1
|
Nwabo Kamdje AH, Dongmo Fogang HP, Mimche PN. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1426454. [PMID: 39308891 PMCID: PMC11412843 DOI: 10.3389/fmmed.2024.1426454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Armel Hervé Nwabo Kamdje
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Hervet Paulain Dongmo Fogang
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Patrice N. Mimche
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Wang J, Liu X, Lan Y, Que T, Li J, Yue B, Fan Z. DNA methylation and transcriptome analysis reveal epigenomic differences among three macaque species. Evol Appl 2024; 17:e13604. [PMID: 38343783 PMCID: PMC10853583 DOI: 10.1111/eva.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2024] Open
Abstract
Macaques (genus Macaca) are the most widely distributed non-human primates, and their evolutionary history, gene expression profiles, and genetic differences have been extensively studied. However, the DNA methylomes of macaque species are not available in public databases, which hampers understanding of epigenetic differences among macaque species. Epigenetic modifications can potentially affect development, physiology, behavior, and evolution. Here, we investigated the methylation patterns of the Tibetan macaque (M. thibetana; TM), Chinese rhesus macaque (M. mulatta lasiota; CR), and crab-eating macaque (M. fascicularis; CE) through whole-genome bisulfite sequencing from peripheral blood. We compared genome-wide methylation site information for the three species. We identified 12,128 (CR vs. CE), 59,165 (CR vs. TM), and 39,751 (CE vs. TM) differentially methylated regions (DMRs) in the three macaques. Furthermore, we obtained the differentially expressed genes (DEGs) among the three macaque species. The differences between CR and CE were smaller at both the methylome and transcriptome levels than compared with TM (CR vs. TM and CE vs. TM). We also found a change in the density of single nucleotide mutations in DMRs relative to their flanking regions, indicating a potential mechanism through which genomic alterations may modulate methylation landscapes, thereby influencing the transcriptome. Functional enrichment analyses showed the DMR-related genes were enriched in developmental processes and neurological functions, such as the growth hormone-related pathway, insulin secretion pathway, thyroid hormone synthesis pathway, morphine addiction, and GABAergic synapses. These differences may be associated with variations in physiology and habitat among the macaques. Our study provides one of the first genome-wide comparisons of genetic, gene expression, and epigenetic variations across different macaques. Our results should facilitate further research on comparative genomic and genetic differences in macaque species.
Collapse
Affiliation(s)
- Jiao Wang
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Xuyuan Liu
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Tengcheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of GuangxiGuangxiNanningChina
- Faculty of Data ScienceCity University of MacauMacauTaipaChina
| | - Jing Li
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversitySichuanChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversitySichuanChengduChina
| |
Collapse
|
3
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
5
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
6
|
Ghasemi S, Xu S, Nabavi SM, Amirkhani MA, Sureda A, Tejada S, Lorigooini Z. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021; 35:3649-3664. [PMID: 33619811 DOI: 10.1002/ptr.7059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations are one of the main factors that disrupt the expression of genes and consequently, they have an important role in the carcinogenicity and the progression of different cancers. Cancer stem cells (CSCs) are accountable for the recurrence, metastasis, and therapeutic failure of cancer. The noticeable and specific pathways in CSCs can be organized by epigenetic mechanisms such as DNA methylation, chromatin remodeling, regulatory RNAs, among others. Since epigenetics modifications can be changed and reversed, it is a possible tool for cancer control and treatment. Epigenetic therapies against CSCs are emerging as a very new strategy with a good future expectation to treat cancer patients. Phenolic compounds are a vast group of substances with anticarcinogenic functions, antiinflammatory, and antioxidative activities. It seems these characteristics are related to neutralizing CSCs development, their microenvironment, and metabolism through epigenetic mechanisms. In the current work, the types of epigenetic changes known in these cells are introduced. In addition, some studies about the use of polyphenols acting through a variety of epigenetic mechanisms to counteract these cells will be reviewed. The reported results seem to indicate that the use of these phenolic compounds may be useful for CSCs defeat.
Collapse
Affiliation(s)
- Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of neurophysiology. Biology Department, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
The Role of Isoflavones in Type 2 Diabetes Prevention and Treatment-A Narrative Review. Int J Mol Sci 2020; 22:ijms22010218. [PMID: 33379327 PMCID: PMC7795922 DOI: 10.3390/ijms22010218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Given the growing number of type 2 diabetic individuals and the substantial social and financial costs associated with diabetes management, every effort should be made to improve its prevention and treatment methods. There is an ongoing search for natural dietary compounds that could be used for this purpose. This narrative review focuses on the therapeutic potential of isoflavones in diabetes prevention and treatment. This review summarizes (i) the molecular mechanisms of isoflavones action that are critical to their anti-diabetic properties; (ii) preclinical (in vitro and in vivo) studies evaluating the influence of isoflavones on the function of key organs involved in the pathogenesis of diabetes; and (iii) epidemiological studies and clinical trials that assessed the effectiveness of isoflavones in the prevention and treatment of type 2 diabetes in humans. Apart from discussing the effects of isoflavones on the function of organs “classically” associated with the pathogenesis of diabetes (pancreas, liver, muscles, and adipose tissue), the impact of these compounds on other organs that contribute to the glucose homeostasis (gastrointestinal tract, kidneys, and brain) is also reviewed.
