1
|
Zwyrtková J, Šimková H, Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol Adv 2020; 46:107659. [PMID: 33259907 DOI: 10.1016/j.biotechadv.2020.107659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.
Collapse
Affiliation(s)
- Jana Zwyrtková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Akpinar BA, Biyiklioglu S, Alptekin B, Havránková M, Vrána J, Doležel J, Distelfeld A, Hernandez P, Budak H. Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2077-2087. [PMID: 29729062 PMCID: PMC6230948 DOI: 10.1111/pbi.12940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Burcu Alptekin
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Miroslava Havránková
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Assaf Distelfeld
- Department of Molecular Biology and Ecology of PlantsFaculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)CordobaSpain
| | - The IWGSC
- International Wheat Genome Sequencing ConsortiumBethesdaMDUSA
| | - Hikmet Budak
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| |
Collapse
|
3
|
Matsubara K, Iwasaki Y, Nishiki I, Nomura K, Fujiwara A. Identification of genetic linkage group 1-linked sequences in Japanese eel (Anguilla japonica) by single chromosome sorting and sequencing. PLoS One 2018; 13:e0197040. [PMID: 29738551 PMCID: PMC5940218 DOI: 10.1371/journal.pone.0197040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
Japanese eel (Anguilla japonica) constitutes one of the most important food fish in Japan; accordingly, genome sequencing and linkage mapping have been conducted for the purpose of artificial cultivation. In the next stage, integration of genomic sequences within linkage groups (LG) is required to construct higher-resolution genetic markers for quantitative trait loci mapping and selective breeding of beneficial traits in farming. In order to identify LG1-linked scaffolds from the draft genome assembly (323,776 scaffolds) reported previously, we attempted to isolate chromosomes corresponding to LG1 by flow sorting and subsequent analyses. Initially, single chromosomes were randomly collected by chromosome sorting and subjected to whole-genome amplification (WGA). A total of 60 WGA samples were screened by PCR with primers for a known LG1-linked scaffold, and five positive WGA samples were sequenced by next-generation sequencing (NGS). Following reference mapping analysis of the NGS reads, four of the five WGA samples were found to be enriched by LG1-linked sequences. These samples were cytogenetically assigned to chromosome 5 by fluorescence in situ hybridization. Using blastn searches with 82,081 contigs constructed from the NGS reads of the four WGA samples as queries, 2323 scaffolds were identified as putative LG1-linked scaffolds from the draft genome assembly. The total length of the putative LG1-linked scaffolds was 99.0 Mb, comparable to the estimated DNA amounts of chromosome 5 (91.1 Mb). These results suggest that the methodology developed herein is applicable to isolate specific chromosome DNAs and integrate unanchored scaffold sequences onto a particular LG and chromosome even in teleost fishes, in which isolation of specific chromosomes by flow sorting is generally difficult owing to similar morphologies, sizes, and GC-contents among chromosomes in the genome. The putative LG1-linked scaffolds of Japanese eel contain a total of 6833 short tandem repeats which will be available for higher-resolution linkage mapping.
Collapse
Affiliation(s)
- Kazumi Matsubara
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yuki Iwasaki
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Issei Nishiki
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Kazuharu Nomura
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie, Japan
| | - Atushi Fujiwara
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
4
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Xiao J, Dai K, Fu L, Vrána J, Kubaláková M, Wan W, Sun H, Zhao J, Yu C, Wu Y, Abrouk M, Wang H, Doležel J, Wang X. Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order. BMC Genomics 2017; 18:791. [PMID: 29037165 PMCID: PMC5644170 DOI: 10.1186/s12864-017-4211-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
Collapse
Affiliation(s)
- Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Lian Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Wentao Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jing Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Chunyan Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Michael Abrouk
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Haná Region for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783671 Olomouc, Czech Republic
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095 China
| |
Collapse
|
6
|
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:452-467. [PMID: 27402341 DOI: 10.1111/tpj.13266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Abstract
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
7
|
Akpinar BA, Budak H. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2016; 7:606. [PMID: 27200073 PMCID: PMC4855405 DOI: 10.3389/fpls.2016.00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 05/09/2023]
Abstract
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant wheat varieties.
