1
|
A novel temperature-controlled open source microcontroller based sampler for collection of exhaled breath condensate in point-of-care diagnostics. Talanta 2022; 237:122984. [PMID: 34736704 DOI: 10.1016/j.talanta.2021.122984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022]
Abstract
Exhaled breath condensate (EBC) is an attractive, non-invasive sample for clinical diagnostics. During EBC collection, its composition is influenced by the collection temperature, a factor that is often not thoroughly monitored and controlled. In this study, we assembled a novel, simple, portable, and inexpensive device for EBC collection, able to maintain a stable temperature at any value between -7 °C and +12 °C. The temperature was controlled using a microcontroller and a thermoelectric cooler that was employed to cool the aluminum block holding the glass tube or the polypropylene syringe. The performance of the novel sampler was compared with the passively cooled RTube™ and a simple EBC sampler, in which the temperature was steadily increasing during sampling. The developed sampler was able to maintain a stable temperature within ±1 °C. To investigate the influence of different sampling temperatures (i.e., +12, -7, -80 °C) on the analyte content in EBC, inorganic ions and organic acids were analyzed by capillary electrophoresis with a capacitively coupled contactless conductivity detector. It was shown that the concentration of metabolites decreased significantly with decreasing temperature. The portability and the ability to keep a stable temperature during EBC sampling makes the developed sampler suitable for point-of-care diagnostics.
Collapse
|
2
|
Mäkitie AA, Almangush A, Youssef O, Metsälä M, Silén S, Nixon IJ, Haigentz M, Rodrigo JP, Saba NF, Vander Poorten V, Ferlito A. Exhaled breath analysis in the diagnosis of head and neck cancer. Head Neck 2019; 42:787-793. [PMID: 31854494 DOI: 10.1002/hed.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) comprises a heterogeneous group of upper aerodigestive tract malignant neoplasms, the most frequent of which is squamous cell carcinoma. HNC forms the eighth most common cancer type and the incidence is increasing. However, survival has improved only moderately during the past decades. Currently, early diagnosis remains the mainstay for improving treatment outcomes in this patient population. Unfortunately, screening methods to allow early detection of HNC are not yet established. Therefore, many cases are still diagnosed at advanced stage, compromising outcomes. Exhaled breath analysis (EBA) is a diagnostic tool that has been recently introduced for many cancers. Breath analysis is non-invasive, cost-effective, time-saving, and can potentially be applied for cancer screening. Here, we provide a summary of the accumulated evidence on the feasibility of EBA in the diagnosis of HNC.
Collapse
Affiliation(s)
- Antti A Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland.,Institute of Biomedicine, Pathology, University of Turku, Turku, Finland.,Faculty of Dentistry, University of Misurata, Misurata, Libya
| | - Omar Youssef
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Markus Metsälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Suvi Silén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iain J Nixon
- Department of Otolaryngology, Head and Neck Surgery, NHS Lothian, Edinburgh University, Edinburgh, UK
| | - Missak Haigentz
- Division of Hematology/Oncology, Department of Medicine, Morristown Medical Center/Atlantic Health System, Morristown, New Jersey
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, ISPA, IUOPA, CIBERONC, Oviedo, Spain
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology, Section of Head and Neck Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
3
|
Cavaleiro Rufo J, Paciência I, Mendes FC, Farraia M, Rodolfo A, Silva D, de Oliveira Fernandes E, Delgado L, Moreira A. Exhaled breath condensate volatilome allows sensitive diagnosis of persistent asthma. Allergy 2019; 74:527-534. [PMID: 30156012 DOI: 10.1111/all.13596] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis and phenotyping of paediatric asthma are particularly complex due to the lack of currently available sensitive diagnostic tools. This often results in uncertainties associated with inhaled steroid therapy prescription. Therefore, this study aimed to investigate whether volatile organic compounds measured in exhaled breath condensate can be used as biomarkers for asthma diagnosis in the paediatric population. METHODS A total of 64 participants, aged 