1
|
Katoh TA, Fukai YT, Ishibashi T. Optical microscopic imaging, manipulation, and analysis methods for morphogenesis research. Microscopy (Oxf) 2024; 73:226-242. [PMID: 38102756 PMCID: PMC11154147 DOI: 10.1093/jmicro/dfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 03/22/2024] [Indexed: 12/17/2023] Open
Abstract
Morphogenesis is a developmental process of organisms being shaped through complex and cooperative cellular movements. To understand the interplay between genetic programs and the resulting multicellular morphogenesis, it is essential to characterize the morphologies and dynamics at the single-cell level and to understand how physical forces serve as both signaling components and driving forces of tissue deformations. In recent years, advances in microscopy techniques have led to improvements in imaging speed, resolution and depth. Concurrently, the development of various software packages has supported large-scale, analyses of challenging images at the single-cell resolution. While these tools have enhanced our ability to examine dynamics of cells and mechanical processes during morphogenesis, their effective integration requires specialized expertise. With this background, this review provides a practical overview of those techniques. First, we introduce microscopic techniques for multicellular imaging and image analysis software tools with a focus on cell segmentation and tracking. Second, we provide an overview of cutting-edge techniques for mechanical manipulation of cells and tissues. Finally, we introduce recent findings on morphogenetic mechanisms and mechanosensations that have been achieved by effectively combining microscopy, image analysis tools and mechanical manipulation techniques.
Collapse
Affiliation(s)
- Takanobu A Katoh
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohsuke T Fukai
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomoki Ishibashi
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
3
|
Laruelle E, Palauqui JC, Andrey P, Trubuil A. TreeJ: an ImageJ plugin for interactive cell lineage reconstruction from static images. PLANT METHODS 2023; 19:128. [PMID: 37974271 PMCID: PMC10655406 DOI: 10.1186/s13007-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND With the emergence of deep-learning methods, tools are needed to capture and standardize image annotations made by experimentalists. In developmental biology, cell lineages are generally reconstructed from time-lapse data. However, some tissues need to be fixed to be accessible or to improve the staining. In this case, classical software do not offer the possibility of generating any lineage. Because of their rigid cell walls, plants present the advantage of keeping traces of the cell division history over successive generations in the cell patterns. To record this information despite having only a static image, dedicated tools are required. RESULTS We developed an interface to assist users in the building and editing of a lineage tree from a 3D labeled image. Each cell within the tree can be tagged. From the created tree, cells of a sub-tree or cells sharing the same tag can be extracted. The tree can be exported in a format compatible with dedicated software for advanced graph visualization and manipulation. CONCLUSIONS The TreeJ plugin for ImageJ/Fiji allows the user to generate and manipulate a lineage tree structure. The tree is compatible with other software to analyze the tree organization at the graphical level and at the cell pattern level. The code source is available at https://github.com/L-EL/TreeJ .
Collapse
Affiliation(s)
- Elise Laruelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France.
- MaIAGE, INRAE, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-josas, France.
- Sainsbury Laboratory, Cambridge University, Bateman Street, CB2 1LR, Cambridge, UK.
| | - Jean-Christophe Palauqui
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint Cyr, 78000, Versailles, France
| | - Alain Trubuil
- MaIAGE, INRAE, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-josas, France
| |
Collapse
|
4
|
MacDonald WW, Swaminathan SS, Heo JY, Castillejos A, Hsueh J, Liu BJ, Jo D, Du A, Lee H, Kang MH, Rhee DJ. Effect of SPARC Suppression in Mice, Perfused Human Anterior Segments, and Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35671048 PMCID: PMC9187959 DOI: 10.1167/iovs.63.6.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Secreted protein, acidic and rich in cysteine (SPARC) elevates intraocular pressure (IOP), increases certain structural extracellular matrix (ECM) proteins in the juxtacanalicular trabecular meshwork (JCT), and decreases matrix metalloproteinase (MMP) protein levels in trabecular meshwork (TM) endothelial cells. We investigated SPARC as a potential target for lowering IOP. We hypothesized that suppressing SPARC will decrease IOP, decrease structural JCT ECM proteins, and alter the levels of MMPs and/or their inhibitors. Methods A lentivirus containing short hairpin RNA of human SPARC suppressed SPARC in mouse eyes and perfused cadaveric human anterior segments with subsequent IOP measurements. Immunohistochemistry determined structural correlates. Human TM cell cultures were treated with SPARC suppressing lentivirus. Quantitative reverse transcriptase polymerase chain reaction (PCR), immunoblotting, and zymography determined total RNA, relative protein levels, and MMP enzymatic activity, respectively. Results Suppressing SPARC decreased IOP in mouse eyes and perfused human anterior segments by approximately 20%. Histologically, this correlated to a decrease in collagen I, IV, and VI in both the mouse TM and human JCT regions; in the mouse, fibronectin was also decreased but not in the human. In TM cells, collagen I and IV, fibronectin, MMP-2, and tissue inhibitor of MMP-1 were decreased. Messenger RNA of the aforementioned genes was not changed. Plasminogen activator inhibitor 1 (PAI-1) was upregulated in vitro by quantitative PCR and immunoblotting. MMP-1 activity was reduced in vitro by zymography. Conclusions Suppressing SPARC decreased IOP in mice and perfused cadaveric human anterior segments corresponding to qualitative structural changes in the JCT ECM, which do not appear to be the result of transcription regulation.