Collapse
Affiliation(s)
- Bala A. Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
- *Correspondence: Hikmet Budak,
| |
Collapse
|
8
|
Barabaschi D, Magni F, Volante A, Gadaleta A, Šimková H, Scalabrin S, Prazzoli ML, Bagnaresi P, Lacrima K, Michelotti V, Desiderio F, Orrù L, Mazzamurro V, Fricano A, Mastrangelo A, Tononi P, Vitulo N, Jurman I, Frenkel Z, Cattonaro F, Morgante M, Blanco A, Doležel J, Delledonne M, Stanca AM, Cattivelli L, Valè G. Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach. THE PLANT GENOME 2015; 8:eplantgenome2015.03.0011. [PMID: 33228274 DOI: 10.3835/plantgenome2015.03.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/21/2015] [Indexed: 06/11/2023]
Abstract
The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i.e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects.
Collapse
Affiliation(s)
- Delfina Barabaschi
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | | | - Andrea Volante
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Agata Gadaleta
- Dep. of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, Univ. of Bari, Bari, I-70126
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, CZ-77200
| | | | - Maria Lucia Prazzoli
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Katia Lacrima
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Vania Michelotti
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Francesca Desiderio
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Luigi Orrù
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Valentina Mazzamurro
- Dep. of Life Sciences, Univ. of Modena and Reggio Emilia, Reggio Emilia, I-42100
| | | | - AnnaMaria Mastrangelo
- Council for Agricultural Research and Economics (CREA)-Cereal Research Centre, Foggia, I-71122
| | - Paola Tononi
- Dep. of Biotechnology, Univ. of Verona, Verona, I-37129
| | - Nicola Vitulo
- CRIBI Biotechnology Center, Univ. of Padova, Padova, I-35121
| | | | - Zeev Frenkel
- Institute of Evolution and Dep. of Evolutionary and Environmental Biology, Univ. of Haifa, Haifa, IL-3498838
| | | | | | - Antonio Blanco
- Dep. of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, Univ. of Bari, Bari, I-70126
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, CZ-77200
| | | | - Antonio M Stanca
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
- Dep. of Life Sciences, Univ. of Modena and Reggio Emilia, Reggio Emilia, I-42100
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
| | - Giampiero Valè
- Council for Agricultural Research and Economics (CREA)-Genomics Research Centre, Fiorenzuola d'Arda, Piacenza, I-29017
- Council for Agricultural Research and Economics (CREA)-Rice Research Unit, Vercelli, I-13100
| |
Collapse
|
9
|
Tiwari VK, Wang S, Danilova T, Koo DH, Vrána J, Kubaláková M, Hribova E, Rawat N, Kalia B, Singh N, Friebe B, Doležel J, Akhunov E, Poland J, Sabir JSM, Gill BS. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:733-46. [PMID: 26408103 DOI: 10.1111/tpj.13036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Shichen Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Dal Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Nidhi Rawat
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| |
Collapse
|
10
|
Akpinar BA, Lucas SJ, Vrána J, Doležel J, Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). PLANT BIOTECHNOLOGY JOURNAL 2015; 13:740-52. [PMID: 25516153 DOI: 10.1111/pbi.12302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/08/2014] [Accepted: 10/25/2014] [Indexed: 05/11/2023]
Abstract
Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.
Collapse
Affiliation(s)
- Bala A Akpinar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| |
Collapse
|
11
|
Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Sci Rep 2015; 5:10763. [PMID: 26084265 PMCID: PMC4471722 DOI: 10.1038/srep10763] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world.
Collapse
|
12
|
Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 2015; 16:453. [PMID: 26070810 PMCID: PMC4465308 DOI: 10.1186/s12864-015-1641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Federica Magni
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Sonia Vautrin
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Hélène Bergès
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
13
|
Budak H, Kantar M. Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:407-15. [PMID: 26061358 DOI: 10.1089/omi.2015.0038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation.