Collapse
|
8
|
Ullah H, De Filippis A, Santarcangelo C, Daglia M. Epigenetic regulation by polyphenols in diabetes and related complications. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2020. [DOI: 10.3233/mnm-200489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most challenging health problems worldwide. Left untreated, it may progress causing serious complications. Genetics, epigenetics, and environmental factors are known to play an overlapping role in the pathogenesis of DM. Growing evidence suggests the hypothesis that the environment induces changes in the early phases of growth and development, influencing health and disease in the adulthood through the alteration in genetic expression of an individual, at least in part. DNA methylation, histone modifications and miRNAs are three mechanisms responsible for epigenetic alterations. The daily diet contains a number of secondary metabolites, with polyphenols being highest in abundance, which contribute to overall health and may prevent or delay the onset of many chronic diseases. Polyphenols have the ability to alter metabolic and signaling pathways at various levels, such as gene expression, epigenetic regulation, protein expression and enzyme activity. The potential efficacy of polyphenolic compounds on glucose homeostasis has been evidenced from in vitro, in vivo and clinical studies. The present review is designed to focus on epigenetic regulation exerted by polyphenolic compounds in DM and their complications, as well as to summarize clinical trials involving polyphenols in DM.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Nakachi Y, Ishii K, Bundo M, Masuda T, Iwamoto K. Use of the Illumina EPIC methylation array for epigenomic research in the crab-eating macaque (Macaca fascicularis). Neuropsychopharmacol Rep 2020; 40:423-426. [PMID: 33037870 PMCID: PMC7722662 DOI: 10.1002/npr2.12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background Commercially available Illumina DNA methylation arrays (HumanMethylation 27K, HumanMethylation450, and MethylationEPIC BeadChip) can be used for comprehensive DNA methylation analyses of not only the human genome but also other mammalian genomes, ranging from those of nonhuman primates to those of rodents. However, practical application of the EPIC array to the crab‐eating macaque has not been reported. Methods Through bioinformatic analyses involving cross‐species comparison and consideration of probe performance, we selected array probes that can be reliably used for the crab‐eating macaque genome. A DNA methylation assay using an EPIC array was performed on genomic DNA extracted from the brains of five crab‐eating macaques. The obtained DNA methylation data were compared with a publicly available dataset. Results Among the 865 918 probes in the EPIC array, a total of 183 509 probes (21.2%) were selected as high‐confidence array probes in the crab‐eating macaque. Subsequent comparisons revealed that the data from these probes showed good concordance with other DNA methylation datasets of the crab‐eating macaque. Conclusion The selected high‐confidence array probes would be useful for high‐throughput DNA methylation assays of the crab‐eating macaque. Epigenetic research in the non‐human primates, such as crab‐eating macaque, will be important to understand the pathophysiology of psychiatric disorders. Among the methylation array probes for human genome, the probes that can reliably measure DNA methylation levels of the crab‐eating macaque are reported.![]()
Collapse
Affiliation(s)
- Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Masuda
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Burris RL, Vick SC, Popovic B, Fraungruber PE, Nagarajan S. Maternal exposure to soy diet reduces atheroma in hyperlipidemic F1 offspring mice by promoting macrophage and T cell anti-inflammatory responses. Atherosclerosis 2020; 313:26-34. [PMID: 33032233 DOI: 10.1016/j.atherosclerosis.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Maternal hypercholesterolemia has been implicated in earlier onset of atherosclerotic lesions in neonatal offspring. In this study, we investigated whether maternal exposure to soy protein isolate (SPI) diet attenuated the progression of atherosclerosis in F1 offspring. METHOD Pregnant apolipoprotein E knockout (Apoe-/-) female mice were fed SPI diet until postnatal day 21 (PND21) of the offspring (SPI-offspring). SPI-offspring were switched at PND21 to casein (CAS) diet until PND140. Mice fed CAS throughout their lifetime (gestation to adulthood) were used as controls (CAS-offspring). RESULTS Atherosclerotic lesions in the aortic sinuses were reduced in SPI-offspring compared with CAS-offspring. Total serum cholesterol levels in CAS-offspring or dams were comparable to levels in their SPI-counterparts, suggesting that alternative mechanisms contributed to the athero-protective effect of maternal SPI diet. Aortic VCAM-1, MCP-1, and TNF-α mRNA and protein expression, and expression of macrophage pro-inflammatory cytokines was reduced in SPI-offspring. Interestingly, CD4+ T cells from SPI-offspring showed reduced IFN-γ expression (Th1), while the expression of IL-10 (Th2/Treg), and IL-13 (Th2) was increased. DNA methylation analyses revealed that anti-inflammatory T cell-associated Gata3 and Il13 promoter regions were hypomethylated in SPI-offspring. These findings suggest that anti-inflammatory macrophage and T cell response may have contributed to the athero-protective effect in SPI-offspring. CONCLUSIONS Our findings demonstrate that gestational and lactational soy diet exposure inhibits susceptibility to atherosclerotic lesion formation by promoting anti-inflammatory responses by macrophages and T cells.