Collapse
Affiliation(s)
- William W MacDonald
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Swarup S Swaminathan
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Jae Young Heo
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Alexandra Castillejos
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States.,Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Boston, Massachusetts, United States
| | - Jessica Hsueh
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Brian J Liu
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Diane Jo
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Annie Du
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Hyunpil Lee
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Min Hyung Kang
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Douglas J Rhee
- Department of Ophthalmology & Visual Sciences, University Hospitals, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
5
|
Cheon H, Kan A, Prevedello G, Oostindie SC, Dovedi SJ, Hawkins ED, Marchingo JM, Heinzel S, Duffy KR, Hodgkin PD. Cyton2: A Model of Immune Cell Population Dynamics That Includes Familial Instructional Inheritance. FRONTIERS IN BIOINFORMATICS 2021; 1:723337. [PMID: 36303793 PMCID: PMC9581048 DOI: 10.3389/fbinf.2021.723337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam's Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model's consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2's utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.
Collapse
Affiliation(s)
- HoChan Cheon
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Andrey Kan
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | | | - Simone C. Oostindie
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | | | - Edwin D. Hawkins
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
- Division of Inflammation, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Julia M. Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susanne Heinzel
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Ken R. Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Philip D. Hodgkin
- Immunology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Ulicna K, Vallardi G, Charras G, Lowe AR. Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.734559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-cell methods are beginning to reveal the intrinsic heterogeneity in cell populations, arising from the interplay of deterministic and stochastic processes. However, it remains challenging to quantify single-cell behaviour from time-lapse microscopy data, owing to the difficulty of extracting reliable cell trajectories and lineage information over long time-scales and across several generations. Therefore, we developed a hybrid deep learning and Bayesian cell tracking approach to reconstruct lineage trees from live-cell microscopy data. We implemented a residual U-Net model coupled with a classification CNN to allow accurate instance segmentation of the cell nuclei. To track the cells over time and through cell divisions, we developed a Bayesian cell tracking methodology that uses input features from the images to enable the retrieval of multi-generational lineage information from a corpus of thousands of hours of live-cell imaging data. Using our approach, we extracted 20,000 + fully annotated single-cell trajectories from over 3,500 h of video footage, organised into multi-generational lineage trees spanning up to eight generations and fourth cousin distances. Benchmarking tests, including lineage tree reconstruction assessments, demonstrate that our approach yields high-fidelity results with our data, with minimal requirement for manual curation. To demonstrate the robustness of our minimally supervised cell tracking methodology, we retrieve cell cycle durations and their extended inter- and intra-generational family relationships in 5,000 + fully annotated cell lineages. We observe vanishing cycle duration correlations across ancestral relatives, yet reveal correlated cyclings between cells sharing the same generation in extended lineages. These findings expand the depth and breadth of investigated cell lineage relationships in approximately two orders of magnitude more data than in previous studies of cell cycle heritability, which were reliant on semi-manual lineage data analysis.