Collapse
Affiliation(s)
- Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul, Turkey
| | - Melda Kantar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul, Turkey
| |
Collapse
|
14
|
Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 2015; 16:375. [PMID: 25962417 PMCID: PMC4440537 DOI: 10.1186/s12864-015-1579-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). Results Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. Conclusion The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ingrid Garbus
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - José R Romero
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Miroslav Valarik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Hana Vanžurová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Mario Cáccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Gabriela Tranquilli
- Instituto Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Viviana Echenique
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
15
|
Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, Caccamo M, Doležel J, Mayer KFX, Feuillet C, Tranquilli G, Paniego N, Echenique V. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:200-212. [PMID: 25711827 PMCID: PMC4352925 DOI: 10.1016/j.plantsci.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/20/2023]
Abstract
Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.
Collapse
Affiliation(s)
- Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Máximo Rivarola
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Bernardo Clavijo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich NR4 7UH, UK.
| | - Mihaela M Martis
- MIPS/IBIS, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Leonardo S Vanzetti
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Sergio González
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ingrid Garbus
- CERZOS (Centro de Recursos Naturales Renovables de la Zona Semiárida), (CCT-CONICET-Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
| | - Phillippe Leroy
- INRA-UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise Pascal, Clermont-Ferrand, France.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Miroslav Valárik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Mario Caccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Klaus F X Mayer
- MIPS/IBIS, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | | | - Gabriela Tranquilli
- Instituto de Recursos Biológicos, CIRN, INTA, Hurlingham, Buenos Aires, Argentina.
| | - Norma Paniego
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Viviana Echenique
- CERZOS (Centro de Recursos Naturales Renovables de la Zona Semiárida), (CCT-CONICET-Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Lucas SJ, Akpınar BA, Šimková H, Kubaláková M, Doležel J, Budak H. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics 2014; 15:1080. [PMID: 25487001 PMCID: PMC4298962 DOI: 10.1186/1471-2164-15-1080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/26/2014] [Indexed: 11/14/2022] Open
Abstract
Background The ~17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement. Results We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34× and 1.61× coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, ~74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D. Conclusions The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations. Sequence accessions EBI European Nucleotide Archive, Study no. ERP002330 Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1080) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, 34956 Tuzla, Istanbul, Turkey.
| |
Collapse
|
17
|
Poursarebani N, Nussbaumer T, Šimková H, Šafář J, Witsenboer H, van Oeveren J, Doležel J, Mayer KFX, Stein N, Schnurbusch T. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:334-47. [PMID: 24813060 PMCID: PMC4241024 DOI: 10.1111/tpj.12550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 05/08/2023]
Abstract
Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence-based physical map of wheat chromosome 6A using whole-genome profiling (WGP™). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc) and linear topological contig (ltc) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc. The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP™ tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the 'decoration' of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map-based isolation of agronomically important genes/quantitative trait loci located on this chromosome.
Collapse
Affiliation(s)
- Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
- * For correspondence (e-mails and )
| | - Thomas Nussbaumer
- MIPS/IBIS German Research Center for Environmental HealthD-85764, Neuherberg, Germany
- † These authors contributed equally to this work
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchCZ-78371, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchCZ-78371, Olomouc, Czech Republic
| | | | - Jan van Oeveren
- Keygene N.V.Agro Business Park 90, 6708 PW, Wageningen, The Netherlands
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural ResearchCZ-78371, Olomouc, Czech Republic
| | - Klaus FX Mayer
- MIPS/IBIS German Research Center for Environmental HealthD-85764, Neuherberg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
- * For correspondence (e-mails and )
| |
Collapse
|
18
|
Budak H, Khan Z, Kantar M. History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief Funct Genomics 2014; 14:189-98. [PMID: 24962995 DOI: 10.1093/bfgp/elu021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As small molecules that aid in posttranscriptional silencing, microRNA (miRNA) discovery and characterization have vastly benefited from the recent development and widespread application of next-generation sequencing (NGS) technologies. Several miRNAs were identified through sequencing of constructed small RNA libraries, whereas others were predicted by in silico methods using the recently accumulating sequence data. NGS was a major breakthrough in efforts to sequence and dissect the genomes of plants, including bread wheat and its progenitors, which have large, repetitive and complex genomes. Availability of survey sequences of wheat whole genome and its individual chromosomes enabled researchers to predict and assess wheat miRNAs both in the subgenomic and whole genome levels. Moreover, small RNA construction and sequencing-based studies identified several putative development- and stress-related wheat miRNAs, revealing their differential expression patterns in specific developmental stages and/or in response to stress conditions. With the vast amount of wheat miRNAs identified in recent years, we are approaching to an overall knowledge on the wheat miRNA repertoire. In the following years, more comprehensive research in relation to miRNA conservation or divergence across wheat and its close relatives or progenitors should be performed. Results may serve valuable in understanding both the significant roles of species-specific miRNAs and also provide us information in relation to the dynamics between miRNAs and evolution in wheat. Furthermore, putative development- or stress-related miRNAs identified should be subjected to further functional analysis, which may be valuable in efforts to develop wheat with better resistance and/or yield.