Collapse
Affiliation(s)
- Ramona L Burris
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Branimir Popovic
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pamelia E Fraungruber
- Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Shanmugam Nagarajan
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Dhanasiri A, Chen X, Dahle D, Siriyappagouder P, Fæste CK, Fernandes JMO. Dietary inclusion of plant ingredients induces epigenetic changes in the intestine of zebrafish. Epigenetics 2020; 15:1035-1051. [PMID: 32223500 DOI: 10.1080/15592294.2020.1747777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epigenetic modifications, such as DNA methylation, can be regulated by nutrition and dietary factors. There has been a large increase in the use of sustainable plant-based protein sources in fish feed due to limitations of fishmeal resources, which are needed to sustain a rapidly growing aquaculture industry. With this major transition from marine ingredients to plant-based diets, fish are abruptly introduced to changes in dietary composition and exposed to a variety of phytochemicals, some of which known to cause epigenetic changes in mammals. However, the effect of plant ingredients on the epigenome of fish is barely understood. In the present study, the nutriepigenomic effects of the addition of pea, soy, and wheat gluten protein concentrate to aquafeeds were investigated using zebrafish as a model. A genome-wide analysis of DNA methylation patterns was performed by reduced representation bisulphite sequencing to examine global epigenetic alterations in the mid intestine after a 42-day feeding trial. We found that inclusion of 30% of wheat gluten, pea and soy protein concentrate in the diet induced epigenetic changes in the mid intestine of zebrafish. A large number of genes and intergenic regions were differentially methylated with plant-based diets. The genes concerned were related to immunity, NF-κB system, ubiquitin-proteasome pathway, MAPK pathway, and the antioxidant defence system. Epigenetic regulation of several biological processes, including neurogenesis, cell adhesion, response to stress and immunity was also observed. Ultimately, the observed epigenetic changes may enable zebrafish to rapidly regulate inflammation and maintain intestinal homoeostasis when fed plant protein-based diets.
Collapse
Affiliation(s)
- Anusha Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU) , Oslo, Norway
| | - Xianquan Chen
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway.,School of Life Sciences, Sun Yat-Sen University , Guangzhou, PR China
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University , Bodø, Norway
| | | | - Christiane K Fæste
- Toxinology Research Group, Norwegian Veterinary Institute , Oslo, Norway
| | | |
Collapse
|
12
|
Kuryłowicz A, Cąkała-Jakimowicz M, Puzianowska-Kuźnicka M. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens. Nutrients 2020; 12:nu12020582. [PMID: 32102233 PMCID: PMC7071386 DOI: 10.3390/nu12020582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the assessment of the health risk of an obese individual, both the amount of adipose tissue and its distribution and metabolic activity are essential. In adults, the distribution of adipose tissue differs in a gender-dependent manner and is regulated by sex steroids, especially estrogens. Estrogens affect adipocyte differentiation but are also involved in the regulation of the lipid metabolism, insulin resistance, and inflammatory activity of the adipose tissue. Their deficiency results in unfavorable changes in body composition and increases the risk of metabolic complications, which can be partially reversed by hormone replacement therapy. Therefore, the idea of the supplementation of estrogen-like compounds to counteract obesity and related complications is compelling. Phytoestrogens are natural plant-derived dietary compounds that resemble human estrogens in their chemical structure and biological activity. Supplementation with phytoestrogens may confer a range of beneficial effects. However, results of studies on the influence of phytoestrogens on body composition and prevalence of obesity are inconsistent. In this review, we present data from in vitro, animal, and human studies regarding the role of phytoestrogens in adipose tissue development and function in the context of their potential application in the prevention of visceral obesity and related complications.
Collapse
Affiliation(s)
- Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Correspondence: ; Tel.: +48226086591; Fax: +48226086410
| | - Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (M.C.-J.); (M.P.-K.)
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826, Warsaw, Poland
| |
Collapse
|
13
|
Guarasci F, D'Aquila P, Montesanto A, Corsonello A, Bellizzi D, Passarino G. Individual DNA Methylation Profile is Correlated with Age and can be Targeted to Modulate Healthy Aging and Longevity. Curr Pharm Des 2019; 25:4139-4149. [DOI: 10.2174/1381612825666191112095655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
:Patterns of DNA methylation, the best characterized epigenetic modification, are modulated by aging. In humans, different studies at both site-specific and genome-wide levels have reported that modifications of DNA methylation are associated with the chronological aging process but also with the quality of aging (or biological aging), providing new perspectives for establishing powerful biomarkers of aging.:In this article, the role of DNA methylation in aging and longevity has been reviewed by analysing literature data about DNA methylation variations occurring during the lifetime in response to environmental factors and genetic background, and their association with the aging process and, in particular, with the quality of aging. Special attention has been devoted to the relationship between nuclear DNA methylation patterns, mitochondrial DNA epigenetic modifications, and longevity. Mitochondrial DNA has recently been reported to modulate global DNA methylation levels of the nuclear genome during the lifetime, and, in spite of the previous belief, it has been found to be the target of methylation modifications.:Analysis of DNA methylation profiles across lifetime shows that a remodeling of the methylome occurs with age and/or with age-related decline. Thus, it can be an excellent biomarker of aging and of the individual decline and frailty status. The knowledge about the mechanisms underlying these modifications is crucial since it might allow the opportunity for targeted treatment to modulate the rate of aging and longevity.