Collapse
|
7
|
Uzsoy ASM, Zareiesfandabadi P, Jennings J, Kemper AF, Elting MW. Automated tracking of S. pombe spindle elongation dynamics. J Microsc 2021; 284:83-94. [PMID: 34152622 PMCID: PMC8446324 DOI: 10.1111/jmi.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/18/2021] [Indexed: 01/11/2023]
Abstract
The mitotic spindle is a microtubule-based machine that pulls the two identical sets of chromosomes to opposite ends of the cell during cell division. The fission yeast Schizosaccharomyces pombe is an important model organism for studying mitosis due to its simple, stereotyped spindle structure and well-established genetic toolset. S. pombe spindle length is a useful metric for mitotic progression, but manually tracking spindle ends in each frame to measure spindle length over time is laborious and can limit experimental throughput. We have developed an ImageJ plugin that can automatically track S. pombe spindle length over time and replace manual or semi-automated tracking of spindle elongation dynamics. Using an algorithm that detects the principal axis of the spindle and then finds its ends, we reliably track the length of the spindle as the cell divides. The plugin integrates with existing ImageJ features, exports its data for further analysis outside of ImageJ and does not require any programming by the user. Thus, the plugin provides an accessible tool for quantification of S. pombe spindle length that will allow automatic analysis of large microscopy data sets and facilitate screening for effects of cell biological perturbations on mitotic progression.
Collapse
Affiliation(s)
- Ana Sofía M. Uzsoy
- Department of Physics, North Carolina State University, Raleigh, NC 27695
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695
| | | | - Jamie Jennings
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695
| | | | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27695
- Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
8
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Gilad T, Reyes J, Chen JY, Lahav G, Riklin Raviv T. Fully unsupervised symmetry-based mitosis detection in time-lapse cell microscopy. Bioinformatics 2019; 35:2644-2653. [PMID: 30590471 PMCID: PMC6662301 DOI: 10.1093/bioinformatics/bty1034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Cell microscopy datasets have great diversity due to variability in cell types, imaging techniques and protocols. Existing methods are either tailored to specific datasets or are based on supervised learning, which requires comprehensive manual annotations. Using the latter approach, however, poses a significant difficulty due to the imbalance between the number of mitotic cells with respect to the entire cell population in a time-lapse microscopy sequence. RESULTS We present a fully unsupervised framework for both mitosis detection and mother-daughters association in fluorescence microscopy data. The proposed method accommodates the difficulty of the different cell appearances and dynamics. Addressing symmetric cell divisions, a key concept is utilizing daughters' similarity. Association is accomplished by defining cell neighborhood via a stochastic version of the Delaunay triangulation and optimization by dynamic programing. Our framework presents promising detection results for a variety of fluorescence microscopy datasets of different sources, including 2D and 3D sequences from the Cell Tracking Challenge. AVAILABILITY AND IMPLEMENTATION Code is available in github (github.com/topazgl/mitodix). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Topaz Gilad
- Department of Electrical and Computer Engineering and the Zlotwoski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jose Reyes
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jia-Yun Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Tammy Riklin Raviv
- Department of Electrical and Computer Engineering and the Zlotwoski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
10
|
Waisman A, Sevlever F, Elías Costa M, Cosentino MS, Miriuka SG, Ventura AC, Guberman AS. Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Sci Rep 2019; 9:8051. [PMID: 31142785 PMCID: PMC6541595 DOI: 10.1038/s41598-019-44537-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained as homogeneous populations in the ground state of pluripotency. Release from this state in minimal conditions allows to obtain cells that resemble those of the early post-implantation epiblast, providing an important developmental model to study cell identity transitions. However, the cell cycle dynamics of mESCs in the ground state and during its dissolution have not been extensively studied. By performing live imaging experiments of mESCs bearing cell cycle reporters, we show here that cells in the pluripotent ground state display a cell cycle structure comparable to the reported for mESCs in serum-based media. Upon release from self-renewal, the cell cycle is rapidly accelerated by a reduction in the length of the G1 phase and of the S/G2/M phases, causing an increased proliferation rate. Analysis of cell lineages indicates that cell cycle variables of sister cells are highly correlated, suggesting the existence of inherited cell cycle regulators from the parental cell. Together with a major morphological reconfiguration upon differentiation, our findings support a correlation between this in vitro model and early embryonic events.
Collapse
Affiliation(s)
- Ariel Waisman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Federico Sevlever
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | | | - María Soledad Cosentino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina
| | - Santiago G Miriuka
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Alejandra C Ventura
- CONICET - Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Alejandra S Guberman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Laboratorio de Regulación Génica en Células Madre, Buenos Aires, Argentina.