Collapse
|
19
|
Molnár I, Kubaláková M, Šimková H, Farkas A, Cseh A, Megyeri M, Vrána J, Molnár-Láng M, Doležel J. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1091-104. [PMID: 24553964 DOI: 10.1007/s00122-014-2282-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/03/2014] [Indexed: 05/10/2023]
Abstract
Chromosomes 5A (u) , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (A(u)A(u)), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5A(u), 5S and 5D could be sorted with purities of 78-90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1-7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kurtoglu KY, Kantar M, Budak H. New wheat microRNA using whole-genome sequence. Funct Integr Genomics 2014; 14:363-79. [PMID: 24395439 DOI: 10.1007/s10142-013-0357-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/06/2013] [Accepted: 12/22/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, taking roles in a variety of fundamental biological processes. Hence, their identification, annotation and characterization are of great significance, especially in bread wheat, one of the main food sources for humans. The recent availability of 5× coverage Triticum aestivum L. whole-genome sequence provided us with the opportunity to perform a systematic prediction of a complete catalogue of wheat microRNAs. Using an in silico homology-based approach, stem-loop coding regions were derived from two assemblies, constructed from wheat 454 reads. To avoid the presence of pseudo-microRNAs in the final data set, transposable element related stem-loops were eliminated by repeat analysis. Overall, 52 putative wheat microRNAs were predicted, including seven, which have not been previously published. Moreover, with distinct analysis of the two different assemblies, both variety and representation of putative microRNA-coding stem-loops were found to be predominant in the intergenic regions. By searching available expressed sequences and small RNA library databases, expression evidence for 39 (out of 52) putative wheat microRNAs was provided. Expression of three of the predicted microRNAs (miR166, miR396 and miR528) was also comparatively quantified with real-time quantitative reverse transcription PCR. This is the first report on in silico prediction of a whole repertoire of bread wheat microRNAs, supported by the wet-lab validation.
Collapse
|
21
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
22
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
23
|
Kopecký D, Studer B. Emerging technologies advancing forage and turf grass genomics. Biotechnol Adv 2013; 32:190-9. [PMID: 24309540 DOI: 10.1016/j.biotechadv.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities. In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications.
Collapse
Affiliation(s)
- David Kopecký
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78371, Olomouc-Holice, Czech Republic
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
24
|
Next generation characterisation of cereal genomes for marker discovery. BIOLOGY 2013; 2:1357-77. [PMID: 24833229 PMCID: PMC4009793 DOI: 10.3390/biology2041357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/30/2022]
Abstract
Cereal crops form the bulk of the world’s food sources, and thus their importance cannot be understated. Crop breeding programs increasingly rely on high-resolution molecular genetic markers to accelerate the breeding process. The development of these markers is hampered by the complexity of some of the major cereal crop genomes, as well as the time and cost required. In this review, we address current and future methods available for the characterisation of cereal genomes, with an emphasis on faster and more cost effective approaches for genome sequencing and the development of markers for trait association and marker assisted selection (MAS) in crop breeding programs.
