M, Garcia-Ramirez M, Pasquali C, Simó R. Calcium Dobesilate Prevents Neurodegeneration and Vascular Leakage in Experimental Diabetes. Curr Eye Res 2017; 42:1273-1286. [PMID: 28574750 DOI: 10.1080/02713683.2017.1302591] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE The mechanisms involved in the reported beneficial effects of Calcium dobesilate monohydrate (CaD) for the treatment of diabetic retinopathy (DR) remain to be elucidated. The main aim of the present study is to examine whether CaD prevents early events in the pathogenesis of DR such as neurodegeneration and vascular leakage. In addition, putative mediators of both neurodegeneration (glutamate/GLAST, ET-1/ETB receptor) and early microvascular impairment (ET-1/ETA receptor, oxidative stress, VEGF, and the PKC-delta-p38 MAPK pathway) have been examined. METHODS Diabetic (db/db) mice were randomly assigned to daily oral treatment with CaD (200 mg/Kg/day) (n = 12) or vehicle (n = 12) for 14 days. In addition, 12 non-diabetic (db/+) mice matched by age were used as the control group. Functional abnormalities were assessed by electroretinography. Neurodegeneration and microvascular abnormalities were evaluated by immunohistochemistry and Western blot. Glutamate was determined by HPLC. RESULTS CaD significantly decreased glial activation and apoptosis and produced a significant improvement in the electroretinogram parameters. Mechanistically, CaD prevented the diabetes-induced up-regulation of ET-1 and its cognate receptors (ETA-R and ETB-R), which are involved in microvascular impairment and neurodegeneration, respectively. In addition, treatment with CaD downregulated GLAST, the main glutamate transporter, and accordingly prevented the increase in glutamate. Finally, CaD prevented oxidative stress, and the upregulation of VEGF and PKC delta-p38 MAPK pathway induced by diabetes, thus resulting in a significant reduction in vascular leakage. CONCLUSIONS Our findings demonstrate for the first time that CaD exerts neuroprotection in an experimental model of DR. In addition, we provide first evidence that CaD prevents the overexpression of ET-1 and its receptors in the diabetic retina. These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of CaD in very early stages of DR.
Collapse
Affiliation(s)
- Cristina Solà-Adell
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Patricia Bogdanov
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Cristina Hernández
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Joel Sampedro
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Marta Valeri
- c Unit of High Technology , Vall d'Hebron Research Institute , Barcelona , Spain
| | - Marta Garcia-Ramirez
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| | - Christian Pasquali
- d OM Pharma, a Vifor Pharma Co , Preclinical Research , Meyrin , Geneva , Switzerland
| | - Rafael Simó
- a Diabetes and Metabolism Research Unit , Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain.,b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III (ISCIII) , Madrid , Spain
| |
Collapse
|
6
|
Khuu LA, Tayyari F, Sivak JM, Flanagan JG, Singer S, Brent MH, Huang D, Tan O, Hudson C. Aqueous humor endothelin-1 and total retinal blood flow in patients with non-proliferative diabetic retinopathy. Eye (Lond) 2017; 31:1443-1450. [PMID: 28548649 DOI: 10.1038/eye.2017.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/14/2017] [Indexed: 12/16/2022] Open
Abstract
PurposeThe purpose of this study was to determine the association between aqueous ET-1 levels and total retinal blood flow (TRBF) in patients with non-insulin-dependent type 2 diabetes mellitus (T2DM) and early non-proliferative diabetic retinopathy (NPDR).Patients and methodsA total of 15 age-matched controls and 15 T2DM patients with NPDR were recruited into the study. Aqueous humor (~80-120 μl) was collected before cataract surgery to measure the levels of ET-1 using suspension multiplex array technology. Four weeks post surgery, six images were acquired to assess TRBF using the prototype RTVue Doppler FD-OCT (Optovue, Inc., Fremont, CA, USA) with a double circular scan protocol. At the same visit, forearm blood was collected to determine plasma glycosylated hemoglobin (A1c) levels.ResultsAqueous ET-1 was significantly elevated in the NPDR group compared with the control group (3.5±1.8 vs 2.2±0.8, P=0.02). TRBF was found to be significantly reduced in the NPDR group compared with the control group (34.5±9.1 vs 44.1±4.6 μl/min, P=0.002). TRBF and aqueous ET-1 were not correlated within the NPDR group (r=-0.24, P=0.22). In a multivariate analysis, high A1c was associated with reduced TRBF and aqueous ET-1 levels across control and NPDR groups (P<0.01).ConclusionAqueous ET-1 levels were increased while TRBF was reduced in patients with NPDR compared with the control group. Although not directly associated, the vasoconstrictory effects of ET-1 are consistent with a reduced TRBF observed in early DR. ET-1 dysregulation may contribute to a reduction in retinal blood flow during early DR.
