1
|
Sato Y, Mustafina KR, Luo Y, Martini C, Thomas DY, Wiseman PW, Hanrahan JW. Nonspecific binding of common anti-CFTR antibodies in ciliated cells of human airway epithelium. Sci Rep 2021; 11:23256. [PMID: 34853321 PMCID: PMC8636639 DOI: 10.1038/s41598-021-02420-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
There is evidence that the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is highly expressed at the apical pole of ciliated cells in human bronchial epithelium (HBE), however recent studies have detected little CFTR mRNA in those cells. To understand this discrepancy we immunostained well differentiated primary HBE cells using CFTR antibodies. We confirmed apical immunofluorescence in ciliated cells and quantified the covariance of the fluorescence signals and that of an antibody against the ciliary marker centrin-2 using image cross-correlation spectroscopy (ICCS). Super-resolution stimulated emission depletion (STED) imaging localized the immunofluorescence in distinct clusters at the bases of the cilia. However, similar apical fluorescence was observed when the monoclonal CFTR antibodies 596, 528 and 769 were used to immunostain ciliated cells expressing F508del-CFTR, or cells lacking CFTR due to a Class I mutation. A BLAST search using the CFTR epitope identified a similar amino acid sequence in the ciliary protein rootletin X1. Its expression level correlated with the intensity of immunostaining by CFTR antibodies and it was detected by 596 antibody after transfection into CFBE cells. These results may explain the high apparent expression of CFTR in ciliated cells and reports of anomalous apical immunofluorescence in well differentiated cells that express F508del-CFTR.
Collapse
Affiliation(s)
- Yukiko Sato
- Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Kamila R Mustafina
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada.,Department of Chemistry, McGill University, Montréal, Canada
| | - Yishan Luo
- Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada.,Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - David Y Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada.,Department of Biochemistry, McGill University, Montréal, Canada
| | - Paul W Wiseman
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada.,Department of Chemistry, McGill University, Montréal, Canada.,Department of Physics, McGill University, Montréal, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada. .,Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada. .,Research Institute - McGill University Health Centre, Montréal, Canada.
| |
Collapse
|
2
|
van Eijk M, van Dijk A, van der Ent CK, Arets HGM, Breukink E, van Os N, Adrichem R, van der Water S, Lino Gómez R, Kristensen M, Hessing M, Jekhmane S, Weingarth M, Veldhuizen RAW, Veldhuizen EJA, Haagsman HP. PepBiotics, novel cathelicidin-inspired antimicrobials to fight pulmonary bacterial infections. Biochim Biophys Acta Gen Subj 2021; 1865:129951. [PMID: 34147544 DOI: 10.1016/j.bbagen.2021.129951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients. METHODS Broth dilution assays were used to determine antibacterial activity of PepBiotics under physiological conditions, as well as development of bacterial resistance against these peptides. Toxicity was tested in mice and cell cultures while molecular interactions of PepBiotics with bacterial membrane components was determined using CD, ITC and LPS/LTA induced macrophage studies. RESULTS A relatively small number of PepBiotics remained highly antibacterial against CF-related respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus, at high ionic strength and low pH. Interestingly, these PepBiotics also prevented LPS/LTA induced activation of macrophages and was shown to be non-toxic to primary human nasal epithelial cells. Furthermore, both P. aeruginosa and S. aureus were unable to induce resistance against CR-163 and CR-172, two PepBiotics selected for their excellent antimicrobial and immunomodulatory properties. Toxicity studies in mice indicated that intratracheal administration of CR-163 was well tolerated in vivo. Finally, interaction of CR-163 with bacterial-type anionic membranes but not with mammalian-type (zwitterionic lipid) membranes was confirmed using ITC and 31P solid state NMR. CONCLUSIONS PepBiotics are a promising novel class of highly active antimicrobial peptides, of which CR-163 showed the most potential for treatment of clinically relevant (CF-) pathogens in physiological conditions. GENERAL SIGNIFICANCE These observations emphasize the therapeutic potential of PepBiotics against CF-related bacterial respiratory infections.