6-18 years, were recruited on a random basis during visits to an outpatient allergy clinic and to a juvenile football team training session. Lung function, airway reversibility and skin prick tests were performed. Exhaled breath condensate samples were collected, and breathprints were assessed using an electronic nose. Information on medical diagnosis of asthma, rhinitis and atopic dermatitis was retrieved for each participant. A hierarchical cluster model based on the volatilome profiles was then created. RESULTS A two-cluster exhaled volatile organic compound-based hierarchical model was able to significantly discriminate individuals with asthma from those without the disease (AUC = 0.81 [0.69-0.93], P < 0.001). Individuals who had persistent asthma and were prescribed corticosteroid therapy by the physician were also significantly distinguished in the model (AUC = 0.81 [0.70-0.92], P < 0.001). Despite being less specific, the method showed higher overall accuracy, sensitivity and AUC values when compared to spirometry with bronchodilation. CONCLUSIONS Analysis of the exhaled breath condensate volatilome allowed the distinction of paediatric individuals with a medical diagnosis of asthma, identifying those in need of corticosteroid therapy.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- EPIUnit - Instituto de Saúde Pública; Universidade do Porto; Porto Portugal
- Grupo de Energia e Ambiente Construído; Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial; Porto Portugal
| | - Inês Paciência
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- EPIUnit - Instituto de Saúde Pública; Universidade do Porto; Porto Portugal
- Grupo de Energia e Ambiente Construído; Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial; Porto Portugal
| | - Francisca Castro Mendes
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
| | - Mariana Farraia
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
| | - Ana Rodolfo
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- Departamento de Imunoalergologia; Centro Hospitalar S. João EPE; Porto Portugal
| | - Diana Silva
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- Departamento de Imunoalergologia; Centro Hospitalar S. João EPE; Porto Portugal
| | - Eduardo de Oliveira Fernandes
- Grupo de Energia e Ambiente Construído; Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial; Porto Portugal
| | - Luís Delgado
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- Departamento de Imunoalergologia; Centro Hospitalar S. João EPE; Porto Portugal
| | - André Moreira
- Imunologia Básica e Clínica; Departamento de Patologia; Faculdade de Medicina; Universidade do Porto; Porto Portugal
- EPIUnit - Instituto de Saúde Pública; Universidade do Porto; Porto Portugal
- Departamento de Imunoalergologia; Centro Hospitalar S. João EPE; Porto Portugal
| |
Collapse
|
4
|
Lozo Vukovac E, Miše K, Gudelj I, Perić I, Duplančić D, Vuković I, Vučinović Z, Lozo M. Bronchoalveolar pH and inflammatory biomarkers in patients with acute exacerbation of chronic obstructive pulmonary disease. J Int Med Res 2018; 47:791-802. [PMID: 30488761 PMCID: PMC6381468 DOI: 10.1177/0300060518811560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives This study aimed to directly measure pH in the lungs, determine lactate dehydrogenase (LDH), C-reactive protein (CRP), and glucose levels in serum and bronchoalveolar aspirate, and identify bacterial pathogens from bronchoalveolar fluid during acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods We performed an observational, analytical case–control study from February 2015 to March 2017. We included 84 patients with AECOPD and 42 with stable chronic obstructive pulmonary disease (COPD). All participants underwent detailed medical anamnesis, a clinical examination, chest radiography, spirometry, an arterial blood gas test, bronchoscopy, bacterial culture, and serum/bronchiolar aspirate laboratory testing. Results The mean pH of bronchoalveolar fluid was significantly higher in patients with AECOPD than in patients with stable COPD. The mean lung pH value, bronchoalveolar and serum LDH levels, and serum CRP levels in patients with isolated bacteria were higher than those in patients without isolated bacteria in the AECOPD patient group. Lung pH values in patients with AECOPD were significantly correlated with bronchoalveolar LDH and glucose levels. Conclusions AECOPD is associated with local cell and tissue injury in the lungs, especially in the presence of bacterial pathogens, which is accompanied by a low systemic inflammatory response.