Collapse
Affiliation(s)
- L-A Khuu
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vision Science and Ophthalmology, Toronto Western Hospital, Toronto, ON, Canada
| | - F Tayyari
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - J M Sivak
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - J G Flanagan
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vision Science and Ophthalmology, Toronto Western Hospital, Toronto, ON, Canada.,School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - S Singer
- Vision Science and Ophthalmology, Toronto Western Hospital, Toronto, ON, Canada
| | - M H Brent
- Vision Science and Ophthalmology, Toronto Western Hospital, Toronto, ON, Canada
| | - D Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - O Tan
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - C Hudson
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Vision Science and Ophthalmology, Toronto Western Hospital, Toronto, ON, Canada.,School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
7
|
Endothelins Inhibit Osmotic Swelling of Rat Retinal Glial and Bipolar Cells by Activation of Growth Factor Signaling. Neurochem Res 2016; 41:2598-2606. [PMID: 27278757 DOI: 10.1007/s11064-016-1971-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022]
Abstract
Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.
Collapse
|
8
|
Kal A, Kal O, Akillioglu I, Celik E, Yilmaz M, Gonul S, Solmaz M, Onal O. The protective effect of prophylactic ozone administration against retinal ischemia-reperfusion injury. Cutan Ocul Toxicol 2016; 36:39-47. [PMID: 27028056 DOI: 10.3109/15569527.2016.1156120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Retinal ischemia-reperfusion (IR) injury is associated with many ocular diseases. Retinal IR injury leads to the death of retinal ganglion cells (RGCs), loss of retinal function and ultimately vision loss. The aim of this study was to show the protective effects of prophylactic ozone administration against retinal IR injury. MATERIALS AND METHODS A sham group (S) (n = 7) was administered physiological saline (PS) intraperitoneally (i.p.) for 7 d. An ischemia reperfusion (IR) group (n = 7) was subjected to retinal ischemia followed by reperfusion for 2 h. An ozone group (O) (n = 7) was administered 1 mg/kg of ozone i.p. for 7 d. In the ozone + IR (O + IR) group (n = 7), 1 mg/kg of ozone was administered i.p. for 7 d before the IR procedure and at 8 d, the IR injury was created (as in IR group). The rats were anesthetized after second hour of reperfusion and their intracardiac blood was drawn completely and they were sacrificed. Blood samples were sent to a laboratory for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), total oxidant score (TOS) and total antioxidant capacity (TAC). The degree of retinal injury was evaluated according to changes in retinal cells and necrotic and apoptotic cells using the TUNEL method. Data were evaluated statistically with the Kruskal-Wallis test. RESULTS The number of RGCs and the inner retinal thickness were significantly decreased after ischemia, and treatment with ozone significantly inhibited retinal ischemic injury. In the IR group, the degree of retinal injury was found to be the highest. In the O + IR group, retinal injury was found to be decreased in comparison to the IR group. In the ozone group without retinal IR injury, the retinal injury score was the lowest. The differences in the antioxidant parameters SOD, GSH-Px and TAC were increased in the ozone group and the lowest in the IR group. The oxidant parameters MDA and TOS were found to be the highest in the IR group and decreased in the ozone group. DISCUSSION IR injury is also positively correlated with the degree of early apoptosis. This study demonstrated that ozone can attenuate subsequent ischemic damage in the rat retina through triggering the increase of the antioxidant capacity.