Collapse
|
25
|
Breen J, Wicker T, Shatalina M, Frenkel Z, Bertin I, Philippe R, Spielmeyer W, Šimková H, Šafář J, Cattonaro F, Scalabrin S, Magni F, Vautrin S, Bergès H, Paux E, Fahima T, Doležel J, Korol A, Feuillet C, Keller B. A physical map of the short arm of wheat chromosome 1A. PLoS One 2013; 8:e80272. [PMID: 24278269 PMCID: PMC3836966 DOI: 10.1371/journal.pone.0080272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022] Open
Abstract
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
Collapse
Affiliation(s)
- James Breen
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Isabelle Bertin
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Romain Philippe
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | | | - Hana Šimková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Šafář
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | | | - Etienne Paux
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Jaroslav Doležel
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Catherine Feuillet
- INRA UMR 1095, Genetique Diversite et Ecophysiologie des Cereales, Clermont-Ferrand, France
| | - Beat Keller
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Kopecký D, Martis M, Číhalíková J, Hřibová E, Vrána J, Bartoš J, Kopecká J, Cattonaro F, Stočes Š, Novák P, Neumann P, Macas J, Šimková H, Studer B, Asp T, Baird JH, Navrátil P, Karafiátová M, Kubaláková M, Šafář J, Mayer K, Doležel J. Flow sorting and sequencing meadow fescue chromosome 4F. PLANT PHYSIOLOGY 2013; 163:1323-37. [PMID: 24096412 PMCID: PMC3813653 DOI: 10.1104/pp.113.224105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/04/2013] [Indexed: 05/20/2023]
Abstract
The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.
Collapse
|
27
|
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res 2013; 21:103-14. [PMID: 24086083 PMCID: PMC3989483 DOI: 10.1093/dnares/dst041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is one of the most important cereals in the world. To improve wheat quality and productivity, the genomic sequence of wheat must be determined. The large genome size (∼17 Gb/1 C) and the hexaploid status of wheat have hampered the genome sequencing of wheat. However, flow sorting of individual chromosomes has allowed us to purify and separately shotgun-sequence a pair of telocentric chromosomes. Here, we describe a result from the survey sequencing of wheat chromosome 6B (914 Mb/1 C) using massively parallel 454 pyrosequencing. From the 4.94 and 5.51 Gb shotgun sequence data from the two chromosome arms of 6BS and 6BL, 235 and 273 Mb sequences were assembled to cover ∼55.6 and 54.9% of the total genomic regions, respectively. Repetitive sequences composed 77 and 86% of the assembled sequences on 6BS and 6BL, respectively. Within the assembled sequences, we predicted a total of 4798 non-repetitive gene loci with the evidence of expression from the wheat transcriptome data. The numbers and chromosomal distribution patterns of the genes for tRNAs and microRNAs in wheat 6B were investigated, and the results suggested a significant involvement of DNA transposon diffusion in the evolution of these non-protein-coding RNA genes. A comparative analysis of the genomic sequences of wheat 6B and monocot plants clearly indicated the evolutionary conservation of gene contents.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- 1Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One 2013; 8:e69801. [PMID: 23936103 PMCID: PMC3720673 DOI: 10.1371/journal.pone.0069801] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow-sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat.
