1
|
Shankaranarayana AH, Meduri B, Pujar GV, Hariharapura RC, Sethu AK, Singh M, Bidye D. Restoration of p53 functions by suppression of mortalin-p53 sequestration: an emerging target in cancer therapy. Future Med Chem 2023; 15:2087-2112. [PMID: 37877348 DOI: 10.4155/fmc-2023-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 10/26/2023] Open
Abstract
Functional inactivation of wild-type p53 is a major trait of cancerous cells. In many cases, such inactivation occurs by either TP53 gene mutations or due to overexpression of p53 binding partners. This review focuses on an overexpressed p53 binding partner called mortalin, a mitochondrial heat shock protein that sequesters both wild-type and mutant p53 in malignant cells due to changes in subcellular localization. Clinical evidence suggests a drastic depletion of the overall survival time of cancer patients with high mortalin expression. Therefore, mortalin-p53 sequestration inhibitors could be game changers in improving overall survival rates. This review explores the consequences of mortalin overexpression and challenges, status and strategies for accelerating drug discovery to suppress mortalin-p53 sequestration.
Collapse
Affiliation(s)
- Akshatha Handattu Shankaranarayana
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Durgesh Bidye
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
2
|
Bagci O, Tumer S, Altungoz O. Chromosome 1p status in neuroblastoma correlates with higher expression levels of miRNAs targeting neuronal differentiation pathway. In Vitro Cell Dev Biol Anim 2023; 59:100-108. [PMID: 36800078 DOI: 10.1007/s11626-023-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Neuroblastoma (NB) is characterized by acquired segmental and numerical chromosome aberrations. Although deletions of distal 1p and 11q are frequent alterations, no candidate tumor suppressor gene residing in these chromosomal sites could be identified so far. In the present study, we detected the genomic imbalances of six neuroblastoma cell lines using the multiplex ligation-dependent probe amplification (MLPA) technique and the microRNA (miRNA) expression profiles of the cell lines by a microarray study. According to MLPA results, we aimed to assess the miRNA expression profiles of the cell lines harboring 11q and 1p deletions. The cell lines with 1p deletions revealed statistically significant higher levels of expression for 29 miRNAs in contrast to the cell lines without 1p deletion in microarray study. We also performed GO enrichment analysis for predicted targets of the differentially expressed miRNAs. According to GO enrichment analysis, miRNAs that showed the high change in expression was associated with neuronal differentiation. We showed that hsa-miR-494, hsa-miR-495, and hsa-miR-543 target most of mRNAs in neuronal differentiation pathway. Although limited to the cell lines, our results highly suggest that NBs with different segmental chromosome abnormalities may have different dysregulated miRNA expression signatures that target the genes involved in neuronal differentiation.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Department of Medical Genetics, School of Medicine, Selcuk University, Konya, Turkey
| | - Sait Tumer
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.,Acibadem Genetic Diagnosis Center, Istanbul, Turkey
| | - Oguz Altungoz
- Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| |
Collapse
|
3
|
Benbrook DM. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front Cell Dev Biol 2022; 10:848682. [PMID: 35281109 PMCID: PMC8906462 DOI: 10.3389/fcell.2022.848682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Heat Shock Proteins of the 70-kDa family (HSP70s) do not cause cancer by themselves, but instead protect cells as they transform into cancer. These molecular chaperones bind numerous client proteins and utilize ATP hydrolysis to facilitate proper protein folding, formation of functional complexes and cellular localizations, or degradation of irreparably damaged proteins. Their transient upregulation by stressful situations avoids induction of programmed cell death. Continued upregulation of the mortalin, heat shock cognate (hsc70) and glucose regulated protein 78 (Grp78) support cancer development and progression by supporting pro-proliferative and metabolic functions and repressing pro-death functions of oncoproteins and tumor suppressor proteins. This review describes the discovery and development of a lead anti-cancer compound, sulfur heteroarotinoid A2 (SHetA2, NSC726189), which was originally developed to bind retinoic acid receptors, but was subsequently found to work independently of these receptors. The discovery and validation of mortalin, hsc70 and Grp78 as SHetA2 target proteins is summarized. The documented and hypothesized roles of these HSP70 proteins and their clients in the mechanism of SHetA2 inhibition of cancer without toxicity are discussed. Use of this mechanistic data to evaluate drug action in a cancer clinical trial and develop synergistic drug combinations is explained. Knowledge needed to optimize SHetA2 analogs for use in cancer therapy and prevention is proposed as future directions.