Collapse
Affiliation(s)
- Francesco Guarasci
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology, Scientific Research Institute - Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| |
Collapse
|
14
|
Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018; 56:553-574. [DOI: 10.1007/s10528-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
|
15
|
Zhou X, Zhu J, Bian T, Wang R, Gao F. Mislocalization of Runt-related transcription factor 3 results in airway inflammation and airway hyper-responsiveness in a murine asthma model. Exp Ther Med 2017; 14:2695-2701. [PMID: 28962214 DOI: 10.3892/etm.2017.4812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
The Runt-related transcription factor (RUNX) gene family consists of three members, RUNX1, -2 and -3, which heterodimerize with a common protein, core-binding factor β, and contain the highly conserved Runt-homology domain. RUNX1 and -2 have essential roles in hematopoiesis and osteogenesis. Runx3 protein regulates cell lineage decisions in neurogenesis and thymopoiesis. The aim of the present study was to determine the expression features of the Runx3 protein in a murine asthma model. In vivo, Runx3 protein and mRNA were found to be almost equivalently expressed in the murine lung tissue of the control, ovalbumin (OVA) and genistein groups; however, the nuclear Runx3 protein was abated in lung tissue in OVA-immunized and challenged mice. Following treatment with genistein, which is a flavonoid previously demonstrated to decrease airway inflammation in asthma, the allergic airway inflammation and airway hyper-responsiveness were attenuated and the Runx3 protein tended to augment in the nucleus. These results were further determined in vitro. These results indicated that the mislocalization of Runx3 protein is a molecular mechanism of allergic inflammation and airway hyper-responsiveness in a murine asthma model.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Respiratory Medicine, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jinxiao Zhu
- Department of Stomatology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Ruiqian Wang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fei Gao
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
16
|
Russo GL, Vastolo V, Ciccarelli M, Albano L, Macchia PE, Ungaro P. Dietary polyphenols and chromatin remodeling. Crit Rev Food Sci Nutr 2017; 57:2589-2599. [DOI: 10.1080/10408398.2015.1062353] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Viviana Vastolo
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Marco Ciccarelli
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Luigi Albano
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Napoli, Italy
| | - Paola Ungaro
- Istituto di Endocrinologia ed Oncologia Sperimentale ‘G. Salvatore’, Consiglio Nazionaledelle Ricerche, Napoli, Italy
| |
Collapse
|
17
|
Ueda J, Murata Y, Bundo M, Oh-Nishi A, Kassai H, Ikegame T, Zhao Z, Jinde S, Aiba A, Suhara T, Kasai K, Kato T, Iwamoto K. Use of human methylation arrays for epigenome research in the common marmoset (Callithrix jacchus). Neurosci Res 2017; 120:60-65. [PMID: 28215819 DOI: 10.1016/j.neures.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/20/2017] [Accepted: 02/14/2017] [Indexed: 01/16/2023]
Abstract
We examined the usefulness of commercially available DNA methylation arrays designed for the human genome (Illumina HumanMethylation450 and MethylationEPIC) for high-throughput epigenome analysis of the common marmoset, a nonhuman primate suitable for research on neuropsychiatric disorders. From among the probes on the methylation arrays, we selected those available for the common marmoset. DNA methylation data were obtained from genomic DNA extracted from the frontal cortex and blood samples of adult common marmosets as well as the frontal cortex of neonatal marmosets. About 10% of the probes on the arrays were estimated to be useful for DNA methylation assay in the common marmoset. Strong correlations existed between human and marmoset DNA methylation data. Illumina methylation arrays are useful for epigenome research using the common marmoset.
Collapse
Affiliation(s)
- Junko Ueda
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yui Murata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan; Department of Molecular Brain Science, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Arata Oh-Nishi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Zhilei Zhao
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto City, Kumamoto, 860-8556, Japan.
| |
Collapse
|
18
|
Park JH, Kim SH, Lee MS, Kim MS. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol Aspects Med 2017; 54:58-70. [PMID: 28216432 DOI: 10.1016/j.mam.2017.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023]
Abstract
Dietary factors play a role in normal biological processes and are involved in the regulation of pathological progression over a lifetime. Evidence has emerged indicating that dietary factor-dependent epigenetic modifications can significantly affect genome stability and the expression of mRNA and proteins, which are involved in metabolic dysfunction. Since metabolic syndrome is a progressive phenotype characterized by insulin resistance, obesity, hypertension, dyslipidemia, or type 2 diabetes, gene-diet interactions are important processes involved in the initiation of particular symptoms of metabolic syndrome and their progression. Some epigenetic risk markers can be initiated or reversed by diet and environmental factors. In this review, we discuss recent advances in our understanding of the interactions between dietary factors and epigenetic changes in metabolic syndrome. We discuss the contribution of nutritional factors in transgenerational inheritance of epigenetic markers and summarize the current knowledge of epigenetic modifications by dietary bioactive components in metabolic diseases. The intake of dietary components that regulate epigenetic modifications can provide significant health effects and, as an epigenetic diet, may prevent various pathological processes in the development of metabolic disease.
Collapse
Affiliation(s)
- Jae-Ho Park
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Gyeonggi-do 13539, Republic of Korea
| | - Soon-Hee Kim
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea
| | - Myeong Soo Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea
| | - Myung-Sunny Kim
- Division of Metabolism and Nutrition, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Gyeonggi-do 13539, Republic of Korea.
| |
Collapse
|
19
|
Westmark CJ. Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons. Front Nutr 2017; 3:59. [PMID: 28149839 PMCID: PMC5241282 DOI: 10.3389/fnut.2016.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Soy-based infant formulas have been consumed in the United States since 1909, and currently constitute a significant portion of the infant formula market. There are efforts underway to generate genetically modified soybeans that produce therapeutic agents of interest with the intent to deliver those agents in a soy-based infant formula platform. The threefold purpose of this review article is to first discuss the pros and cons of soy-based infant formulas, then present testable hypotheses to discern the suitability of a soy platform for drug delivery in babies, and finally start a discussion to inform public policy on this important area of infant nutrition.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
20
|
Wang L, Xu X, Cao Y, Li Z, Cheng H, Zhu G, Duan F, Na J, Han JDJ, Chen YG. Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. J Biol Chem 2016; 292:1339-1350. [PMID: 27965357 DOI: 10.1074/jbc.m116.766949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling. Furthermore, we demonstrate that activin mediates the H3K27me3 decrease via the Smad2-mediated reduction of EZH2 protein level. Our results suggest a two-step process of ME initiation: first, epigenetic priming via removal of H3K27me3 marks and, second, transcription activation. Our findings demonstrate a critical role of H3K27me3 priming and a direct interaction between extrinsic signals and epigenetic modifications during ME initiation.