Collapse
Affiliation(s)
- Emilija Lozo Vukovac
- 1 Department of Pulmonary Diseases, University Hospital Center Split, Split, Croatia.,2 University of Split School of Medicine, Split, Croatia
| | - Kornelija Miše
- 1 Department of Pulmonary Diseases, University Hospital Center Split, Split, Croatia.,2 University of Split School of Medicine, Split, Croatia
| | - Ivan Gudelj
- 1 Department of Pulmonary Diseases, University Hospital Center Split, Split, Croatia.,2 University of Split School of Medicine, Split, Croatia
| | - Irena Perić
- 1 Department of Pulmonary Diseases, University Hospital Center Split, Split, Croatia.,2 University of Split School of Medicine, Split, Croatia
| | - Darko Duplančić
- 2 University of Split School of Medicine, Split, Croatia.,3 Department of Cardiology, University Hospital Center Split, Split, Croatia
| | - Ivica Vuković
- 2 University of Split School of Medicine, Split, Croatia.,3 Department of Cardiology, University Hospital Center Split, Split, Croatia
| | - Zoran Vučinović
- 4 Department of Endocrinology, University Hospital Center Split, Split, Croatia
| | - Mislav Lozo
- 3 Department of Cardiology, University Hospital Center Split, Split, Croatia
| |
Collapse
|
5
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Youssef O, Sarhadi VK, Armengol G, Piirilä P, Knuuttila A, Knuutila S. Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes Chromosomes Cancer 2016; 55:905-914. [DOI: 10.1002/gcc.22399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Omar Youssef
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Virinder Kaur Sarhadi
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma De Barcelona; Barcelona Catalonia Spain
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS-Medical Imaging Center, Helsinki University Hospital and Helsinki University; Helsinki Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine; University of Helsinki and Helsinki University Hospital, Heart and Lung Center; Helsinki Finland
| | - Sakari Knuutila
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| |
Collapse
|
7
|
Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM. Exhaled breath condensate for lung cancer protein analysis: a review of methods and biomarkers. J Breath Res 2016; 10:034001. [PMID: 27380020 DOI: 10.1088/1752-7155/10/3/034001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide, and is considered one of the most aggressive human cancers, with a 5 year overall survival of 10-15%. Early diagnosis of lung cancer is ideal; however, it is still uncertain as to what technique will prove successful in the systematic screening of high-risk populations, with the strongest evidence currently supporting low dose computed tomography (LDCT). Analysis of exhaled breath condensate (EBC) has recently been proposed as an alternative low risk and non-invasive screening method to investigate early-stage neoplastic processes in the airways. However, there still remains a relative paucity of lung cancer research involving EBC, particularly in the measurement of lung proteins that are centrally linked to pathogenesis. Considering the ease and safety associated with EBC collection, and advances in the area of mass spectrometry based profiling, this technology has potential for use in screening for the early diagnosis of lung cancer. This review will examine proteomics as a method of detecting markers of neoplasia in patient EBC with a particular emphasis on LC, as well as discussing methodological challenges involving in proteomic analysis of EBC specimens.