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Laranjeiro R, Tamai TK, Letton W, Hamilton N, Whitmore D. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process. J Biol Rhythms 2018; 33:137-150. [PMID: 29444612 PMCID: PMC5944076 DOI: 10.1177/0748730418755583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- 1. Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - T Katherine Tamai
- 2. Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan
| | | | - Noémie Hamilton
- 3. Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | |
Collapse
|
12
|
Smith S, Grima R. Single-cell variability in multicellular organisms. Nat Commun 2018; 9:345. [PMID: 29367605 PMCID: PMC5783944 DOI: 10.1038/s41467-017-02710-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/20/2017] [Indexed: 02/04/2023] Open
Abstract
Noisy gene expression is of fundamental importance to single cells, and is therefore widely studied in single-celled organisms. Extending these studies to multicellular organisms is challenging since their cells are generally not isolated, but individuals in a tissue. Cell–cell coupling via signalling, active transport or pure diffusion, ensures that tissue-bound cells are neither fully independent of each other, nor an entirely homogeneous population. In this article, we show that increasing the strength of coupling between cells can either increase or decrease the single-cell variability (and, therefore, the heterogeneity of the tissue), depending on the statistical properties of the underlying genetic network. We confirm these predictions using spatial stochastic simulations of simple genetic networks, and experimental data from animal and plant tissues. The results suggest that cell–cell coupling may be one of several noise-control strategies employed by multicellular organisms, and highlight the need for a deeper understanding of multicellular behaviour. While gene expression noise in single-celled organisms is well understood, it is less so in the context of tissues. Here the authors show that coupling between cells in tissues can increase or decrease cell-to-cell variability depending on the level of noise intrinsic to the regulatory networks.
Collapse
Affiliation(s)
- Stephen Smith
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, Scotland, UK
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, Scotland, UK.
| |
Collapse
|
13
|
Abstract
How signaling pathways function reliably despite cellular variation remains a question in many systems. In the transforming growth factor-β (Tgf-β) pathway, exposure to ligand stimulates nuclear localization of Smad proteins, which then regulate target gene expression. Examining Smad3 dynamics in live reporter cells, we found evidence for fold-change detection. Although the level of nuclear Smad3 varied across cells, the fold change in the level of nuclear Smad3 was a more precise outcome of ligand stimulation. The precision of the fold-change response was observed throughout the signaling duration and across Tgf-β doses, and significantly increased the information transduction capacity of the pathway. Using single-molecule FISH, we further observed that expression of Smad3 target genes (ctgf, snai1, and wnt9a) correlated more strongly with the fold change, rather than the level, of nuclear Smad3. These findings suggest that some target genes sense Smad3 level relative to background, as a strategy for coping with cellular noise.
Collapse
|
14
|
Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol 2016; 26:88-110. [DOI: 10.1016/j.tcb.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 01/07/2023]
|
15
|
Akpinar F, Timm A, Yin J. High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles. J Virol 2016; 90:1599-612. [PMID: 26608322 PMCID: PMC4719634 DOI: 10.1128/jvi.02190-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. IMPORTANCE During the last century, basic studies in virology have focused on developing a molecular mechanistic understanding of how infectious viruses reproduce in their living host cells. However, over the last 10 years, the advent of deep sequencing and other powerful technologies has revealed in natural and patient infections that viruses do not act alone. Instead, viruses are often accompanied by defective virus-like particles that carry large deletions in their genomes and fail to replicate on their own. Coinfections of viable and defective viruses behave in unpredictable ways, but they often interfere with normal virus growth, potentially enabling infections to evade host immune surveillance. In the current study, controlled levels of defective viruses are coinfected with viable viruses that have been engineered to express a fluorescent reporter protein during infection. Unique profiles of reporter expression acquired from thousands of coinfected cells reveal how interference acts at multiple stages of infection.
Collapse
Affiliation(s)
- Fulya Akpinar
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andrea Timm
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Yin
- Systems Biology Theme, Wisconsin Institute for Discovery, Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Martin-del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S, San Román J, Rojo L. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater Sci 2016; 4:1596-1604. [DOI: 10.1039/c6bm00459h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Strontium folate loaded biohybrid scaffolds enhance dental pulp stem cells replication and differentiation, promoting complete regeneration of critical bone defects.