Collapse
Affiliation(s)
- Lu Wang
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanhao Xu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqiang Cao
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Zhongwei Li
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Cheng
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Gaoyang Zhu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Dong J Han
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
21
|
Kang I, Buckner T, Shay NF, Gu L, Chung S. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into Urolithins: Evidence and Mechanisms. Adv Nutr 2016; 7:961-72. [PMID: 27633111 PMCID: PMC5015040 DOI: 10.3945/an.116.012575] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ellagic acid (EA) is a naturally occurring polyphenol found in some fruits and nuts, including berries, pomegranates, grapes, and walnuts. EA has been investigated extensively because of its antiproliferative action in some cancers, along with its anti-inflammatory effects. A growing body of evidence suggests that the intake of EA is effective in attenuating obesity and ameliorating obesity-mediated metabolic complications, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and atherosclerosis. In this review, we summarize how intake of EA regulates lipid metabolism in vitro and in vivo, and delineate the potential mechanisms of action of EA on obesity-mediated metabolic complications. We also discuss EA as an epigenetic effector, as well as a modulator of the gut microbiome, suggesting that EA may exert a broader spectrum of health benefits than has been demonstrated to date. Therefore, this review aims to suggest the potential metabolic benefits of consumption of EA-containing fruits and nuts against obesity-associated health conditions.
Collapse
Affiliation(s)
- Inhae Kang
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Teresa Buckner
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR; and
| | - Liwei Gu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE;
| |
Collapse
|
22
|
Rupasinghe HPV, Sekhon-Loodu S, Mantso T, Panayiotidis MI. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther 2016; 165:153-63. [PMID: 27288729 DOI: 10.1016/j.pharmthera.2016.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss.
Collapse
Affiliation(s)
- H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Satvir Sekhon-Loodu
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
| | - Theodora Mantso
- Heriot-Watt University, School of Life Sciences, John Muir Building, Riccarton Campus, Edinburgh EH14 4AS, Scotland, UK
| | - Mihalis I Panayiotidis
- Heriot-Watt University, School of Life Sciences, John Muir Building, Riccarton Campus, Edinburgh EH14 4AS, Scotland, UK
| |
Collapse
|
23
|
Lopomo A, Burgio E, Migliore L. Epigenetics of Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:151-84. [PMID: 27288829 DOI: 10.1016/bs.pmbts.2016.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Devaney JM, Wang S, Furbert-Harris P, Apprey V, Ittmann M, Wang BD, Olender J, Lee NH, Kwabi-Addo B. Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics 2015; 10:319-28. [PMID: 25864488 DOI: 10.1080/15592294.2015.1022019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence suggests that aberrant DNA methylation changes may contribute to prostate cancer (PCa) ethnic disparity. To comprehensively identify DNA methylation alterations in PCa disparity, we used the Illumina 450K methylation platform to interrogate the methylation status of 485,577 CpG sites focusing on gene-associated regions of the human genome. Genomic DNA from African-American (AA; 7 normal and 3 cancers) and Caucasian (Cau; 8 normal and 3 cancers) was used in the analysis. Hierarchical clustering analysis identified probe-sets unique to AA and Cau samples, as well as common to both. We selected 25 promoter-associated novel CpG sites most differentially methylated by race (fold change > 1.5-fold; adjusted P < 0.05) and compared the β-value of these sites provided by the Illumina, Inc. array with quantitative methylation obtained by pyrosequencing in 7 prostate cell lines. We found very good concordance of the methylation levels between β-value and pyrosequencing. Gene expression analysis using qRT-PCR in a subset of 8 genes after treatment with 5-aza-2'-deoxycytidine and/or trichostatin showed up-regulation of gene expression in PCa cells. Quantitative analysis of 4 genes, SNRPN, SHANK2, MST1R, and ABCG5, in matched normal and PCa tissues derived from AA and Cau PCa patients demonstrated differential promoter methylation and concomitant differences in mRNA expression in prostate tissues from AA vs. Cau. Regression analysis in normal and PCa tissues as a function of race showed significantly higher methylation prevalence for SNRPN (P = 0.012), MST1R (P = 0.038), and ABCG5 (P < 0.0002) for AA vs. Cau samples. We selected the ABCG5 and SNRPN genes and verified their biological functions by Western blot analysis and siRNA gene knockout effects on cell proliferation and invasion in 4 PCa cell lines (2 AA and 2 Cau patients-derived lines). Knockdown of either ABCG5 or SNRPN resulted in a significant decrease in both invasion and proliferation in Cau PCa cell lines but we did not observe these remarkable loss-of-function effects in AA PCa cell lines. Our study demonstrates how differential genome-wide DNA methylation levels influence gene expression and biological functions in AA and Cau PCa.
Collapse
Affiliation(s)
- J M Devaney
- a Children's National Medical Center ; Center for Genetic Medicine Research ; Washington, DC USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2014; 172:2756-68. [PMID: 25046997 DOI: 10.1111/bph.12854] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/24/2014] [Accepted: 07/10/2014] [Indexed: 12/17/2022] Open
Abstract
Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction.