Collapse
Affiliation(s)
- Martin van Eijk
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Albert van Dijk
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Cornelis K van der Ent
- Department of Paediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hubertus G M Arets
- Department of Paediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nico van Os
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Roy Adrichem
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Sven van der Water
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Rita Lino Gómez
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| | - Maartje Kristensen
- Department of Paediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Martin Hessing
- U-Protein Express B.V., Life Science Incubator, Utrecht Science Park, Yalelaan 62, 3584CM Utrecht, the Netherlands
| | - Shehrazade Jekhmane
- Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Markus Weingarth
- Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
| | - Ruud A W Veldhuizen
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Edwin J A Veldhuizen
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands; Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Utrecht University, the Netherlands.
| | - Henk P Haagsman
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Molecular Host Defence, Utrecht University, the Netherlands
| |
Collapse
|
3
|
The mystery behind the nostrils - technical clues for successful nasal epithelial cell cultivation. Ann Anat 2021; 238:151748. [PMID: 33940117 DOI: 10.1016/j.aanat.2021.151748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Research involving the nose reveals important information regarding the morphology and physiology of the epithelium and its molecular response to agents. The role of nasal epithelial cells and other cell subsets within the nasal epithelium play an interesting translational split between experimental and clinical research studying respiratory disorders or pathogen reactions. With an additional technical manuscript including a detailed description of important technical aspects, tips, tricks, and nuances for a successful culturing of primary, human nasal epithelial cells (NAEPCs), we here aim to improve the process of communication between experimentalists and physicians, supporting the purpose of a fruitful work for future translational projects. METHODS Based on previous work on various complex culture models of subject-derived NAEPCs, this additional manuscript harmonizes previously published facts combined with own experiences for a trouble-free implementation in laboratories. RESULTS A well-designed experimental question is essential prior to the establishment of different NAEPCs culture models. The correct method of cell extraction from the nasal cavity is essential and represent an important basis for successful culture work. Prior enzymatic processing of biopsy specimens, cell culture materials, collagenization procedure, culture conditions, and choice of culture medium are some important practical notes that increase the quality of the culture. Moreover, protocols on imaging techniques including histologic and electron microscopy must be adapted for NAEPC culture. Adapted flow cytometric protocols and transepithelial electrical resistance measurements can add valuable information. OUTLOOK A successful culturing of NAEPCs can provide an important basis for genetic studies and the implementation of omics-science, which is increasingly receiving broad attention in the scientific community. The common aim of in vitro 'mini-noses' will be a breakthrough in laboratories aiming to perform research under in vivo conditions. Here, organoid models are interesting models presenting a basis for translational studies.
Collapse
|
4
|
Sala MA, Alexander M, Khuder B, Politanska Y, Abdala-Valencia H, Budinger GRS, Liu J, Jain M, Reyfman PA. The proteostatic network chaperome is downregulated in F508del homozygote cystic fibrosis. J Cyst Fibros 2021; 20:356-363. [PMID: 33495079 DOI: 10.1016/j.jcf.2020.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND CF patients demonstrate clinical heterogeneity and much remains unknown about how to risk stratify individuals for disease progression. The most common cystic fibrosis mutation, F508del, is a protein folding mutation that has been shown in vitro to negatively affect proteostasis and CFTR transcription. Since CFTR is expressed in the nasal epithelium, we hypothesized that by using unbiased transcriptomics we could gain clinically relevant insights about differential gene expression and heterogeneity in CF patients as well as assess proteostatic dysfunction in the nasal epithelium. METHODS Using nasal curettage and RNA-seq we assessed differential gene expression in F508del homozygotes compared to healthy volunteers. Gene set enrichment analysis was performed using a list of known chaperones. Pilot and validation cohorts were studied. RESULTS PCA analysis and gene expression heatmaps exhibited greater heterogeneity among CF than healthy volunteers. Differentially expressed genes were enriched for the downregulation of ciliary/microtubular genes and the upregulation of inflammatory/immune response genes in F508del homozygotes compared to healthy volunteers. Gene set analysis identified negative enrichment for chaperone genes and decreased CFTR transcription in the F508del homozygotes. We also found preliminary evidence for the recently identified ionocyte in the nasal specimens. CONCLUSION CF patients homozygous for F508del demonstrate heterogeneous gene expression profiles, proteostatic dysregulation, and reduced CFTR transcription. Larger studies are needed to determine whether nasal epithelial gene transcription profiles can be leveraged for insights into disease heterogeneity.