Collapse
Affiliation(s)
| | - Raul Rosales-Ibañez
- Facultad de Estomatología
- Universidad Autónoma de San Luis Potosí
- México
- Facultad de Estudios Superiores Iztacala
- Universidad Nacional Autonoma de Mexico
| | - Keila Alvarado
- Center of Biomaterials and Tissue Engineering
- Technical University of Valencia
- Spain
| | - Jose G. Sampedro
- Instituto de Física
- Universidad Autónoma de San Luis Potosí
- México
| | | | - Sanjukta Deb
- Division of Tissue Engineering &Biophotonics. Dental Institute King's College London
- UK
| | - Julio San Román
- Institute of Polymer Science and Technology
- CSIC and CIBER-BBN
- Spain
| | - Luis Rojo
- Division of Tissue Engineering &Biophotonics. Dental Institute King's College London
- UK
- Institute of Polymer Science and Technology
- CSIC and CIBER-BBN
- Spain
| |
Collapse
|
17
|
Vance KW, Woodcock DJ, Reid JE, Bretschneider T, Ott S, Koentges G. Conserved Cis-Regulatory Modules Control Robustness in Msx1 Expression at Single-Cell Resolution. Genome Biol Evol 2015; 7:2762-78. [PMID: 26342140 PMCID: PMC4607535 DOI: 10.1093/gbe/evv179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The process of transcription is highly stochastic leading to cell-to-cell variations and noise in gene expression levels. However, key essential genes have to be precisely expressed at the correct amount and time to ensure proper cellular development and function. Studies in yeast and bacterial systems have shown that gene expression noise decreases as mean expression levels increase, a relationship that is controlled by promoter DNA sequence. However, the function of distal cis-regulatory modules (CRMs), an evolutionary novelty of metazoans, in controlling transcriptional robustness and variability is poorly understood. In this study, we used live cell imaging of transfected reporters combined with a mathematical modelling and statistical inference scheme to quantify the function of conserved Msx1 CRMs and promoters in modulating single-cell real-time transcription rates in C2C12 mouse myoblasts. The results show that the mean expression–noise relationship is solely promoter controlled for this key pluripotency regulator. In addition, we demonstrate that CRMs modulate single-cell basal promoter rate distributions in a graded manner across a population of cells. This extends the rheostatic model of CRM action to provide a more detailed understanding of CRM function at single-cell resolution. We also identify a novel CRM transcriptional filter function that acts to reduce intracellular variability in transcription rates and show that this can be phylogenetically separable from rate modulating CRM activities. These results are important for understanding how the expression of key vertebrate developmental transcription factors is precisely controlled both within and between individual cells.
Collapse
Affiliation(s)
- Keith W Vance
- Department of Biology and Biochemistry, University of Bath, United Kingdom Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dan J Woodcock
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - John E Reid
- MRC Biostatistics Unit, Robinson Way, Cambridge, United Kingdom
| | - Till Bretschneider
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Georgy Koentges
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
18
|
Harder N, Batra R, Diessl N, Gogolin S, Eils R, Westermann F, König R, Rohr K. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells. Cytometry A 2015; 87:524-40. [DOI: 10.1002/cyto.a.22632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nathalie Harder
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Richa Batra
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Nicolle Diessl
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Sina Gogolin
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Roland Eils
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| | - Rainer König
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital; 07747 Jena Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena; 07745 Jena Germany
| | - Karl Rohr
- Department of Bioinformatics and Functional Genomics; Biomedical Computer Vision Group, BioQuant and Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University; 69120 Heidelberg Germany
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ); 69120 Heidelberg Germany
| |
Collapse
|
19
|
Swaminathan SS, Oh DJ, Kang MH, Shepard AR, Pang IH, Rhee DJ. TGF-β2-mediated ocular hypertension is attenuated in SPARC-null mice. Invest Ophthalmol Vis Sci 2014; 55:4084-97. [PMID: 24906856 DOI: 10.1167/iovs.13-12463] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Transforming growth factor-β2 (TGF-β2) has been implicated in the pathogenesis of primary open-angle glaucoma through extracellular matrix (ECM) alteration among various mechanisms. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates ECM within the trabecular meshwork (TM), and is highly upregulated by TGF-β2. We hypothesized that, in vivo, SPARC is a critical regulatory node in TGF-β2-mediated ocular hypertension. METHODS Empty (Ad.empty) or TGF-β2-containing adenovirus (Ad.TGF-β2) was injected intravitreally into C57BL6-SV129 WT and SPARC-null mice. An initial study was performed to identify a stable period for IOP measurement under isoflurane. The IOP was measured before injection and every other day for two weeks using rebound tonometry. Additional mice were euthanized at peak IOP for immunohistochemistry. RESULTS The IOP was stable under isoflurane during minutes 5 to 8. The IOP was significantly elevated in Ad.TGF-β2-injected (n = 8) versus Ad.empty-injected WT (n = 8) mice and contralateral uninjected eyes during days 4 to 11 (P < 0.03). The IOPs were not significantly elevated in Ad.TGF-β2-injected versus Ad.empty-injected SPARC-null mice. However, on day 8, the IOP of Ad.TGF-β2-injected SPARC-null eyes was elevated compared to that of contralateral uninjected eyes (P = 0.0385). Immunohistochemistry demonstrated that TGF-β2 stimulated increases in collagen IV, fibronectin, plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor (CTGF), and SPARC in WT mice, but only PAI-1 and CTGF in SPARC-null mice (P < 0.05). CONCLUSIONS SPARC is essential to the regulation of TGF-β2-mediated ocular hypertension. Deletion of SPARC significantly attenuates the effects of TGF-β2 by restricting collagen IV and fibronectin expression. These data provide further evidence that SPARC may have an important role in IOP regulation and possibly glaucoma pathogenesis.