Collapse
Affiliation(s)
- Sarah A Hayes
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia. Sydney Medical School Northern, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Bikov A, Hull JH, Kunos L. Exhaled breath analysis, a simple tool to study the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 2016; 27:1-8. [DOI: 10.1016/j.smrv.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
9
|
Hüttmann EM, Greulich T, Koepke J, Nell C, Hattesohl A, Schmid S, Noeske S, Herr C, John G, Jörres RA, Müller B, Vogelmeier C, Koczulla AR. Correction: Comparison of Two Devices and Two Breathing Patterns for Exhaled Breath Condensate Sampling. PLoS One 2016; 11:e0152620. [PMID: 27018972 PMCID: PMC4809509 DOI: 10.1371/journal.pone.0152620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Glück J, Rymarczyk B, Kasprzak M, Rogala B. Increased Levels of Interleukin-33 and Thymic Stromal Lymphopoietin in Exhaled Breath Condensate in Chronic Bronchial Asthma. Int Arch Allergy Immunol 2016; 169:51-6. [PMID: 26953567 DOI: 10.1159/000444017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epithelium-derived cytokines such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33 are important contributors to inflammation in asthma. Exhaled breath condensate (EBC) is a noninvasive method used to assess the inflammation of airways. Our aim was to assess the levels of TSLP, IL-25, IL-33, and its receptor ST2l/IL-1 R4 in EBC in patients with asthma and to correlate these with serum levels and asthma control. METHODS EBC and serum levels of TSLP, IL-25, IL-33, and ST2l/IL-1 R4 were measured in 44 patients with chronic bronchial asthma (14 in the uncontrolled phase) and 19 healthy control participants. RESULTS EBC levels of IL-33 and TSLP and serum levels of IL-33 were statistically higher in patients with asthma than in controls. IL-25 and ST2l/IL-1 R4 were present in EBC at barely detectable levels and were not analyzed. The EBC and serum levels of all studied mediators did not differ between controlled and uncontrolled asthma patients, except for the serum level of ST2l/IL-1 R4, which was higher in uncontrolled asthma. There were no correlations between serum and EBC levels of TSLP and IL-33 or between either serum and EBC levels and the forced expiratory volume in 1 s or the total IgE level. CONCLUSIONS Higher levels of IL-33 and TSLP in EBC provide evidence supporting a role for these mediators in asthma. Their levels do not discriminate between controlled and uncontrolled asthma. The local reaction within the epithelium is independent of the systemic reaction.
Collapse
Affiliation(s)
- Joanna Glück
- Clinical Department of Internal Diseases, Allergology and Clinical Immunology, Medical University of Silesia, Katowice, Poland
| | | | | | | |
Collapse
|
11
|
Moschino L, Zanconato S, Bozzetto S, Baraldi E, Carraro S. Childhood asthma biomarkers: present knowledge and future steps. Paediatr Respir Rev 2015; 16:205-12. [PMID: 26100359 DOI: 10.1016/j.prrv.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022]
Abstract
Asthma represents the most common chronic respiratory disease of childhood. Its current standard diagnosis relies on patient history of symptoms and confirmed expiratory airflow limitation. Nevertheless, the spectrum of asthma in clinical presentation is broad, and both symptoms and lung function may not always reflect the underlying airway inflammation, which can be determined by different pathogenetic mechanisms. For these reasons, the identification of objective biomarkers of asthma, which may guide diagnosis, phenotyping, management and treatment is of great clinical utility and might have a role in the development of personalized therapy. The availability of non-invasive methods to study and monitor disease inflammation is of relevance especially in childhood asthma. In this sense, a promising role might be played by the measurement of exhaled biomarkers, such as exhaled nitric oxide (FE(NO)) and molecules in exhaled breath condensate (EBC). Furthermore, recent studies have shown encouraging results with the application of the novel metabolomic approach to the study of exhaled biomarkers. In this paper the existing knowledge in the field of asthma biomarkers, with a special focus on exhaled biomarkers, will be highlighted.
Collapse
Affiliation(s)
- Laura Moschino
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Stefania Zanconato
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Sara Bozzetto
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Padova Italy
| | - Silvia Carraro
- Department of Women's and Children's Health, University of Padova, Padova Italy.