Collapse
Affiliation(s)
- Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Alexander
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yuliya Politanska
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jing Liu
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
5
|
van Eijk M, Boerefijn S, Cen L, Rosa M, Morren MJH, van der Ent CK, Kraak B, Dijksterhuis J, Valdes ID, Haagsman HP, de Cock H. Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Med Mycol 2020; 58:1073-1084. [PMID: 32236485 PMCID: PMC7657097 DOI: 10.1093/mmy/myaa014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Fungal infections in humans are increasing worldwide and are currently mostly treated with a relative limited set of antifungals. Resistance to antifungals is increasing, for example, in Aspergillus fumigatus and Candida auris, and expected to increase for many medically relevant fungal species in the near future. We have developed and patented a set of cathelicidin-inspired antimicrobial peptides termed 'PepBiotics'. These peptides were initially selected for their bactericidal activity against clinically relevant Pseudomonas aeruginosa and Staphylococcus aureus isolates derived from patients with cystic fibrosis and are active against a wide range of bacteria (ESKAPE pathogens). We now report results from studies that were designed to investigate the antifungal activity of PepBiotics against a set of medically relevant species encompassing species of Aspergillus, Candida, Cryptococcus, Fusarium, Malassezia, and Talaromyces. We characterized a subset of PepBiotics and show that these peptides strongly affected metabolic activity and/or growth of a set of medically relevant fungal species, including azole-resistant A. fumigatus isolates. PepBiotics showed a strong inhibitory activity against a large variety of filamentous fungi and yeasts species at low concentrations (≤1 μM) and were fungicidal for at least a subset of these fungal species. Interestingly, the concentration of PepBiotics required to interfere with growth or metabolic activity varied between different fungal species or even between isolates of the same fungal species. This study shows that PepBiotics display strong potential for use as novel antifungal compounds to fight a large variety of clinically relevant fungal species.
Collapse
Affiliation(s)
- Martin van Eijk
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Stephanie Boerefijn
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Lida Cen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Marisela Rosa
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marnix J H Morren
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ivan D Valdes
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans de Cock
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Immune Profile of the Nasal Mucosa in Patients with Cutaneous Leishmaniasis. Infect Immun 2020; 88:IAI.00881-19. [PMID: 32094254 DOI: 10.1128/iai.00881-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022] Open
Abstract
Localized skin lesions are characteristic of cutaneous leishmaniasis (CL); however, Leishmania (Viannia) species, which are responsible for most CL cases in the Americas, can spread systemically, sometimes resulting in mucosal disease. Detection of Leishmania has been documented in healthy mucosal tissues (conjunctiva, tonsils, and nasal mucosa) and healthy skin of CL patients and in individuals with asymptomatic infection in areas of endemicity of L (V) panamensis and L (V) braziliensis transmission. However, the conditions and mechanisms that favor parasite persistence in healthy mucosal tissues are unknown. In this descriptive study, we compared the cell populations of the nasal mucosa (NM) of healthy donors and patients with active CL and explored the immune gene expression signatures related to molecular detection of Leishmania in this tissue in the absence of clinical signs or symptoms of mucosal disease. The cellular composition and gene expression profiles of NM samples from active CL patients were similar to those of healthy volunteers, with a predominance of epithelial over immune cells, and within the CD45+ cell population, a higher frequency of CD66b+ followed by CD14+ and CD3+ cells. In CL patients with molecular evidence of Leishmania persistence in the NM, genes characteristic of an anti-inflammatory and tissue repair responses (IL4R, IL5RA, POSTN, and SATB1) were overexpressed relative to NM samples from CL patients in which Leishmania was not detected. Here, we report the first immunological description of subclinically infected NM tissues of CL patients and provide evidence of a local anti-inflammatory environment favoring parasite persistence in the NM.