Collapse
|
4
|
Abstract
Recently, research data have shown that vitamin A (VA, retinol) as a micronutrient participates in the regulation of glucose and lipid metabolism. Since diabetes is a metabolic disease, it is imperative to reveal the relationship of VA and diabetes. This review was aimed to summarize the current understanding of VA and its metabolites in diabetes. Since April of 2020, the authors have searched the PubMed using key words and retrieved articles that focused on diabetes and VA or its metabolites. Based on the published data, it appears that the development of type 1 diabetes leads to reduction of blood VA level in human and animals, and increase of hepatic VA store in experimental animals. On the other hand, the mutual impacts of type 2 diabetes and VA intake and blood VA level on each other appear to be uncertain. Retinoic acid, the active metabolite of VA, has been studied extensively for the treatment of diabetic complications. The current data appear to indicate that the development of diabetes is associated with changes of VA metabolism. More carefully designed clinical and laboratory experiments are needed to reveal the impacts of diabetes on VA metabolism and the role of VA in the development and treatment of diabetes.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
5
|
Trigo D, Goncalves MB, Corcoran JPT. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 2019; 33:7225-7235. [PMID: 30857414 PMCID: PMC6529336 DOI: 10.1096/fj.201802097r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-β signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-β signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-β signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.—Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling.
Collapse
Affiliation(s)
- Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Lv LJ, Li J, Qiao HB, Nie BJ, Lu P, Xue F, Zhang ZM. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage. Mol Med Rep 2017; 15:1368-1372. [PMID: 28098881 DOI: 10.3892/mmr.2017.6126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucose‑regulated protein 75 (GRP75) is a member of the heat shock protein 70 family and previous studies have demonstrated that GRP75 is involved in diseases of the central nervous system. However, the biological function of GRP75 in intracerebral hemorrhage (ICH) remains to be clarified. Thus, the aim of the present study was to evaluate the effects of GRP75 in a rat model of ICH. Western blotting was used to detect the protein expression of GRP75, active caspase‑3, Bax, Bcl‑2, p‑Akt and Akt in brain tissues following ICH. The levels of tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β were evaluated using ELISA assay. Expression of GRP75 mRNA and protein was demonstrated to be reduced in the brain tissues of rats with ICH compared with sham‑operated rats. In addition, overexpression of GRP75 in brain tissues with ICH significantly inhibited the production of the inflammatory cytokines TNF‑α and IL-1β and increased Bcl‑2/decreased Bax levels compared with ICH alone. Furthermore, overexpression of GRP75 in brain tissues with ICH resulted in significantly increased phosphorylation of Akt compared with ICH alone. Therefore, the present study demonstrated, for the first time to the best of our knowledge, significantly reduced GRP75 expression in brain tissues following ICH, and that overexpression of GRP75 inhibits inflammation and potentially inhibits neuronal apoptosis in a rat model of ICH. GRP75 may, therefore, represent a promising target in the treatment of ICH.