Collapse
Affiliation(s)
- M Remely
- Department of Nutritional Sciences, University Vienna, Vienna, Austria
| | - L Lovrecic
- Clinical Institute of Medical Genetics, Department of Gynecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - A L de la Garza
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics, University of Pisa, Pisa, Italy.,Research Center Nutraceuticals and Food for Health - Nutrafood, University of Pisa, Pisa, Italy
| | - B Peterlin
- Clinical Institute of Medical Genetics, Department of Gynecology and Obstetrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - F I Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain
| | - A J Martinez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,Physiopathology of Obesity and Nutrition, CIBERobn, Carlos III Health Research Institute, Madrid, Spain
| | - A G Haslberger
- Department of Nutritional Sciences, University Vienna, Vienna, Austria
| |
Collapse
|
27
|
Pudenz M, Roth K, Gerhauser C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 2014; 6:4218-72. [PMID: 25322458 PMCID: PMC4210915 DOI: 10.3390/nu6104218] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Isoflavones (IF) such as genistein are cancer preventive phytochemicals found in soy and other legumes. Epidemiological studies point to a reduced risk for hormone‑dependent cancers in populations following a typical Asian diet rich in soy products. IF act as phytoestrogens and prevent tumorigenesis in rodent models by a broad spectrum of bioactivities. During the past 10 years, IF were shown to target all major epigenetic mechanisms regulating gene expression, including DNA methylation, histone modifications controlling chromatin accessibility, and non-coding RNAs. These effects have been suggested to contribute to cancer preventive potential in in vitro and in vivo studies, affecting several key processes such as DNA repair, cell signaling cascades including Wnt-signaling, induction of apoptosis, cell cycle progression, cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), metastasis formation and development of drug-resistance. We here summarize the state-of-the-art of IF affecting the epigenome in major hormone-dependent, urogenital, and gastrointestinal tumor types and in in vivo studies on anti-cancer treatment or developmental aspects, and short-term intervention studies in adults. These data, while often requiring replication, suggest that epigenetic gene regulation represents an important novel target of IF and should be taken into consideration when evaluating the cancer preventive potential of IF in humans.
Collapse
Affiliation(s)
- Maria Pudenz
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Kevin Roth
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Westmark CJ. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity. Front Neurol 2014; 5:169. [PMID: 25232349 PMCID: PMC4153031 DOI: 10.3389/fneur.2014.00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.
Collapse
Affiliation(s)
- Cara Jean Westmark
- Department of Neurology, Medical Sciences Center, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
29
|
Infinium monkeys: Infinium 450K array for the Cynomolgus macaque (Macaca fascicularis). G3-GENES GENOMES GENETICS 2014; 4:1227-34. [PMID: 24815017 PMCID: PMC4455772 DOI: 10.1534/g3.114.010967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Infinium Human Methylation450 BeadChip Array (Infinium 450K) is a robust and cost-efficient survey of genome-wide DNA methylation patterns. Macaca fascicularis (Cynomolgus macaque) is an important disease model; however, its genome sequence is only recently published, and few tools exist to interrogate the molecular state of Cynomolgus macaque tissues. Although the Infinium 450K is a hybridization array designed to the human genome, the relative conservation between the macaque and human genomes makes its use in macaques feasible. Here, we used the Infinium 450K array to assay DNA methylation in 11 macaque muscle biopsies. We showed that probe hybridization efficiency was related to the degree of sequence identity between the human probes and the macaque genome sequence. Approximately 61% of the Human Infinium 450K probes could be reliably mapped to the Cynomolgus macaque genome and contain a CpG site of interest. We also compared the Infinium 450K data to reduced representation bisulfite sequencing data generated on the same samples and found a high level of concordance between the two independent methodologies, which can be further improved by filtering for probe sequence identity and mismatch location. We conclude that the Infinium 450K array can be used to measure the DNA methylome of Cynomolgus macaque tissues using the provided filters. We also provide a pipeline for validation of the array in other species using a simple BLAST-based sequence identify filter.
Collapse
|
30
|
Milenkovic D, Vanden Berghe W, Boby C, Leroux C, Declerck K, Szarc vel Szic K, Heyninck K, Laukens K, Bizet M, Defrance M, Dedeurwaerder S, Calonne E, Fuks F, Haegeman G, Haenen GRMM, Bast A, Weseler AR. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One 2014; 9:e95527. [PMID: 24763279 PMCID: PMC3998980 DOI: 10.1371/journal.pone.0095527] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/27/2014] [Indexed: 02/03/2023] Open
Abstract
Background In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. Methodology/Principal Findings Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. Conclusion Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans.
Collapse
Affiliation(s)
- Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Céline Boby
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Christine Leroux
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Ken Declerck
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | | | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Francois Fuks
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | | | - Aalt Bast
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
| | - Antje R. Weseler
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
- * E-mail:
| |
Collapse
|
31
|
Buro-Auriemma LJ, Salit J, Hackett NR, Walters MS, Strulovici-Barel Y, Staudt MR, Fuller J, Mahmoud M, Stevenson CS, Hilton H, Ho MWY, Crystal RG. Cigarette smoking induces small airway epithelial epigenetic changes with corresponding modulation of gene expression. Hum Mol Genet 2013; 22:4726-38. [PMID: 23842454 DOI: 10.1093/hmg/ddt326] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The small airway epithelium (SAE), the first site of smoking-induced lung pathology, exhibits genome-wide changes in gene expression in response to cigarette smoking. Based on the increasing evidence that the epigenome can respond to external stimuli in a rapid manner, we assessed the SAE of smokers for genome-wide DNA methylation changes compared with nonsmokers, and whether changes in SAE DNA methylation were linked to the transcriptional output of these cells. Using genome-wide methylation analysis of SAE DNA of nonsmokers and smokers, the data identified 204 unique genes differentially methylated in SAE DNA of smokers compared with nonsmokers, with 67% of the regions with differential methylation occurring within 2 kb of the transcriptional start site. Among the genes with differential methylation were those related to metabolism, transcription, signal transduction and transport. For the differentially methylated genes, 35 exhibited a correlation with gene expression, 54% with an inverse correlation of DNA methylation with gene expression and 46% a direct correlation. These observations provide evidence that cigarette smoking alters the DNA methylation patterning of the SAE and that, for some genes, these changes are associated with the smoking-related changes in gene expression.