Collapse
Affiliation(s)
| | - Melda Kantar
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
| | - Stuart J. Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
29
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
30
|
Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-induced microRNA and their targets in wheat using computational approach. PLANT SIGNALING & BEHAVIOR 2013; 8:e23932. [PMID: 23511197 PMCID: PMC3906146 DOI: 10.4161/psb.23932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNA molecules of about 18-22 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. Computational predictions have raised the number of miRNAs in wheat significantly using an EST based approach. Hence, a combinatorial approach which is amalgamation of bioinformatics software and perl script was used to identify new miRNA to add to the growing database of wheat miRNA. Identification of miRNAs was initiated by mining the EST (Expressed Sequence Tags) database available at National Center for Biotechnology Information. In this investigation, 4677 mature microRNA sequences belonging to 50 miRNA families from different plant species were used to predict miRNA in wheat. A total of five abiotic stress-responsive new miRNAs were predicted and named Ta-miR5653, Ta-miR855, Ta-miR819k, Ta-miR3708 and Ta-miR5156. In addition, four previously identified miRNA, i.e., Ta-miR1122, miR1117, Ta-miR1134 and Ta-miR1133 were predicted in newly identified EST sequence and 14 potential target genes were subsequently predicted, most of which seems to encode ubiquitin carrier protein, serine/threonine protein kinase, 40S ribosomal protein, F-box/kelch-repeat protein, BTB/POZ domain-containing protein, transcription factors which are involved in growth, development, metabolism and stress response. Our result has increased the number of miRNAs in wheat, which should be useful for further investigation into the biological functions and evolution of miRNAs in wheat and other plant species.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Om Prakash Gupta
- Quality and Basic Science; Directorate of Wheat Research; Karnal, India
| | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra, India
| | - Indu Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
| | - Pradeep Sharma
- Plant Biotechnology; Directorate of Wheat Research; Karnal, India
- Correspondence to: Pradeep Sharma,
| |
Collapse
|
31
|
Teer JK, Johnston JJ, Anzick SL, Pineda M, Stone G, Meltzer PS, Mullikin JC, Biesecker LG. Massively-parallel sequencing of genes on a single chromosome: a comparison of solution hybrid selection and flow sorting. BMC Genomics 2013; 14:253. [PMID: 23586822 PMCID: PMC3637801 DOI: 10.1186/1471-2164-14-253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Targeted capture, combined with massively-parallel sequencing, is a powerful technique that allows investigation of specific portions of the genome for less cost than whole genome sequencing. Several methods have been developed, and improvements have resulted in commercial products targeting the human or mouse exonic regions (the exome). In some cases it is desirable to custom-target other regions of the genome, either to reduce the amount of sequence that is targeted or to capture regions that are not targeted by commercial kits. It is important to understand the advantages, limitations, and complexity of a given capture method before embarking on a targeted sequencing experiment. Results We compared two custom targeted capture methods suitable for single chromosome analysis: Solution Hybrid Selection (SHS) and Flow Sorting (FS) of single chromosomes. Both methods can capture targeted material and result in high percentages of genotype identifications across these regions: 59-92% for SHS and 70-79% for FS. FS is amenable to current structural variation detection methods, and variants were detected. Structural variation was also assessed for SHS samples with paired end sequencing, resulting in variant identification. Conclusions While both methods can effectively target genomic regions for genotype determination, several considerations make each method appropriate in different circumstances. SHS is well suited for experiments targeting smaller regions in a larger number of samples. FS is well suited when regions of interest cover large regions of a single chromosome. Although whole genome sequencing is becoming less expensive, the sequencing, data storage, and analysis costs make targeted sequencing using SHS or FS a compelling option.
Collapse
Affiliation(s)
- Jamie K Teer
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simková H, Kent M, Bendixen C, Panitz F, Lien S, Doležel J, Olsen OA, Sandve SR. Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics 2013; 14:222. [PMID: 23557231 PMCID: PMC3622640 DOI: 10.1186/1471-2164-14-222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 03/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assembly of the bread wheat genome sequence is challenging due to allohexaploidy and extreme repeat content (>80%). Isolation of single chromosome arms by flow sorting can be used to overcome the polyploidy problem, but the repeat content cause extreme assembly fragmentation even at a single chromosome level. Long jump paired sequencing data (mate pairs) can help reduce assembly fragmentation by joining multiple contigs into single scaffolds. The aim of this work was to assess how mate pair data generated from multiple displacement amplified DNA of flow-sorted chromosomes affect assembly fragmentation of shotgun assemblies of the wheat chromosomes. RESULTS Three mate pair (MP) libraries (2 Kb, 3 Kb, and 5 Kb) were sequenced to a total coverage of 89x and 64x for the short and long arm of chromosome 7B, respectively. Scaffolding using SSPACE improved the 7B assembly contiguity and decreased gene space fragmentation, but the degree of improvement was greatly affected by scaffolding stringency applied. At the lowest stringency the assembly N50 increased by ~7 fold, while at the highest stringency N50 was only increased by ~1.5 fold. Furthermore, a strong positive correlation between estimated scaffold reliability and scaffold assembly stringency was observed. A 7BS scaffold assembly with reduced MP coverage proved that assembly contiguity was affected only to a small degree down to ~50% of the original coverage. CONCLUSION The effect of MP data integration into pair end shotgun assemblies of wheat chromosome was moderate; possibly due to poor contig assembly contiguity, the extreme repeat content of wheat, and the use of amplified chromosomal DNA for MP library construction.