Collapse
Affiliation(s)
- Ali Kal
- a Department of Ophthalmology
| | | | - Ishak Akillioglu
- c Department of Pediatric Surgery , Baskent University, Medical Faculty , Konya , Turkey
| | | | | | | | | | - Ozkan Onal
- h Department of Anesthesiology and Reanimation , Medical Faculty, Selcuk University , Konya , Turkey
| |
Collapse
|
9
|
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy. J Diabetes Res 2016; 2016:9508541. [PMID: 27123463 PMCID: PMC4830713 DOI: 10.1155/2016/9508541] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.
Collapse
Affiliation(s)
- Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- *Cristina Hernández: and
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabolicas Asociadas) and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- *Giovanni Casini:
| |
Collapse
|
10
|
Liu J, Yeung PKK, Cheng L, Lo ACY, Chung SSM, Chung SK. Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy. SCIENCE CHINA-LIFE SCIENCES 2015; 58:521-30. [PMID: 25985753 DOI: 10.1007/s11427-015-4860-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1 (-/-)) mice, Epac2-deficient (Epac2 (-/-)) mice, and their wild type counterparts (Epac1 (+/+) and Epac2 (+/+)). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 (-/-) ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2 (+/+). However, Epac1 (-/-) ipsilateral retinae displayed similar pathology as those in Epac1 (+/+) mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jin Liu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
11
|
Simó R, Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 2014; 25:23-33. [PMID: 24183659 DOI: 10.1016/j.tem.2013.09.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/02/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the development of microvascular abnormalities. Therefore, the study of the underlying mechanisms leading to neurodegeneration and the identification of the mediators in the crosstalk between neurodegeneration and microangiopathy will be essential for the development of new therapeutic strategies. In this review, an updated discussion of the mechanisms involved in neurodegeneration, as well as the link between neurodegeneration and microangiopathy, is presented. Finally, the therapeutic implications and new perspectives based on identifying those patients with retinal neurodegeneration are given.
Collapse
Affiliation(s)
- Rafael Simó
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain.
| | - Cristina Hernández
- CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas) and Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, 08035 Barcelona, Spain
| | | |
Collapse
|
12
|
Cheng YS, Dai DZ, Dai Y. AQP4 KO exacerbating renal dysfunction is mediated by endoplasmic reticulum stress and p66Shc and is attenuated by apocynin and endothelin antagonist CPU0213. Eur J Pharmacol 2013; 721:249-58. [PMID: 24135202 DOI: 10.1016/j.ejphar.2013.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 08/31/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
Aquaporin 4 (AQP4) is essential in normal kidney. We hypothesized that AQP4 knockout (KO) may exacerbate pro-inflammatory factors in the stress induced renal insufficiency. Mechanisms underlying are likely due to activating renal oxidative stress adaptor p66Shc and endoplasmic reticulum (ER) stress that could be mediated by endothelin (ET)-NADPH oxidase (NOX) pathway. AQP4 KO and wild type (WT) mice were randomly divided into 4 groups: control, isoproterenol (1mg/kg, s.c., 5d), and interventions in the last 3 days with either apocynin (NADPH oxidase inhibitor, 100mg/kg, p.o.) or CPU0213 (a dual endothelin receptor antagonist 200mg/kg, p.o.). In addition, HK2 cells were cultured in 4 groups: control, isoproterenol (10(-6)M), intervened with apocynin (10(-6)M) or CPU0213 (10(-6)M). In AQP4 KO mice elevated creatinine levels were further increased by isoproterenol compared to AQP4 KO alone. In RT-PCR, western blot and immunohistochemical assay p66Shc and PERK were significantly increased in the kidney of AQP4 KO mice, associated with pro-inflammatory factors CX40, CX43, MMP-9 and ETA compared to the WT mice. Expression of AQP4 was escalated in isoproterenol incubated HK2 cells, and the enhanced protein of PERK and p-PERK/PERK, and p66shc in vivo and in vitro were significantly attenuated by either apocynin or CPU0213. In conclusion, AQP4 KO deteriorates renal dysfunction due to exacerbating ER stress and p66Shc in the kidney. Either endothelin antagonism or NADPH oxidase blockade partly relieves renal dysfunction through suppressing abnormal biomarkers by APQ4 KO and isoproterenol in the kidney.