Collapse
|
32
|
Milagro F, Mansego M, De Miguel C, Martínez J. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 2013; 34:782-812. [DOI: 10.1016/j.mam.2012.06.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
|
33
|
Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front Cell Neurosci 2013; 7:94. [PMID: 23801940 PMCID: PMC3689023 DOI: 10.3389/fncel.2013.00094] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/27/2013] [Indexed: 12/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accompanies this brain growth. We have found that the Alzheimer's disease (AD) associated amyloid-β precursor protein (APP), especially its neuroprotective processing product, secreted APP α, is elevated in persons with autism. This has led to the "anabolic hypothesis" of autism etiology, in which neuronal overgrowth in the brain results in interneuronal misconnections that may underlie multiple autism symptoms. We review the contribution of research in brain volume and of APP to the anabolic hypothesis, and relate APP to other proteins and pathways that have already been directly associated with autism, such as fragile X mental retardation protein, Ras small GTPase/extracellular signal-regulated kinase, and phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin. We also present additional evidence of magnetic resonance imaging intracranial measurements in favor of the anabolic hypothesis. Finally, since it appears that APP's involvement in autism is part of a multi-partner network, we extend this concept into the inherently interactive realm of epigenetics. We speculate that the underlying molecular abnormalities that influence APP's contribution to autism are epigenetic markers overlaid onto potentially vulnerable gene sequences due to environmental influence.
Collapse
Affiliation(s)
- Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Laboratory of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Craig Erickson
- Cincinnati Children’s Hospital Medical CenterCincinnati, OH, USA
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
34
|
Knight DR, Smith AH, Schroeder RL, Huang C, Beebe DA, Sokolowski SA, Wang M. Effects of age on noninvasive assessments of vascular function in nonhuman primates: implications for translational drug discovery. J Transl Med 2013; 11:101. [PMID: 23607770 PMCID: PMC3644259 DOI: 10.1186/1479-5876-11-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/09/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Endothelium-dependent flow mediated dilation (FMD) and pulse-wave velocity (PWV), are used as measures of vascular health and predictors of cardiovascular risk in clinical studies, and both are age-dependent. Numbers of circulating endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) are also associated with cardiovascular risk, but independent of age in humans. The use of these measurements for pre-clinical assessment of drug cardiovascular safety and efficacy in non-human primates (NHPs) may promote the translation of drug-induced effects on vascular function to clinic outcomes. However, in NHPs, the age effects on the non-invasive measurements of FMD and PWV and the relationship of EMPs/EPCs with FMD are unknown. METHODS A non-invasive, clinically-relevant approach to assess FMD and PWV was used to examine their relationship with age and with EMPs/EPCs in NHPs. The effects on FMD of nicotine and rosiglitazone were evaluated in senescent primates in an effort to validate our FMD method for pre-clinical assessment of vascular function. RESULTS FMD and PWV methods were established in a colony (n = 25) of metabolically healthy, cynomolgus monkeys ranging in age from 6 to 26 years. FMD, defined as the percent change, at 1 min of cuff release, from baseline vascular diameter (0.15 ± 0.03 cm), had a strong, negative correlation with age (r = -0.892, p < 0.0001), ranging from 6% to 33%. PWV positively correlated with age (r = 0.622, p < 0.002) in the same healthy monkeys. Nicotine and rosiglitazone, were evaluated in subsets of senescent primates (mean age 16.3 ± 1.5[SEM] years). Rosiglitazone significantly improved FMD (21.0 ± 1.6% vs. vehicle 16.3 ± 1.6%, p < 0.01) without changing baseline diameters, and coincided with a significant increase in circulating numbers of endothelial progenitor cells (CD45-CD31 + CD34 + VEGFR2+ 7.1 ± 1.3 vs. 4.8 ± 1.1 counts/μl) and a decrease in endothelial microparticles (CD45-CD42a-CD54+ 26.7 ± 11.1 vs. 62.2 ± 9.8 counts/μl)(p < 0.05). Conversely, FMD was significantly reduced with nicotine (8.7 ± 1.4% vs. vehicle 20.1 ± 2.2%, p < 0.05). CONCLUSIONS Adult NHPs demonstrate the characteristic linear relationship between age and vascular function using the non-invasive clinically-related measurements of FMD and PWV. However, numbers of circulating EMPs and EPCs did not correlate with age. Endothelial function assessed with FMD, together with EMPs/EPCs assessment, may serve as a novel approach for translational research and therapeutic discovery. Age should be considered in the study design or data analyses when FMD or PWV is used in NHPs.