Collapse
Affiliation(s)
- Tatiana Belova
- Department of Plant and Environmental Sciences, University of Life Sciences, Ås, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alnemer LM, Seetan RI, Bassi FM, Chitraranjan C, Helsene A, Loree P, Goshn SB, Gu YQ, Luo MC, Iqbal MJ, Lazo GR, Denton AM, Kianian SF. Wheat Zapper: a flexible online tool for colinearity studies in grass genomes. Funct Integr Genomics 2013; 13:11-7. [PMID: 23474942 DOI: 10.1007/s10142-013-0317-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The "Wheat Zapper" application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the "Wheat Zapper" prediction was confirmed against the genome of maize, with good correlation (r > 0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of "Wheat Zapper" was calculated at 0.65 considering the "Genome Zipper" application as the "gold" standard. The differences between these two tools are amply discussed, making the point that "Wheat Zapper" is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/ .
Collapse
Affiliation(s)
- Loai M Alnemer
- Computer Information Systems Department, The University of Jordan, Amman, 11942, Jordan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 2013; 8:e57994. [PMID: 23469124 PMCID: PMC3585268 DOI: 10.1371/journal.pone.0057994] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/29/2013] [Indexed: 11/23/2022] Open
Abstract
The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic aberrations.
Collapse
Affiliation(s)
- Debora Giorgi
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Anna Farina
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Valentina Grosso
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| | - Andrea Gennaro
- DAFNE – Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Carla Ceoloni
- DAFNE – Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Sergio Lucretti
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CASACCIA Research Center, Rome, Italy
| |
Collapse
|
35
|
Pfeifer M, Martis M, Asp T, Mayer KF, Lübberstedt T, Byrne S, Frei U, Studer B. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. PLANT PHYSIOLOGY 2013; 161:571-82. [PMID: 23184232 PMCID: PMC3561004 DOI: 10.1104/pp.112.207282] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Mihaela Martis
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Torben Asp
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Klaus F.X. Mayer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Thomas Lübberstedt
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Stephen Byrne
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Ursula Frei
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Bruno Studer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| |
Collapse
|
36
|
Marone D, Laidò G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM. A high-density consensus map of A and B wheat genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1619-38. [PMID: 22872151 PMCID: PMC3493672 DOI: 10.1007/s00122-012-1939-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6 cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.
Collapse
Affiliation(s)
- Daniela Marone
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Giovanni Laidò
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Agata Gadaleta
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Pasqualina Colasuonno
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | | - Angelica Giancaspro
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Stefania Giove
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giosué Panio
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Maria A. Russo
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | | | - Luigi Cattivelli
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
- CRA-Genomics Research Centre, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, PC Italy
| | - Roberto Papa
- CRA-Cereal Research Centre, SS16 km 675, 71122 Foggia, Italy
| | - Antonio Blanco
- Department of Agro-Forestry and Environmental Biology and Chemistry, University of Bari, Via Amendola, 165/A, 70126 Bari, Italy
| | | |
Collapse
|
37
|
Doležel J, Vrána J, Safář J, Bartoš J, Kubaláková M, Simková H. Chromosomes in the flow to simplify genome analysis. Funct Integr Genomics 2012; 12:397-416. [PMID: 22895700 PMCID: PMC3431466 DOI: 10.1007/s10142-012-0293-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022]
Abstract
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
Collapse
Affiliation(s)
- Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
38
|
Construction of whole genome radiation hybrid panels and map of chromosome 5A of wheat using asymmetric somatic hybridization. PLoS One 2012; 7:e40214. [PMID: 22815731 PMCID: PMC3398029 DOI: 10.1371/journal.pone.0040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/06/2012] [Indexed: 11/23/2022] Open
Abstract
To explore the feasibility of constructing a whole genome radiation hybrid (WGRH) map in plant species with large genomes, asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Bupleurum scorzonerifolium Willd. was performed. The protoplasts of wheat were irradiated with ultraviolet light (UV) and gamma-ray and rescued by protoplast fusion using B. scorzonerifolium as the recipient. Assessment of SSR markers showed that the radiation hybrids have the average marker retention frequency of 15.5%. Two RH panels (RHPWI and RHPWII) that contained 92 and 184 radiation hybrids, respectively, were developed and used for mapping of 68 SSR markers in chromosome 5A of wheat. A total of 1557 and 2034 breaks were detected in each panel. The RH map of chromosome 5A based on RHPWII was constructed. The distance of the comprehensive map was 2103 cR and the approximate resolution was estimated to be ∼501.6 kb/break. The RH panels evaluated in this study enabled us to order the ESTs in a single deletion bin or in the multiple bins cross the chromosome. These results demonstrated that RH mapping via protoplast fusion is feasible at the whole genome level for mapping purposes in wheat and the potential value of this mapping approach for the plant species with large genomes.