Collapse
Affiliation(s)
- Yu-Si Cheng
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | | | | |
Collapse
|
13
|
Veréb Z, Lumi X, Andjelic S, Globocnik-Petrovic M, Urbancic M, Hawlina M, Facskó A, Petrovski G. Functional and molecular characterization of ex vivo cultured epiretinal membrane cells from human proliferative diabetic retinopathy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:492376. [PMID: 24195074 PMCID: PMC3806336 DOI: 10.1155/2013/492376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022]
Abstract
Characterization of the cell surface marker phenotype of ex vivo cultured cells growing out of human fibrovascular epiretinal membranes (fvERMs) from proliferative diabetic retinopathy (PDR) can give insight into their function in immunity, angiogenesis, and retinal detachment. FvERMs from uneventful vitrectomies due to PDR were cultured adherently ex vivo. Surface marker analysis, release of immunity- and angiogenesis-pathway-related factors upon TNF α activation and measurement of the intracellular calcium dynamics upon mechano-stimulation using fluorescent dye Fura-2 were all performed. FvERMs formed proliferating cell monolayers when cultured ex vivo, which were negative for endothelial cell markers (CD31, VEGFR2), partially positive for hematopoietic- (CD34, CD47) and mesenchymal stem cell markers (CD73, CD90/Thy-1, and PDGFR β ), and negative for CD105. CD146/MCAM and CD166/ALCAM, previously unreported in cells from fvERMs, were also expressed. Secretion of 11 angiogenesis-related factors (DPPIV/CD26, EG-VEGF/PK1, ET-1, IGFBP-2 and 3, IL-8/CXCL8, MCP-1/CCL2, MMP-9, PTX3/TSG-14, Serpin E1/PAI-1, Serpin F1/PEDF, TIMP-1, and TSP-1) were detected upon TNF α activation of fvERM cells. Mechano-stimulation of these cells induced intracellular calcium propagation representing functional viability and role of these cells in tractional retinal detachment, thus serving as a model for studying tractional forces present in fvERMs in PDR ex vivo.
Collapse
Affiliation(s)
- Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen H-4010, Hungary
| | - Xhevat Lumi
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sofija Andjelic
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Andrea Facskó
- Department of Ophthalmology, University of Szeged, H-6720, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen H-4010, Hungary
- Department of Ophthalmology, University of Szeged, H-6720, Hungary
| |
Collapse
|
14
|
Castiglione A, Guaran V, Astolfi L, Orioli E, Zeri G, Gemmati D, Bovo R, Montaldi A, Alghisi A, Martini A. Karyotype-phenotype correlation in partial trisomies of the short arm of chromosome 6: a family case report and review of the literature. Cytogenet Genome Res 2013; 141:243-59. [PMID: 23942271 DOI: 10.1159/000353846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
The first child (proband) of nonconsanguineous Caucasian parents underwent genetic investigation because she was affected with congenital choanal atresia, heart defects and kidney hyposplasia with mild transient renal insufficiency. The direct DNA sequencing after PCR of the CHD7 gene, which is thought to be responsible for approximately 60-70% of the cases of CHARGE syndrome/association, found no mutations. The cytogenetic analysis (standard GTG banding karyotype) revealed the presence of extrachromosomal material on 10q. The chromosome analysis was completed with array CGH (30 kb resolution), MLPA and FISH, which allowed the identification of three 6p regions (6p.25.3p23 × 3): 2 of these regions are normally located on chromosome 6, and the third region is translocated to the long arm of chromosome 10. The same chromosomal rearrangement was subsequently found in the father, who was affected with congenital ptosis and progressive hearing loss, and in the proband's sister, the second child, who presented at birth with choanal atresia and congenital heart defects. The mutated karyotypes, which were directly inherited, are thought to be responsible for a variable phenotype, including craniofacial dysmorphisms, choanal atresia, congenital ptosis, sensorineural hearing loss, heart defects, developmental delay, and renal dysfunction. Nevertheless, to achieve a complete audiological assessment of the father, he underwent further investigation that revealed an increased level of the coagulation factor XIII (300% increased activity), fluctuating levels of fibrin D-dimer degradation products (from 296 to 1,587 ng/ml) and a homoplasmic mitochondrial DNA mutation: T961G in the MTRNR1 (12S rRNA) gene. He was made a candidate for cochlear implantation. Preoperative high-resolution computed tomography and magnetic resonance imaging of the temporal bone revealed the presence of an Arnold-Chiari malformation type I. To the best of our knowledge, this study is the second report on partial 6p trisomy that involves the 10q terminal region. Furthermore, we report the first case of documented Arnold-Chiari malformation type I and increased factor XIII activity associated with 6p trisomy. We present a comprehensive report of the familial cases and an exhaustive literature review.