Collapse
Affiliation(s)
- Lian-Jie Lv
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jia Li
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Hai-Bo Qiao
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ben-Jin Nie
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Peng Lu
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Feng Xue
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhi-Ming Zhang
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
7
|
Wadhwa R, Priyandoko D, Gao R, Widodo N, Nigam N, Li L, Ahn HM, Yun CO, Ando N, Mahe C, Kaul SC. Stress chaperone mortalin regulates human melanogenesis. Cell Stress Chaperones 2016; 21:631-44. [PMID: 27056733 PMCID: PMC4907994 DOI: 10.1007/s12192-016-0688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
In order to identify the cellular factors involved in human melanogenesis, we carried out shRNA-mediated loss-of-function screening in conjunction with induction of melanogenesis by 1-oleoyl-2-acetyl-glycerol (OAG) in human melanoma cells using biochemical and visual assays. Gene targets of the shRNAs (that caused loss of OAG-induced melanogenesis) and their pathways, as determined by bioinformatics, revealed involvement of proteins that regulate cell stress response, mitochondrial functions, proliferation, and apoptosis. We demonstrate, for the first time, that the mitochondrial stress chaperone mortalin is crucial for melanogenesis. Upregulation of mortalin was closely associated with melanogenesis in in vitro cell-based assays and clinical samples of keloids with hyperpigmentation. Furthermore, its knockdown resulted in compromised melanogenesis. The data proposed mortalin as an important protein that may be targeted to manipulate pigmentation for cosmetic and related disease therapeutics.
Collapse
Affiliation(s)
- Renu Wadhwa
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Didik Priyandoko
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biology, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Ran Gao
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nashi Widodo
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Nupur Nigam
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ling Li
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 133-791, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 133-791, South Korea
| | - Nobuhiro Ando
- KK Chanel Research and Technology Development Laboratory, 1-1-5, Yamate, Funabashi-Chiba, 273-0045, Japan
| | - Christian Mahe
- KK Chanel Research and Technology Development Laboratory, 1-1-5, Yamate, Funabashi-Chiba, 273-0045, Japan
| | - Sunil C Kaul
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
8
|
Radulovic M, Baqader NO, Stoeber K, Godovac-Zimmermann J. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts. J Proteome Res 2016; 15:1907-38. [PMID: 27142241 DOI: 10.1021/acs.jproteome.6b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.,Insitute of Oncology and Radiology , Pasterova 14, 11000 Belgrade, Serbia
| | - Noor O Baqader
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London , University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
9
|
Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am J Transl Res 2016; 8:1626-1640. [PMID: 27186289 PMCID: PMC4859894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
NPGPx (GPx7) is a member of the glutathione peroxidase (GPx) family without any GPx activity. GPx7 displays a unique function which serves as a stress sensor/transmitter to transfer the signal to its interacting proteins by shuttling disulfide bonds in response to various stresses. In this review, we focus on the exceptional structural and biochemical features of GPx7 compared to other 7 family members and described how GPx7 regulates the diverse signaling targets including GRP78, PDI, CPEB2, and XRN2, and their different roles in unfolded protein response, oxidative stress, and non-targeting siRNA stress response, respectively. The phenotypes associated with GPx7 deficiency in mouse or human including ROS accumulations, highly elevated cancer incidences, auto-immune disorders, and obesity are also revealed in this paper. Finally, we compare GPx8 with GPx7, which shares the highest structural similarity but different biological roles in stress response. These insights have thus provided a more comprehensive understanding of the role of GPx7 in the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Graduate Program of Translational Medicine, National Taiwan UniversityTaipei 106, Taiwan
| | - Pei-Chi Wei
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
| | - Jye-Lin Hsu
- Research Center for Tumor Medical Science, China Medical UniversityTaichung 404, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 404, Taiwan
| | - Fang-Yi Su
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei 112, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Institute of Clinical Medicine, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
10
|
Gassié L, Lombard A, Moraldi T, Bibonne A, Leclerc C, Moreau M, Marlier A, Gilbert T. Hspa9 is required for pronephros specification and formation inXenopus laevis. Dev Dyn 2015; 244:1538-49. [DOI: 10.1002/dvdy.24344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Lionel Gassié
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
| | | | - Tiphanie Moraldi
- Université Lyon 1 Institut Universitaire Technologique; Villeurbanne France
| | - Anne Bibonne
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Catherine Leclerc
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Marc Moreau
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
| | - Arnaud Marlier
- Yale' School of Medicine Department of Internal Medicine; New Haven Connecticut USA
| | - Thierry Gilbert
- Université Toulouse 3 Centre de Biologie du Développement; Toulouse France
- CNRS UMR 5547; Toulouse France
- Institut National de la Santé et de la Recherche Médicale; Toulouse France
| |
Collapse
|
11
|
Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts. Neurochem Int 2015; 95:109-18. [PMID: 26361721 DOI: 10.1016/j.neuint.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 12/31/2022]
Abstract
Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called "Queen of Ayurveda" for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory.