Collapse
Affiliation(s)
- Delvin R Knight
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - Andrew H Smith
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - Richard L Schroeder
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - Chunli Huang
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - David A Beebe
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - Sharon A Sokolowski
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| | - Miao Wang
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Pfizer Inc, Groton, CT 06340, USA
| |
Collapse
|
35
|
Vecchio L, Seke Etet PF, Kipanyula MJ, Krampera M, Nwabo Kamdje AH. Importance of epigenetic changes in cancer etiology, pathogenesis, clinical profiling, and treatment: what can be learned from hematologic malignancies? Biochim Biophys Acta Rev Cancer 2013; 1836:90-104. [PMID: 23603458 DOI: 10.1016/j.bbcan.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023]
Abstract
Epigenetic alterations represent a key cancer hallmark, even in hematologic malignancies (HMs) or blood cancers, whose clinical features display a high inter-individual variability. Evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-based, clinical and experimental studies, we hypothesize that factors associated with risk for developing a HM, such as metabolic syndrome and chronic inflammation, trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Among others, signaling pathways associated with such risk factors include pro-inflammatory nuclear factor κB (NF-κB), and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways, which include signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
Collapse
Affiliation(s)
- Lorella Vecchio
- Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
36
|
Delgado-Calle J, Fernández AF, Sainz J, Zarrabeitia MT, Sañudo C, García-Renedo R, Pérez-Núñez MI, García-Ibarbia C, Fraga MF, Riancho JA. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. ACTA ACUST UNITED AC 2012; 65:197-205. [DOI: 10.1002/art.37753] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 10/09/2012] [Indexed: 12/20/2022]
|
37
|
Li H, Xu W, Huang Y, Huang X, Xu L, Lv Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int J Mol Med 2012; 30:1081-6. [PMID: 22960751 DOI: 10.3892/ijmm.2012.1118] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/23/2012] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is a type of tumor usually found in children under 5 years of age, which originates from lesions in the nervous system and has fast growth and early transformation characteristics. Similar to other cancer types, some typical tumor suppressor genes (TSGs), such as P53 and CHD5 are silenced in NB because of high methylation at promoter zones. In the present study, our results showed that genistein, an element found in soy, is an epigenetic modifier able to decrease hypermethylation levels of CHD5, and enhances the expression of CHD5 as well as p53, possibly contributing to inhibition of NB growth in vivo and tumor microvessel formation. Furthermore, genistein acts as a DNA methyltransferase (DNMT) inhibitor to significantly decrease the expression of DNMT3b. Our study indicates that genistein plays an important role in inhibiting NB growth in vivo, probably preventing tumorigenesis risk as a kind of therapeutic agent for NB treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatric Surgery, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200040, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Xu J, Cao J, Iguchi N, Riethmacher D, Huang L. Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol Hum Reprod 2012; 19:17-28. [PMID: 22983952 DOI: 10.1093/molehr/gas040] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian spermatogenesis and sperm maturation are susceptible to the effects of internal and external factors. However, how male germ cells interact with and respond to these elements including those potentially toxic substances is poorly understood. Here, we show that many bitter-taste receptors (T2rs), which are believed to function as gatekeepers in the oral cavity to detect and innately prevent the ingestion of poisonous bitter-tasting compounds, are expressed in mouse seminiferous tubules. Our in situ hybridization results indicate that Tas2r transcripts are expressed postmeiotically. Functional analysis showed that mouse spermatids and spermatozoa responded to both naturally occurring and synthetic bitter-tasting compounds by increasing intracellular free calcium concentrations, and individual male germ cells exhibited different ligand-activation profiles, indicating that each cell may express a unique subset of T2r receptors. These calcium responses could be suppressed by a specific bitter-tastant blocker or abolished by the knockout of the gene for the G protein subunit α-gustducin. Taken together, our data strongly suggest that male germ cells, like taste bud cells in the oral cavity and solitary chemosensory cells in the airway, utilize T2r receptors to sense chemicals in the milieu that may affect sperm behavior and fertilization.
Collapse
Affiliation(s)
- Jiang Xu
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
40
|
Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem (Cham) 2012; 329:73-132. [PMID: 22955508 DOI: 10.1007/128_2012_360] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis and represent potentially initiating events for cancer development. Over the past few years, nutriepigenetics - the influence of dietary components on mechanisms influencing the epigenome - has emerged as an exciting new field in current epigenetic research. During carcinogenesis, major cellular functions and pathways, including drug metabolism, cell cycle regulation, potential to repair DNA damage or to induce apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control and differentiation become deregulated. Recent evidence now indicates that epigenetic alterations contribute to these cellular defects, for example epigenetic silencing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers and transcription factors by promoter methylation, and modifications of histones and non-histone proteins such as p53, NF-κB, and the chaperone HSP90 by acetylation or methylation.The present review will summarize the potential of natural chemopreventive agents to counteract these cancer-related epigenetic alterations by influencing the activity or expression of DNA methyltransferases and histone modifying enzymes. Chemopreventive agents that target the epigenome include micronutrients (folate, retinoic acid, and selenium compounds), butyrate, polyphenols from green tea, apples, coffee, black raspberries, and other dietary sources, genistein and soy isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid (NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM), sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol, and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogs). So far, data are still mainly derived from in vitro investigations, and results of animal models or human intervention studies are limited that demonstrate the functional relevance of epigenetic mechanisms for health promoting or cancer preventive efficacy of natural products. Also, most studies have focused on single candidate genes or mechanisms. With the emergence of novel technologies such as next-generation sequencing, future research has the potential to explore nutriepigenomics at a genome-wide level to understand better the importance of epigenetic mechanisms for gene regulation in cancer chemoprevention.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|