Collapse
Affiliation(s)
- Swarup S Swaminathan
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Jin Oh
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Min Hyung Kang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Allan R Shepard
- Ophthalmology Research/Glaucoma Research, Novartis Institutes for Biomedical Research, Fort Worth, Texas, United States
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences and North Texas Eye Research Institute, University of North Texas Health Sciences Center, Fort Worth, Texas, United States
| | - Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Woodcock DJ, Vance KW, Komorowski M, Koentges G, Finkenstädt B, Rand DA. A hierarchical model of transcriptional dynamics allows robust estimation of transcription rates in populations of single cells with variable gene copy number. ACTA ACUST UNITED AC 2013; 29:1519-25. [PMID: 23677939 PMCID: PMC3673223 DOI: 10.1093/bioinformatics/btt201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Motivation:cis-regulatory DNA sequence elements, such as enhancers and silencers, function to control the spatial and temporal expression of their target genes. Although the overall levels of gene expression in large cell populations seem to be precisely controlled, transcription of individual genes in single cells is extremely variable in real time. It is, therefore, important to understand how these cis-regulatory elements function to dynamically control transcription at single-cell resolution. Recently, statistical methods have been proposed to back calculate the rates involved in mRNA transcription using parameter estimation of a mathematical model of transcription and translation. However, a major complication in these approaches is that some of the parameters, particularly those corresponding to the gene copy number and transcription rate, cannot be distinguished; therefore, these methods cannot be used when the copy number is unknown. Results: Here, we develop a hierarchical Bayesian model to estimate biokinetic parameters from live cell enhancer–promoter reporter measurements performed on a population of single cells. This allows us to investigate transcriptional dynamics when the copy number is variable across the population. We validate our method using synthetic data and then apply it to quantify the function of two known developmental enhancers in real time and in single cells. Availability: Supporting information is submitted with the article. Contact:d.j.woodcock@warwick.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dan J Woodcock
- Warwick Systems Biology Centre and Department of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Demchenko AP. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 2012; 65:157-72. [PMID: 22797774 DOI: 10.1007/s10616-012-9481-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/24/2012] [Indexed: 02/07/2023] Open
Abstract
Dramatic changes in the structure of cell membranes on apoptosis allow easy, sensitive and non-destructive analysis of this process with the application of fluorescence methods. The strong plasma membrane asymmetry is present in living cells, and its loss on apoptosis is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the application of annexin V labeled with fluorescent dye is presently the most popular tool for its detection. Several methods have been suggested recently that offer important advantages over annexin V assay with the ability to study apoptosis by spectroscopy of cell suspensions, flow cytometry and confocal or two-photon microscopy. The PS exposure marks the integrated changes in the outer leaflet of cell membrane that involve electrostatic potential and hydration, and the attempts are being made to provide direct probing of these changes. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses, in comparison with the annexin V-binding assay, the novel fluorescence techniques of detecting apoptosis on cellular membrane level. In more detail we describe the detection method based on smart fluorescent dye F2N12S incorporated into outer leaflet of cell membrane and reporting on apoptotic cell transformation by easily detectable change of the spectral distribution of fluorescent emission. It can be adapted to any assay format.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, 01030, Ukraine,
| |
Collapse
|