| |
Collapse
|
12
|
Bach JP, Gold M, Mengel D, Hattesohl A, Lubbe D, Schmid S, Tackenberg B, Rieke J, Maddula S, Baumbach JI, Nell C, Boeselt T, Michelis J, Alferink J, Heneka M, Oertel W, Jessen F, Janciauskiene S, Vogelmeier C, Dodel R, Koczulla AR. Measuring Compounds in Exhaled Air to Detect Alzheimer's Disease and Parkinson's Disease. PLoS One 2015; 10:e0132227. [PMID: 26168044 PMCID: PMC4500505 DOI: 10.1371/journal.pone.0132227] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Background Alzheimer’s disease (AD) is diagnosed based upon medical history, neuropsychiatric examination, cerebrospinal fluid analysis, extensive laboratory analyses and cerebral imaging. Diagnosis is time consuming and labour intensive. Parkinson’s disease (PD) is mainly diagnosed on clinical grounds. Objective The primary aim of this study was to differentiate patients suffering from AD, PD and healthy controls by investigating exhaled air with the electronic nose technique. After demonstrating a difference between the three groups the secondary aim was the identification of specific substances responsible for the difference(s) using ion mobility spectroscopy. Thirdly we analysed whether amyloid beta (Aβ) in exhaled breath was causative for the observed differences between patients suffering from AD and healthy controls. Methods We employed novel pulmonary diagnostic tools (electronic nose device/ion-mobility spectrometry) for the identification of patients with neurodegenerative diseases. Specifically, we analysed breath pattern differences in exhaled air of patients with AD, those with PD and healthy controls using the electronic nose device (eNose). Using ion mobility spectrometry (IMS), we identified the compounds responsible for the observed differences in breath patterns. We applied ELISA technique to measure Aβ in exhaled breath condensates. Results The eNose was able to differentiate between AD, PD and HC correctly. Using IMS, we identified markers that could be used to differentiate healthy controls from patients with AD and PD with an accuracy of 94%. In addition, patients suffering from PD were identified with sensitivity and specificity of 100%. Altogether, 3 AD patients out of 53 participants were misclassified. Although we found Aβ in exhaled breath condensate from both AD and healthy controls, no significant differences between groups were detected. Conclusion These data may open a new field in the diagnosis of neurodegenerative disease such as Alzheimer’s disease and Parkinson’s disease. Further research is required to evaluate the significance of these pulmonary findings with respect to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Maike Gold
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - David Mengel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Akira Hattesohl
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| | - Dirk Lubbe
- Department of Psychology, Division of Methodology and Statistics of the University of Giessen, 35394 Giessen, Germany
| | - Severin Schmid
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| | - Björn Tackenberg
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Jürgen Rieke
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Sasidhar Maddula
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Jörg Ingo Baumbach
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Christoph Nell
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| | - Tobias Boeselt
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| | - Joan Michelis
- Clinical Neuroscience Unit, Department of Neurology, University of Bonn, 53105 Bonn, Germany
- Department of Psychiatry, University of Bonn, 53105 Bonn, Germany
| | - Judith Alferink
- Department of Psychiatry, University of Bonn, 53105 Bonn, Germany
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Michael Heneka
- Clinical Neuroscience Unit, Department of Neurology, University of Bonn, 53105 Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), 53105 Bonn, Germany
| | - Wolfgang Oertel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Frank Jessen
- Department of Psychiatry, University of Bonn, 53105 Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), 53105 Bonn, Germany
| | - Sabina Janciauskiene
- Department of Internal Medicine, University of Hannover, 30625 Hannover, Germany
| | - Claus Vogelmeier
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
- * E-mail:
| | - Andreas Rembert Koczulla
- Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
13
|
Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Câmara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5:3-55. [PMID: 25584743 PMCID: PMC4381289 DOI: 10.3390/metabo5010003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.
Collapse
Affiliation(s)
- Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Priscilla Porto-Figueira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Rahul Dhakne
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - Hampapathalu Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
14
|
Detection of bloodstream infections and prediction of bronchopulmonary dysplasia in preterm neonates with an electronic nose. J Pediatr 2014; 165:622-4. [PMID: 24929333 DOI: 10.1016/j.jpeds.2014.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/21/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022]
Abstract
We show that smellprints of volatile organic components measured with an electronic nose (Cyranose 320; Smiths Detection Group Ltd, Watford, United Kingdom) differ between tracheal aspirates from preterm neonates with or without laboratory-confirmed bloodstream infections and with or without subsequent development of bronchopulmonary dysplasia. Tracheal aspirate smellprints could be useful noninvasive diagnostic markers for preterm neonates.