Collapse
|
7
|
Jochems SP, Piddock K, Rylance J, Adler H, Carniel BF, Collins A, Gritzfeld JF, Hancock C, Hill H, Reiné J, Seddon A, Solórzano C, Sunny S, Trimble A, Wright AD, Zaidi S, Gordon SB, Ferreira DM. Novel Analysis of Immune Cells from Nasal Microbiopsy Demonstrates Reliable, Reproducible Data for Immune Populations, and Superior Cytokine Detection Compared to Nasal Wash. PLoS One 2017; 12:e0169805. [PMID: 28107457 PMCID: PMC5249128 DOI: 10.1371/journal.pone.0169805] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The morbidity and mortality related to respiratory tract diseases is enormous, with hundreds of millions of individuals afflicted and four million people dying each year. Understanding the immunological processes in the mucosa that govern outcome following pathogenic encounter could lead to novel therapies. There is a need to study responses at mucosal surfaces in humans for two reasons: (i) Immunological findings in mice, or other animals, often fail to translate to humans. (ii) Compartmentalization of the immune system dictates a need to study sites where pathogens reside. In this manuscript, we describe two novel non-invasive nasal mucosal microsampling techniques and their use for measuring immunological parameters: 1) using nasal curettes to collect cells from the inferior turbinate and; 2) absorptive matrices to collect nasal lining fluid. Both techniques were well tolerated and yielded reproducible and robust data. We demonstrated differences in immune populations and activation state in nasal mucosa compared to blood as well as compared to nasopharyngeal lumen in healthy adults. We also found superior cytokine detection with absorptive matrices compared to nasal wash. These techniques are promising new tools that will facilitate studies of the immunological signatures underlying susceptibility and resistance to respiratory infections.
Collapse
Affiliation(s)
- Simon P. Jochems
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Katherine Piddock
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Respiratory Medicine, Aintree University Hospital NHS Trust, Liverpool, United Kingdom
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Beatriz F. Carniel
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jenna F. Gritzfeld
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carole Hancock
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jesus Reiné
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alexandra Seddon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Carla Solórzano
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Syba Sunny
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ashleigh Trimble
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela D. Wright
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Respiratory Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom
- National Institute of Health and Research Clinical Research Network, Leeds, United Kingdom
| | - Seher Zaidi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Ng HP, Valentine VG, Wang G. CFTR targeting during activation of human neutrophils. J Leukoc Biol 2016; 100:1413-1424. [DOI: 10.1189/jlb.4a0316-130rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Vincent G Valentine
- Department of Medicine, University of Texas Medical Branch , Galveston, Texas
| | - Guoshun Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Genetics, Louisiana State University Health Sciences Center , New Orleans, Louisiana
- Department of Medicine, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
9
|
Bergougnoux A, Claustres M, De Sario A. Nasal epithelial cells: a tool to study DNA methylation in airway diseases. Epigenomics 2015; 7:119-26. [PMID: 25687471 DOI: 10.2217/epi.14.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A number of chronic airway diseases are characterized by high inflammation and unbalanced activation of the immune response, which lead to tissue damage and progressive reduction of the pulmonary function. Because they are exposed to various environmental stimuli, lung cells are prone to epigenomic changes. Many genes responsible for the immune response and inflammation are tightly regulated by DNA methylation, which suggests that alteration of the epigenome in lung cells may have a considerable impact on the penetrance and/or the severity of airway diseases. A major hurdle in clinical epigenomic studies is to gather appropriate biospecimens. Herein, we show that nasal epithelial cells are suitable to analyze DNA methylation in human diseases primarily affecting the lower airway tract.