Collapse
|
12
|
Identification of amino acid appended acridines as potential leads to anti-cancer drugs. Bioorg Med Chem Lett 2015; 25:3854-8. [DOI: 10.1016/j.bmcl.2015.07.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/08/2015] [Accepted: 07/18/2015] [Indexed: 01/01/2023]
|
13
|
Abstract
Gliomas are the most frequent type of primary brain tumor in adults. Their highly proliferative nature, complex cellular composition, and ability to escape therapies have confronted investigators for years, hindering the advancement toward an effective treatment. Agents that are safe and can be administered as dietary supplements have always remained priority to be most feasible for cancer therapy. Withania somnifera (ashwagandha) is an essential ingredient of Ayurvedic preparations and is known to eliminate cancer cells derived from a variety of peripheral tissues. Although our previous studies have addressed the in vitro anti-proliferative and differentiation-inducing properties of ashwagandha on neuronal cell lines, in vivo studies validating the same are lacking. While exploring the mechanism of its action in vitro, we observed that the ashwagandha water extract (ASH-WEX) induced the G2/M phase blockade and caused the activation of multiple pro-apoptotic pathways, leading to suppression of cyclin D1, bcl-xl, and p-Akt, and reduced the expression of polysialylated form of neural cell adhesion molecule (PSA-NCAM) as well as the activity of matrix metalloproteinases. ASH-WEX reduced the intracranial tumor volumes in vivo and suppressed the tumor-promoting proteins p-nuclear factor kappa B (NF-κB), p-Akt, vascular endothelial growth factor (VEGF), heat shock protein 70 (HSP70), PSA-NCAM, and cyclin D1 in the rat model of orthotopic glioma allograft. Reduction in glial fibrillary acidic protein (GFAP) and upregulation of mortalin and neural cell adhesion molecule (NCAM) expression specifically in tumor-bearing tissue further indicated the anti-glioma efficacy of ASH-WEX in vivo. Combining this enhanced understanding of the molecular mechanisms of ASH-WEX in glioma with in vivo model system offers new opportunities to develop therapeutic strategy for safe, specific, and effective formulations for treating brain tumors.
Collapse
|
14
|
Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One 2015; 10:e0120554. [PMID: 25789768 PMCID: PMC4366112 DOI: 10.1371/journal.pone.0120554] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. METHODOLOGY/PRINCIPAL FINDINGS We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. CONCLUSION Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.