Collapse
|
15
|
|
16
|
Glowacka E, Jedynak-Wasowicz U, Sanak M, Lis G. Exhaled eicosanoid profiles in children with atopic asthma and healthy controls. Pediatr Pulmonol 2013; 48:324-35. [PMID: 22782807 DOI: 10.1002/ppul.22615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/26/2012] [Indexed: 01/09/2023]
Abstract
RATIONALE Chronic endobronchial inflammation is a hallmark of pediatric asthma and involves the arachidonic acid pathway. Its non-volatile metabolites can be quantified in the exhaled breath condensate (EBC), and single substances have been studied as non-invasive biomarkers for the diagnosis and monitoring of children with asthma. The aim of this study was to compare the content and profile of a wider range of eicosanoids in the EBC between patients and a control group. MATERIALS AND METHODS EBC was sampled from 33 children (aged 12.4 ± 3.1 years) with stable atopic asthma (26 on inhaled steroid treatment) and 25 healthy controls (11.8 ± 3.2 years). Validated high performance liquid chromatography coupled with a tandem mass spectrometry platform (HPLC-MS2 ) was used to measure 13 different compounds. In addition, exhaled nitric oxide levels (FeNO) were measured and bronchial hyperresponsiveness (BHR) was assessed by an exercise challenge test in all subjects. An analytical approach was used for multivariate regression modeling of disease status using the most relevant variables. RESULTS The levels of PGEM (P < 0.001), PGD2 (P < 0.001), 6keto-PGF1α (P = 0.03), LTC4 (P < 0.001), trans-LTC4 (P = 0.04), and 5HETE (P = 0.02) were significantly higher in asthmatics compared to healthy children, while 11-dehydro TXB2 was significantly less abundant (P = 0.02). The eicosanoids asthma classification ratio (EACR) was computed as the logistic regression function using four variables: PGEM, PGD2, LTC4, and 5HETE. This composite parameter discriminated asthmatic from healthy children better than FEV1, FeNO, or BHR. CONCLUSION Complementary measurements of PGEM, PGD2, LTC4, and 5HETE in small-volume EBC samples are feasible by HPLC-MS2 and showed a specific profile in our study population. EACR should be evaluated further in the context of diagnosing and monitoring childhood asthma.
Collapse
Affiliation(s)
- Edyta Glowacka
- University Children Hospital, Kraków, ul. Wielicka, Poland
| | | | | | | |
Collapse
|
17
|
Schivo M, Seichter F, Aksenov AA, Pasamontes A, Peirano DJ, Mizaikoff B, Kenyon NJ, Davis CE. A mobile instrumentation platform to distinguish airway disorders. J Breath Res 2013; 7:017113. [PMID: 23446184 PMCID: PMC3633523 DOI: 10.1088/1752-7155/7/1/017113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are distinct but clinically overlapping airway disorders which often create diagnostic and therapeutic dilemmas. Current strategies to discriminate these diseases are limited by insensitivity and poor performance due to biologic variability. We tested the hypothesis that a gas chromatograph/differential mobility spectrometer (GC/DMS) sensor could distinguish between clinically well-defined groups with airway disorders based on the volatile organic compounds (VOCs) obtained from exhaled breath. After comparing VOC profiles obtained from 13 asthma, 5 COPD and 13 healthy control subjects, we found that VOC profiles distinguished asthma from healthy controls and also a subgroup of asthmatics taking the drug omalizumab from healthy controls. The VOC profiles could not distinguish between COPD and any of the other groups. Our results show a potential application of the GC/DMS for non-invasive and bedside diagnostics of asthma and asthma therapy monitoring. Future studies will focus on larger sample sizes and patient cohorts.