Collapse
Affiliation(s)
- Anne Bergougnoux
- Laboratory Genetics of Rare Diseases, INSERM U827, Montpellier, France
| | | | | |
Collapse
|
10
|
Van de Weert-van Leeuwen PB, Van Meegen MA, Speirs JJ, Pals DJ, Rooijakkers SHM, Van der Ent CK, Terheggen-Lagro SWJ, Arets HGM, Beekman JM. Optimal complement-mediated phagocytosis of Pseudomonas aeruginosa by monocytes is cystic fibrosis transmembrane conductance regulator-dependent. Am J Respir Cell Mol Biol 2013; 49:463-70. [PMID: 23617438 DOI: 10.1165/rcmb.2012-0502oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, and is characterized by chronic pulmonary infections. The mechanisms underlying chronic infection and inflammation remain incompletely understood. Mutant CFTR in nonepithelial tissues such as immune cells has been suggested to contribute to infection, inflammation, and the resultant lung disease. However, much controversy still exists regarding the intrinsic role of CFTR in immune cells, especially phagocytes. Therefore, we investigated CFTR expression and function in neutrophils and monocytes isolated from human peripheral blood. CFTR function was assessed by comparing non-CF and CF cells, before and after the chemical inhibition of CFTR. We found CFTR protein expression in monocytes, but this expression was limited or undetectable in neutrophils. Furthermore, the phagocytosis and intracellular killing of Pseudomonas aeruginosa was reduced in CF monocytes, and impaired phagocyte effector mechanisms were phenocopied in non-CF monocytes upon the pharmacological inhibition of CFTR. Reduced phagocytosis in CF monocytes relied on the complement-dependent opsonization of Pseudomonas aeruginosa, and was also observed in the context of latex particles labeled with purified C3b. In mechanistic terms, we observed that CFTR function in monocytes is required for the optimal expression of CD11b. We observed no role for CFTR in neutrophil-mediated phagocytosis. These data support an intrinsic role for CFTR in monocytes, and suggest that CFTR-dependent alterations in complement-mediated interactions between Pseudomonas aeruginosa and monocytes may contribute to enhanced susceptibility to infection in patients with CF.
Collapse
|
11
|
Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros 2013; 12:797-802. [PMID: 23632450 DOI: 10.1016/j.jcf.2013.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 03/26/2013] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have recently emerged as important gene regulators in Cystic Fibrosis (CF), a common monogenic disease characterized by severe infection and inflammation, especially in the airway compartments. In the current study, we show that both miR-145 and miR-494 are significantly up-regulated in nasal epithelial tissues from CF patients compared with healthy controls (p<0.001 and p<0.01, respectively) by Quantitative Real-Time PCR. Only miR-494 levels showed a trend of correlation with reduced CFTR mRNA expression and positive sweat test values, supporting the negative regulatory role of this miRNA on CFTR synthesis. Using computational prediction algorithms and luciferase reporter assays, SMAD family member 3 (SMAD3), a key element of the TGF-β1 inflammatory pathway, was identified as a target of miR-145. Indeed, miR-145 synthetic mimics suppressed by approximately 40% the expression of a reporter construct containing the SMAD3 3'-UTR. Moreover, we observed an inverse correlation between SMAD3 mRNA expression and miR-145 in CF nasal tissues (r=-0.68, p=0.0018, Pearson's correlation). Taken together, these results confirm the pivotal role of miRNAs in the CF physio-pathogenesis and suggest that miRNA deregulation play a role in the airway disease severity by modulating CFTR levels as well as the expression of important molecules involved in the inflammatory response. miR-494 and miR-145 may, therefore, be potential biomarker and therapeutic target to specific CF clinical manifestations.