Collapse
Affiliation(s)
- Navjot Shah
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Rumani Singh
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Upasana Sarangi
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Nishant Saxena
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Anupama Chaudhary
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sunil C. Kaul
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
- * E-mail: (RW); (SCK)
| | - Renu Wadhwa
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8562, Japan
- * E-mail: (RW); (SCK)
| |
Collapse
|
15
|
Wadhwa R, Ryu J, Ahn HM, Saxena N, Chaudhary A, Yun CO, Kaul SC. Functional significance of point mutations in stress chaperone mortalin and their relevance to Parkinson disease. J Biol Chem 2015; 290:8447-56. [PMID: 25645922 DOI: 10.1074/jbc.m114.627463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mortalin/mtHsp70/Grp75 (mot-2), a heat shock protein 70 family member, is an essential chaperone, enriched in cancers, and has been shown to possess pro-proliferative and anti-apoptosis functions. An allelic form of mouse mortalin (mot-1) that differs by two amino acids, M618V and G624R, in the C terminus substrate-binding domain has been reported. Furthermore, genome sequencing of mortalin from Parkinson disease patients identified two missense mutants, R126W and P509S. In the present study, we investigated the significance of these mutations in survival, proliferation, and oxidative stress tolerance in human cells. Using mot-1 and mot-2 recombinant proteins and specific antibodies, we performed screening to find their binding proteins and then identified ribosomal protein L-7 (RPL-7) and elongation factor-1 α (EF-1α), which differentially bind to mot-1 and mot-2, respectively. We demonstrate that mot-1, R126W, or P509S mutant (i) lacks mot-2 functions involved in carcinogenesis, such as p53 inactivation and hTERT/hnRNP-K (heterogeneous nuclear ribonucleoprotein K) activation; (ii) causes increased level of endogenous oxidative stress; (iii) results in decreased tolerance of cells to exogenous oxidative stress; and (iv) shows differential binding and impact on the RPL-7 and EF-1α proteins. These factors may mediate the transformation of longevity/pro-proliferative function of mot-2 to the premature aging/anti-proliferative effect of mutants, and hence may have significance in cellular aging, Parkinson disease pathology, and prognosis.
Collapse
Affiliation(s)
- Renu Wadhwa
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Jihoon Ryu
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Hyo Min Ahn
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Nishant Saxena
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Anupama Chaudhary
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| | - Chae-Ok Yun
- the Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Korea
| | - Sunil C Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine (DAILAB), Tsukuba, Ibaraki 305-8562, Japan and
| |
Collapse
|
16
|
Tinospora cordifolia Induces Differentiation and Senescence Pathways in Neuroblastoma Cells. Mol Neurobiol 2014; 52:719-33. [PMID: 25280667 DOI: 10.1007/s12035-014-8892-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/03/2014] [Indexed: 01/06/2023]
Abstract
Children diagnosed with neuroblastomas often suffer from severe side as well as late effects of conventional treatments like chemotherapy and radiotherapy. Recent advances in understanding of molecular pathways involved in cellular differentiation and apoptosis have helped in the development of new therapeutic approach based on differentiation-based therapy of malignant tumours. Natural medicines with their holistic therapeutic approach are known to selectively eliminate cancer cells thus provide a better substitute for the conventional treatment modes. The current study was aimed to investigate the anti-cancer potential of aqueous ethanolic extract of Tinospora cordifolia (TCE) using IMR-32 human neuroblastoma cell line as a model system. TCE is highly recommended in Ayurveda for its general body and metal health-promoting properties. TCE treatment was seen to arrest the majority of cells in G0/G1 phase and modulated the expression of DNA clamp sliding protein (PCNA) and cyclin D1. Further, TCE-treated cells showed differentiation as revealed by their morphology and the expression of neuronal cell specific differentiation markers NF200, MAP-2 and NeuN in neuroblastoma cells. The differentiated phenotype was associated with induction of senescence and pro-apoptosis pathways by enhancing expression of senescence marker mortalin and Rel A subunit of nuclear factor kappa beta (NFkB) along with decreased expression of anti-apoptotic marker, Bcl-xl. TCE exhibited anti-metastatic activity and significantly reduced cell migration in the scratched area along with downregulation of neural cell adhesion molecule (NCAM) polysialylation and secretion of matrix metalloproteinases (MMPs). Our data suggest that crude extract or active phytochemicals from this plant may be a potential candidate for differentiation-based therapy of malignant neuroblastoma cells.
