1
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
2
|
Roberts AC, Chornak J, Alzagatiti JB, Ly DT, Bill BR, Trinkeller J, Pearce KC, Choe RC, Campbell CS, Wong D, Deutsch E, Hernandez S, Glanzman DL. Rapid habituation of a touch-induced escape response in Zebrafish (Danio rerio) Larvae. PLoS One 2019; 14:e0214374. [PMID: 30946762 PMCID: PMC6449028 DOI: 10.1371/journal.pone.0214374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Zebrafish larvae have several biological features that make them useful for cellular investigations of the mechanisms underlying learning and memory. Of particular interest in this regard is a rapid escape, or startle, reflex possessed by zebrafish larvae; this reflex, the C-start, is mediated by a relatively simple neuronal circuit and exhibits habituation, a non-associative form of learning. Here we demonstrate a rapid form of habituation of the C-start to touch that resembles the previously reported rapid habituation induced by auditory or vibrational stimuli. We also show that touch-induced habituation exhibits input specificity. This work sets the stage for in vivo optical investigations of the cellular sites of plasticity that mediate habituation of the C-start in the larval zebrafish.
Collapse
Affiliation(s)
- Adam C. Roberts
- Department of Psychology, California State University at Fullerton, Fullerton, CA, United States of America
| | - Julia Chornak
- Department of Neuroscience, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Joseph B. Alzagatiti
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Duy T. Ly
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Brent R. Bill
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States of America
| | - Janie Trinkeller
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Kaycey C. Pearce
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Ronny C. Choe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - C. S. Campbell
- Department of Psychology, California State University at Fullerton, Fullerton, CA, United States of America
| | - Dustin Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Emily Deutsch
- Department of Psychology, California State University at Fullerton, Fullerton, CA, United States of America
| | - Sarah Hernandez
- Department of Psychology, California State University at Fullerton, Fullerton, CA, United States of America
| | - David L. Glanzman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Integrative Center for Learning and Memory, Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora AD, Pereda AE, Granato M. A Forward Genetic Screen in Zebrafish Identifies the G-Protein-Coupled Receptor CaSR as a Modulator of Sensorimotor Decision Making. Curr Biol 2018; 28:1357-1369.e5. [PMID: 29681477 DOI: 10.1016/j.cub.2018.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/24/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
Animals continuously integrate sensory information and select contextually appropriate responses. Here, we show that zebrafish larvae select a behavioral response to acoustic stimuli from a pre-existing choice repertoire in a context-dependent manner. We demonstrate that this sensorimotor choice is modulated by stimulus quality and history, as well as by neuromodulatory systems-all hallmarks of more complex decision making. Moreover, from a genetic screen coupled with whole-genome sequencing, we identified eight mutants with deficits in this sensorimotor choice, including mutants of the vertebrate-specific G-protein-coupled extracellular calcium-sensing receptor (CaSR), whose function in the nervous system is not well understood. We demonstrate that CaSR promotes sensorimotor decision making acutely through Gαi/o and Gαq/11 signaling, modulated by clathrin-mediated endocytosis. Combined, our results identify the first set of genes critical for behavioral choice modulation in a vertebrate and reveal an unexpected critical role for CaSR in sensorimotor decision making.
Collapse
Affiliation(s)
- Roshan A Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, Haverford College, Haverford, PA 19041, USA.
| | - Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica C Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Christina Szi
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilia N Cobbs
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Keisuke Sawada
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Amy D Zamora
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Kelu JJ, Webb SE, Parrington J, Galione A, Miller AL. Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis and myotomal patterning in intact zebrafish embryos. Dev Biol 2017; 425:109-129. [PMID: 28390800 DOI: 10.1016/j.ydbio.2017.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/14/2023]
Abstract
We recently demonstrated a critical role for two-pore channel type 2 (TPC2)-mediated Ca2+ release during the differentiation of slow (skeletal) muscle cells (SMC) in intact zebrafish embryos, via the introduction of a translational-blocking morpholino antisense oligonucleotide (MO). Here, we extend our study and demonstrate that knockdown of TPC2 with a non-overlapping splice-blocking MO, knockout of TPC2 (via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing), or the pharmacological inhibition of TPC2 action with bafilomycin A1 or trans-ned-19, also lead to a significant attenuation of SMC differentiation, characterized by a disruption of SMC myofibrillogenesis and gross morphological changes in the trunk musculature. When the morphants were injected with tpcn2-mRNA or were treated with IP3/BM or caffeine (agonists of the inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), respectively), many aspects of myofibrillogenesis and myotomal patterning (and in the case of the pharmacological treatments, the Ca2+ signals generated in the SMCs), were rescued. STED super-resolution microscopy revealed a close physical relationship between clusters of RyR in the terminal cisternae of the sarcoplasmic reticulum (SR), and TPC2 in lysosomes, with a mean estimated separation of ~52-87nm. Our data therefore add to the increasing body of evidence, which indicate that localized Ca2+ release via TPC2 might trigger the generation of more global Ca2+ release from the SR via Ca2+-induced Ca2+ release.