Collapse
|
12
|
van Meegen MA, Terheggen-Lagro SWJ, Koymans KJ, van der Ent CK, Beekman JM. Apical CFTR expression in human nasal epithelium correlates with lung disease in cystic fibrosis. PLoS One 2013; 8:e57617. [PMID: 23483918 PMCID: PMC3590182 DOI: 10.1371/journal.pone.0057617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Although most individuals with cystic fibrosis (CF) develop progressive obstructive lung disease, disease severity is highly variable, even for individuals with similar CFTR mutations. Measurements of chloride transport as expression of CFTR function in nasal epithelial cells correlate with pulmonary function and suggest that F508del-CFTR is expressed at the apical membrane. However, an association between quantitative apical CFTR expression in nasal epithelium and CF disease severity is still missing. Methods and Materials Nasal epithelial cells from healthy individuals and individuals with CF between 12–18 years were obtained by nasal brushing. Apical CFTR expression was measured by confocal microscopy using CFTR mAb 596. Expression was compared between both groups and expression in CF nasal epithelial cells was associated with standardized pulmonary function (FEV1%). Results The proportion of cells expressing apical CFTR in columnar epithelium is lower in CF compared to non-CF. The apical CFTR expression level was significantly correlated with FEV1% in F508del homozygous subjects (r = 0.63, p = 0.012). Conclusion CFTR expression in nasal epithelial cells is lower in subjects with CF compared to healthy subjects. The proportion of cells expressing F508del-CFTR at the apical membrane is variable between subjects and is positively correlated with FEV1% in F508del-CFTR homozygous subjects.
Collapse
Affiliation(s)
- Marit Arianne van Meegen
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Kirsten Judith Koymans
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jeffrey Matthijn Beekman
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Molecular and Cellular Intervention, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Vijftigschild LAW, van der Ent CK, Beekman JM. A novel fluorescent sensor for measurement of CFTR function by flow cytometry. Cytometry A 2013; 83:576-84. [DOI: 10.1002/cyto.a.22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 11/07/2022]
|
14
|
Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragão R, Perez-Garcia G, de Souza SL, Manhães-de-Castro R, Bolaños-Jiménez F, Kaeffer B. Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction. PLoS One 2013; 8:e56231. [PMID: 23460795 PMCID: PMC3584092 DOI: 10.1371/journal.pone.0056231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/11/2013] [Indexed: 01/26/2023] Open
Abstract
Background & Aims Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45–55 days) and adult (110–130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.
Collapse
Affiliation(s)
- Elizabeth Nascimento
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Omar Guzman-Quevedo
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Nellie Delacourt
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Raquel da Silva Aragão
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Georgina Perez-Garcia
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Centro de Ciências Biologicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Bertrand Kaeffer
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
- * E-mail:
| |
Collapse
|
15
|
van Meegen MA, Terheggen SWJ, Koymans KJ, Vijftigschild LAW, Dekkers JF, van der Ent CK, Beekman JM. CFTR-mutation specific applications of CFTR-directed monoclonal antibodies. J Cyst Fibros 2013; 12:487-96. [PMID: 23317763 DOI: 10.1016/j.jcf.2012.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/01/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Over the last decade novel monoclonal CFTR-specific antibodies have been developed. We here present a paired analysis to detect wild-type and mutant CFTR using Western blot analysis, flow cytometry and confocal microscopy in several cellular expression systems. METHODS The following CFTR-specific antibodies were used; 217, 432, 450, 570, 769, 596, 660, L12B4 and 24.1. Mutant CFTR was detected in HEK293 cells transiently expressing the mutations; G542X, R1162X, F508del, N1303K, G551D, R117H, A455E. RESULTS The majority of these antibodies are suitable for most applications tested. Using immunofluorescence, some antibodies can better detect mutant forms of CFTR (F508del and N1303K by mAbs 596 and 769), or display lower aspecific detection by Western blot analysis (mAbs 432, 450, 769 and 596) or immunofluorescence (mAbs 432, 450, 570 and 769). CONCLUSION Optimal detection of CFTR by monoclonal antibodies depends on CFTR mutation and the specific research application.
Collapse
Affiliation(s)
- M A van Meegen
- Department of Pediatric Pulmonology, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|