Collapse
|
17
|
Ryu J, Kaul Z, Yoon AR, Liu Y, Yaguchi T, Na Y, Ahn HM, Gao R, Choi IK, Yun CO, Kaul SC, Wadhwa R. Identification and functional characterization of nuclear mortalin in human carcinogenesis. J Biol Chem 2014; 289:24832-44. [PMID: 25012652 DOI: 10.1074/jbc.m114.565929] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Hsp70 family protein mortalin is an essential chaperone that is frequently enriched in cancer cells and exists in various subcellular sites, including the mitochondrion, plasma membrane, endoplasmic reticulum, and cytosol. Although the molecular mechanisms underlying its multiple subcellular localizations are not yet clear, their functional significance has been revealed by several studies. In this study, we examined the nuclear fractions of human cells and found that the malignantly transformed cells have more mortalin than the normal cells. We then generated a mortalin mutant that lacked a mitochondrial targeting signal peptide. It was largely localized in the nucleus, and, hence, is called nuclear mortalin (mot-N). Functional characterization of mot-N revealed that it efficiently protects cancer cells against endogenous and exogenous oxidative stress. Furthermore, compared with the full-length mortalin overexpressing cancer cells, mot-N derivatives showed increased malignant properties, including higher proliferation rate, colony forming efficacy, motility, and tumor forming capacity both in in vitro and in vivo assays. We demonstrate that mot-N promotes carcinogenesis and cancer cell metastasis by inactivation of tumor suppressor protein p53 functions and by interaction and functional activation of telomerase and heterogeneous ribonucleoprotein K (hnRNP-K) proteins.
Collapse
Affiliation(s)
- Jihoon Ryu
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan, the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Zeenia Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan, the Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | - A-Rum Yoon
- the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Ye Liu
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| | - Tomoko Yaguchi
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| | - Youjin Na
- the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Hyo Min Ahn
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan, the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Ran Gao
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| | - Il-Kyu Choi
- the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Chae-Ok Yun
- the Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea, and
| | - Sunil C Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan,
| | - Renu Wadhwa
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science and Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan,
| |
Collapse
|
18
|
Aqueous ethanolic extract of Tinospora cordifolia as a potential candidate for differentiation based therapy of glioblastomas. PLoS One 2013; 8:e78764. [PMID: 24205314 PMCID: PMC3811968 DOI: 10.1371/journal.pone.0078764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE) using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae.
Collapse
|
19
|
Trillo MÁ, Martínez MA, Cid MA, Úbeda A. Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells. Oncol Rep 2013; 29:885-94. [PMID: 23292364 PMCID: PMC3597587 DOI: 10.3892/or.2012.2212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 12/23/2022] Open
Abstract
We previously reported that intermittent exposure to a 50‑Hz magnetic field (MF) at 100 µT stimulates cell proliferation in the human neuroblastoma cell line NB69. The present study aimed to investigate whether the magnetic field-induced growth promotion also occurs at a lower magnetic flux density of 10 µT. To this purpose, NB69 cells were subjected for 42 h to intermittent exposure, 3 h on/3 h off, to a 50‑Hz MF at a 10 or 100 µT magnetic flux density. The field exposure took place either in the presence or in the absence of the antiproliferative agent retinoic acid. At the end of the treatment and/or incubation period, the cell growth was estimated by hemocytometric counting and spectrophotometric analysis of total protein and DNA contents. Potential changes in DNA synthesis were also assessed through proliferating cell nuclear antigen (PCNA) immunolabeling. The results confirmed previously reported data that a 42-h exposure to a 50‑Hz sine wave MF at 100 µT promotes cell growth in the NB69 cell line, and showed that 10 µT induces a similar proliferative response. This effect, which was significantly associated and linearly correlated with PCNA expression, was abolished by the presence of retinoic acid in the culture medium.
Collapse
Affiliation(s)
- María Ángeles Trillo
- Department of Research-BEM, IRYCIS, Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | | | | | | |
Collapse
|
20
|
Kataria H, Wadhwa R, Kaul SC, Kaur G. Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas. PLoS One 2013; 8:e55316. [PMID: 23383150 PMCID: PMC3561198 DOI: 10.1371/journal.pone.0055316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- * E-mail:
| |
Collapse
|
21
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|