Collapse
Affiliation(s)
- Michael Schivo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Felicia Seichter
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Germany
| | - Alexander A. Aksenov
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Alberto Pasamontes
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Daniel J. Peirano
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Germany
| | - Nicholas J. Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Cristina E. Davis
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
18
|
Goldoni M, Corradi M, Mozzoni P, Folesani G, Alinovi R, Pinelli S, Andreoli R, Pigini D, Tillo R, Filetti A, Garavelli C, Mutti A. Concentration of exhaled breath condensate biomarkers after fractionated collection based on exhaled CO2 signal. J Breath Res 2013; 7:017101. [PMID: 23445573 DOI: 10.1088/1752-7155/7/1/017101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A standard procedure for exhaled breath condensate (EBC) collection is still lacking. The aim of this study was to compare the concentration of several biomarkers in whole (W-EBC) and fractionated EBC (A-EBC), the latter collected starting from CO2 ≥ 50% increase during exhalation. Forty-five healthy non-smokers or asymptomatic light smokers were enrolled. Total protein concentrations in W-EBC and A-EBC were overlapping (median: 0.7 mg l(-1) in both cases), whereas mitochondrial DNA was higher in A-EBC (0.021 versus 0.011 ng ml(-1)), indicating a concentration rather than a dilution of lining fluid droplets in the last portion of exhaled air. H2O2 (0.13 versus 0.08 µM), 8-isoprostane (4.9 versus 4.4 pg ml(-1)), malondialdehyde (MDA) (4.2 versus 3.2 nM) and 4-hydroxy-2-nonhenal (HNE) (0.78 versus 0.66 nM) were all higher in W-EBC, suggesting a contribution from the upper airways to oxidative stress biomarkers in apparently healthy subjects. NH4(+) was also higher in W-EBC (median: 590 versus 370 µM), with an estimated increase over alveolar and bronchial air by a factor 1.5. pH was marginally, but significantly higher in W-EBC (8.05 versus 8.01). In conclusion, the fractionation of exhaled air may be promising in clinical and occupational medicine.
Collapse
Affiliation(s)
- Matteo Goldoni
- Laboratory of Industrial Toxicology, Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yin M, Hou Y, Zhang T, Cui C, Zhou X, Sun F, Li H, Li X, Zheng J, Chen X, Li C, Ning X, Li K, Lou G. Evaluation of chemotherapy response with serum squamous cell carcinoma antigen level in cervical cancer patients: a prospective cohort study. PLoS One 2013; 8:e54969. [PMID: 23349993 PMCID: PMC3551772 DOI: 10.1371/journal.pone.0054969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
MRI does not always reflect tumor response after chemotherapy. Therefore, it is necessary to explore additional parameters to more accurately evaluate tumor response for the subsequent clinical determination about radiotherapy or radical surgery. A training cohort and an external validation cohort were used to examine the predictive performance of SCC-ag to evaluate tumor response from teaching hospital of Harbin Medical University. The study included 397 women with SCC (age: 28–73 years). Patients consecutively enrolled between August 2008 and January 2010 (n = 205) were used as training cohort. Patients consecutively enrolled between February 2010 and May 2011 (n = 192) were used as validation cohort. A multivariate regression analysis of the data from the training cohort indicated that serum SCC-ag level is an independent factor for neo-adjuvant chemotherapy (NACT) response. Analysis of the data from the validation cohort suggested that chemotherapy response could be more accurately predicted by SCC-ag than by magnetic resonance imaging (MRI) (sensitivity (Se): 0.944 vs. 0.794; specificity (Sp): 0.727 vs. 0.636; positive predictive value (PPV): 0.869 vs. 0.806; negative predictive value (NPV): 0.873 vs. 0.618; the area under ROC curve (AUC): 0.898 vs. 0.734). Combining SCC-ag with MRI was more powerful than MRI alone (Se: 0.952 vs. 0.794; Sp: 0.833 vs. 0.636; PPV: 0.916 vs. 0.806; NPV: 0.902 vs. 0.618; AUC: 0.950 vs. 0.734). Our study indicates that serum SCC-ag level is a sensitive and reliable measure to evaluate cervical cancer response to chemotherapy. Using SCC-ag in combination with MRI findings further improves the predictive power.