Collapse
|
39
|
Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One 2012; 7:e40859. [PMID: 22815845 PMCID: PMC3398953 DOI: 10.1371/journal.pone.0040859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/14/2012] [Indexed: 11/26/2022] Open
Abstract
Individual chromosome-based studies of bread wheat are beginning to provide valuable structural and functional information about one of the world's most important crops. As new genome sequences become available, identifying miRNA coding sequences is arguably as important a task as annotating protein coding sequences, but one that is not as well developed. We compared conservation-based identification of conserved miRNAs in 1.5× coverage survey sequences of wheat chromosome 1AL with a predictive method based on pre-miRNA hairpin structure alone. In total, 42 sequences expected to encode conserved miRNAs were identified on chromosome 1AL, including members of several miRNA families that have not previously been reported to be expressed in T. aestivum. In addition, we demonstrate that a number of sequences previously annotated as novel wheat miRNAs are closely related to transposable elements, particularly Miniature Inverted Terminal repeat Elements (MITEs). Some of these TE-miRNAs may well have a functional role, but separating true miRNA coding sequences from TEs in genomic sequences is far from straightforward. We propose a strategy for annotation to minimize the risk of mis-identifying TE sequences as miRNAs.
Collapse
Affiliation(s)
- Stuart J. Lucas
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| | - Hikmet Budak
- Faculty of Engineering and Natural Sciences, Sabanci University, Orhanlı, Istanbul, Turkey
| |
Collapse
|
40
|
Kantar M, Akpınar BA, Valárik M, Lucas SJ, Doležel J, Hernández P, Budak H. Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics 2012; 12:465-79. [DOI: 10.1007/s10142-012-0285-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
|
41
|
Sehgal SK, Li W, Rabinowicz PD, Chan A, Šimková H, Doležel J, Gill BS. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC PLANT BIOLOGY 2012; 12:64. [PMID: 22559868 PMCID: PMC3438119 DOI: 10.1186/1471-2229-12-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bread wheat, one of the world's staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. RESULTS The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. CONCLUSION This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping.
Collapse
Affiliation(s)
- Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Agnes Chan
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Vrána J, Simková H, Kubaláková M, Cíhalíková J, Doležel J. Flow cytometric chromosome sorting in plants: the next generation. Methods 2012; 57:331-7. [PMID: 22440520 DOI: 10.1016/j.ymeth.2012.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
Abstract
Genome analysis in many plant species is hampered by large genome size and by sequence redundancy due to the presence of repetitive DNA and polyploidy. One solution is to reduce the sample complexity by dissecting the genomes to single chromosomes. This can be realized by flow cytometric sorting, which enables purification of chromosomes in large numbers. Coupling the chromosome sorting technology with next generation sequencing provides a targeted and cost effective way to tackle complex genomes. The methods outlined in this article describe a procedure for preparation of chromosomal DNA suitable for next-generation sequencing.
Collapse
Affiliation(s)
- Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, CZ-77200 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
43
|
Matsuda R, Iehisa JCM, Takumi S. Application of real-time PCR-based SNP detection for mapping of Net2, a causal D-genome gene for hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genes Genet Syst 2012; 87:137-43. [DOI: 10.1266/ggs.87.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | | | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University
| |
Collapse
|