Collapse
Affiliation(s)
- A Castiglione
- Department of Neurosciences, Complex Operative Unit of Otorhinolaryngology and Otosurgery, Padua University Hospital, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zou YY, Kan EM, Lu J, Ng KC, Tan MH, Yao L, Ling EA. Primary blast injury-induced lesions in the retina of adult rats. J Neuroinflammation 2013; 10:79. [PMID: 23819902 PMCID: PMC3707737 DOI: 10.1186/1742-2094-10-79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/27/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina. METHODS Adult male Sprague-Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL. RESULTS The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury. CONCLUSIONS Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Müller cells and suggest important roles for these cells in retina pathophysiology after blast.
Collapse
Affiliation(s)
- Ying-Ying Zou
- Department of Pathology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim BJ, Braun TA, Wordinger RJ, Clark AF. Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener 2013; 8:21. [PMID: 23800383 PMCID: PMC3695831 DOI: 10.1186/1750-1326-8-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/11/2013] [Indexed: 11/29/2022] Open
Abstract
Retinal ischemia/reperfusion (I/R) injury is an important cause of visual impairment. However, questions remain on the overall I/R mechanisms responsible for progressive damage to the retina. In this study, we used a mouse model of I/R and characterized the pathogenesis by analyzing temporal changes of retinal morphology and function associated with changes in retinal gene expression. Transient ischemia was induced in one eye of C57BL/6 mice by raising intraocular pressure to 120 mmHg for 60 min followed by retinal reperfusion by restoring normal pressure. At various time points post I/R, retinal changes were monitored by histological assessment with H&E staining and by SD-OCT scanning. Retinal function was also measured by scotopic ERG. Temporal changes in retinal gene expression were analyzed using cDNA microarrays and real-time RT-PCR. In addition, retinal ganglion cells and gliosis were observed by immunohistochemistry. H&E staining and SD-OCT scanning showed an initial increase followed by a significant reduction of retinal thickness in I/R eyes accompanied with cell loss compared to contralateral control eyes. The greatest reduction in thickness was in the inner plexiform layer (IPL) and inner nuclear layer (INL). Retinal detachment was observed at days 3 and 7 post- I/R injury. Scotopic ERG a- and b-wave amplitudes and implicit times were significantly impaired in I/R eyes compared to contralateral control eyes. Microarray data showed temporal changes in gene expression involving various gene clusters such as molecular chaperones and inflammation. Furthermore, immunohistochemical staining confirmed Müller cell gliosis in the damaged retinas. The time-dependent changes in retinal morphology were significantly associated with functional impairment and altered retinal gene expression. We demonstrated that I/R-mediated morphological changes the retina closely associated with functional impairment as well as temporal changes in retinal gene expression. Our findings will provide further understanding of molecular pathogenesis associated with ischemic injury to the retina.
Collapse
Affiliation(s)
- Byung-Jin Kim
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|