Collapse
Affiliation(s)
- Mingzhu Yin
- Department of Gynecology and Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Hou
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Changyi Cui
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Xiaohua Zhou
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Fengyu Sun
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Huiyan Li
- Department of Radiotherapy Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xia Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Zheng
- Department of Radiotherapy Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xiuwei Chen
- Department of Gynecology and Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Cong Li
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xiaoming Ning
- Department of Pathology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (GL); (KL)
| | - Ge Lou
- Department of Gynecology and Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (GL); (KL)
| |
Collapse
|
20
|
Liang Y, Yeligar SM, Brown LAS. Exhaled breath condensate: a promising source for biomarkers of lung disease. ScientificWorldJournal 2012; 2012:217518. [PMID: 23365513 PMCID: PMC3539342 DOI: 10.1100/2012/217518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/25/2012] [Indexed: 12/26/2022] Open
Abstract
Exhaled breath condensate (EBC) has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF), validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis.
Collapse
Affiliation(s)
- Yan Liang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| | - Samantha M. Yeligar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
- Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, GA 30033, USA
| | - Lou Ann S. Brown
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
van de Kant KDG, Klaassen EMM, van Aerde KJ, Damoiseaux J, Bruggeman CA, Stelma FF, Stobberingh EE, Muris JWM, Jöbsis Q, van Schayck OCP, Dompeling E. Impact of bacterial colonization on exhaled inflammatory markers in wheezing preschool children. J Breath Res 2012; 6:046001. [PMID: 22990010 DOI: 10.1088/1752-7155/6/4/046001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wheeze is a common symptom in preschool children. The role of bacteria, regulatory T (T(reg)) cells and their association with airway inflammation in preschool wheeze is largely unknown. We evaluated inflammatory markers in exhaled breath condensate (EBC), bacterial colonization and circulating T(reg) cells in preschool children with and without recurrent wheeze. We recruited 252 children (aged two to four years) with (N = 202) and without (N = 50) recurrent wheeze. EBC was collected using an efficient closed glass condenser. Inflammatory markers in EBC (Interleukin(IL)-2, IL-4, IL-8, IL-10, IL-13) were assessed using multiplex immunoassay. Nasal and throat swabs were analysed for presence of Streptococcus pneumoniae, Haemophilus (para)influenzae and Staphylococcus aureus. Proportions of T(reg) cells (CD4(+)CD25(high)CD127(-)) were quantified by flow cytometry. Recurrent wheezing children had elevated EBC levels of IL-2, IL-4, IL-10 and IL-13 compared to non-wheezers (odds ratio (95% confidence interval): 1.67 (1.23-2.27): 1.58 (1.15-2.18): 1.47 (1.14-1.90): 1.55 (1.16-2.06), p <0.05, respectively). Bacteria were frequently present in children with and without wheeze, with no difference in prevalence (16-52% versus 16-50%, respectively). Moreover, the proportion of T(reg) cells did not differ between both groups. Wheezing children with bacterial colonization did not significantly differ in exhaled levels of inflammatory markers or proportion of T(reg) cells compared to wheezing children without colonization. The analysis of EBC might serve as a helpful non-invasive tool to early assess airway inflammation in wheezing children. The various elevated exhaled inflammatory markers indicate increased airway inflammation in wheezing preschool children. In the presence of wheeze, we found no evidence for bacterial induced airway inflammation.
Collapse
Affiliation(s)
- Kim D G van de Kant
- Department of Paediatric Pulmonology, School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Centre (MUMC), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|