Collapse
MESH Headings
- Animals
- Base Sequence
- Behavior, Animal/drug effects
- Body Patterning/drug effects
- CRISPR-Cas Systems/genetics
- Caffeine/pharmacology
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Cell Death/drug effects
- Cells, Cultured
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Gene Knockdown Techniques
- Gene Knockout Techniques
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinesins/metabolism
- Macrolides/pharmacology
- Models, Biological
- Morpholinos/pharmacology
- Motor Activity/drug effects
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Development/drug effects
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcomeres/drug effects
- Sarcomeres/metabolism
- Zebrafish/embryology
- Zebrafish/metabolism
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China; Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Parker MO, Brock AJ, Sudwarts A, Teh MT, Combe FJ, Brennan CH. Developmental role of acetylcholinesterase in impulse control in zebrafish. Front Behav Neurosci 2015; 9:271. [PMID: 26528153 PMCID: PMC4607786 DOI: 10.3389/fnbeh.2015.00271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
Cellular and molecular processes that mediate individual variability in impulsivity, a key behavioral component of many neuropsychiatric disorders, are poorly understood. Zebrafish heterozygous for a nonsense mutation in ache (achesb55/+) showed lower levels of impulsivity in a 5-choice serial reaction time task (5-CSRTT) than wild type and ache+∕+. Assessment of expression of cholinergic (nAChR), serotonergic (5-HT), and dopamine (DR) receptor mRNA in both adult and larval (9 dpf) achesb55/+ revealed significant downregulation of chrna2, chrna5, and drd2 mRNA in achesb55/+ larvae, but no differences in adults. Acute exposure to cholinergic agonist/antagonists had no effect on impulsivity, supporting the hypothesis that behavioral effects observed in adults were due to lasting impact of developmental alterations in cholinergic and dopaminergic signaling. This shows the cross-species role of cholinergic signaling during brain development in impulsivity, and suggests zebrafish may be a useful model for the role of cholinergic pathways as a target for therapeutic advances in addiction medicine.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK ; School of Health Sciences and Social Work, University of Portsmouth Portsmouth, UK
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Fraser J Combe
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
6
|
Wolman MA, Jain RA, Marsden KC, Bell H, Skinner J, Hayer KE, Hogenesch JB, Granato M. A genome-wide screen identifies PAPP-AA-mediated IGFR signaling as a novel regulator of habituation learning. Neuron 2015; 85:1200-11. [PMID: 25754827 DOI: 10.1016/j.neuron.2015.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 02/12/2015] [Indexed: 01/15/2023]
Abstract
Habituation represents a fundamental form of learning, yet the underlying molecular genetic mechanisms are not well defined. Here we report on a genome-wide genetic screen, coupled with whole-genome sequencing, that identified 14 zebrafish startle habituation mutants including mutants of the vertebrate-specific gene pregnancy-associated plasma protein-aa (pappaa). PAPP-AA encodes an extracellular metalloprotease known to increase IGF bioavailability, thereby enhancing IGF receptor signaling. We find that pappaa is expressed by startle circuit neurons, and expression of wild-type but not a metalloprotease-inactive version of pappaa restores habituation in pappaa mutants. Furthermore, acutely inhibiting IGF1R function in wild-type reduces habituation, while activation of IGF1R downstream effectors in pappaa mutants restores habituation, demonstrating that pappaa promotes learning by acutely and locally increasing IGF bioavailability. In sum, our results define the first functional gene set for habituation learning in a vertebrate and identify PAPPAA-regulated IGF signaling as a novel mechanism regulating habituation learning.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA; Department of Zoology, University of Wisconsin; 213 Zoology Research Building, 1117 West Johnson Street, Madison, WI 53706, USA
| | - Roshan A Jain
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Hannah Bell
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Julianne Skinner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Katharina E Hayer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John B Hogenesch
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 829 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 1157 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Bruni G, Lakhani P, Kokel D. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish. Front Pharmacol 2014; 5:153. [PMID: 25104936 PMCID: PMC4109429 DOI: 10.3389/fphar.2014.00153] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/11/2014] [Indexed: 01/11/2023] Open
Abstract
Most neuroactive drugs were discovered through unexpected behavioral observations. Systematic behavioral screening is inefficient in most model organisms. But, automated technologies are enabling a new phase of discovery-based research in central nervous system (CNS) pharmacology. Researchers are using large-scale behavior-based chemical screens in zebrafish to discover compounds with new structures, targets, and functions. These compounds are powerful tools for understanding CNS signaling pathways. Substantial differences between human and zebrafish biology will make it difficult to translate these discoveries to clinical medicine. However, given the molecular genetic similarities between humans and zebrafish, it is likely that some of these compounds will have translational utility. We predict that the greatest new successes in CNS drug discovery will leverage many model systems, including in vitro assays, cells, rodents, and zebrafish.
Collapse
Affiliation(s)
- Giancarlo Bruni
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Parth Lakhani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - David Kokel
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
8
|
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 2013; 7:63. [PMID: 23580329 PMCID: PMC3619107 DOI: 10.3389/fncir.2013.00063] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|