1
|
Pichler WJ, Watkins S, Yerly D. Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. FRONTIERS IN ALLERGY 2022; 3:827893. [PMID: 35386664 PMCID: PMC8974731 DOI: 10.3389/falgy.2022.827893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Drug hypersensitivity (DH) reactions are clinically unusual because the underlying immune stimulations are not antigen-driven, but due to non-covalent drug-protein binding. The drugs may bind to immune receptors like HLA or TCR which elicits a strong T cell reaction (p-i concept), the binding may enhance the affinity of antibodies (enhanced affinity model), or drug binding may occur on soluble proteins which imitate a true antigen (fake antigen model). These novel models of DH could have a major impact on how to perform risk assessments in drug development. Herein, we discuss the difficulties of detecting such non-covalent, labile and reversible, but immunologically relevant drug-protein interactions early on in drug development. The enormous diversity of the immune system, varying interactions, and heterogeneous functional consequences make it to a challenging task. We propose that a realistic approach to detect clinically relevant non-covalent drug interactions for a new drug could be based on a combination of in vitro cell culture assays (using a panel of HLA typed donor cells) and functional analyses, supplemented by structural analysis (computational data) of the reactive cells/molecules. When drug-reactive cells/molecules with functional impact are detected in these risk assessments, a close clinical monitoring of the drug may reveal the true incidence of DH, as suppressing but also enhancing factors occurring in vivo can influence the clinical manifestation of a DH.
Collapse
|
2
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
3
|
Batista-Duharte A, Sendra L, Herrero MJ, Portuondo DL, Téllez-Martínez D, Olivera G, Fernández-Delgado M, Javega B, Herrera G, Martínez A, Costa PI, Zeppone Carlos I, Aliño SF. Foxp3 Silencing with Antisense Oligonucleotide Improves Immunogenicity of an Adjuvanted Recombinant Vaccine against Sporothrix schenckii. Int J Mol Sci 2021; 22:3470. [PMID: 33801683 PMCID: PMC8037512 DOI: 10.3390/ijms22073470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In recent years, there has been great interest in developing molecular adjuvants based on antisense oligonucleotides (ASOs) targeting immunosuppressor pathways with inhibitory effects on regulatory T cells (Tregs) to improve immunogenicity and vaccine efficacy. We aim to evaluate the immunostimulating effect of 2'OMe phosphorothioated Foxp3-targeted ASO in an antifungal adjuvanted recombinant vaccine. METHODS The uptake kinetics of Foxp3 ASO, its cytotoxicity and its ability to deplete Tregs were evaluated in murine splenocytes in vitro. Groups of mice were vaccinated with recombinant enolase (Eno) of Sporothix schenckii in Montanide Gel 01 adjuvant alone or in combination with either 1 µg or 8 µg of Foxp3 ASO. The titers of antigen-specific antibody in serum samples from vaccinated mice (male C57BL/6) were determined by ELISA (enzyme-linked immunosorbent assay). Cultured splenocytes from each group were activated in vitro with Eno and the levels of IFN-γ and IL-12 were also measured by ELISA. The results showed that the anti-Eno antibody titer was significantly higher upon addition of 8 µM Foxp3 ASO in the vaccine formulation compared to the standard vaccine without ASO. In vitro and in vivo experiments suggest that Foxp3 ASO enhances specific immune responses by means of Treg depletion during vaccination. CONCLUSION Foxp3 ASO significantly enhances immune responses against co-delivered adjuvanted recombinant Eno vaccine and it has the potential to improve vaccine immunogenicity.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (D.L.P.); (D.T.-M.); (P.I.C.); (I.Z.C.)
| | - Luis Sendra
- Pharmacology Department, Faculty of Medicine, Universitat de Valencia, 46010 Valencia, Spain; (M.J.H.); (G.H.); (S.F.A.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Maria José Herrero
- Pharmacology Department, Faculty of Medicine, Universitat de Valencia, 46010 Valencia, Spain; (M.J.H.); (G.H.); (S.F.A.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Deivys Leandro Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (D.L.P.); (D.T.-M.); (P.I.C.); (I.Z.C.)
| | - Damiana Téllez-Martínez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (D.L.P.); (D.T.-M.); (P.I.C.); (I.Z.C.)
| | - Gladys Olivera
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Manuel Fernández-Delgado
- Service of Hematology and Hemotherapy, Hospital General Universitario de Castellón, 12004 Castelló de la Plana, Spain;
| | - Beatriz Javega
- Cytometry Unit, Faculty of Medicine, Universitat de Valencia, 46010 Valencia, Spain;
| | - Guadalupe Herrera
- Pharmacology Department, Faculty of Medicine, Universitat de Valencia, 46010 Valencia, Spain; (M.J.H.); (G.H.); (S.F.A.)
| | - Alicia Martínez
- Cytomics Unit, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain;
| | - Paulo Inacio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (D.L.P.); (D.T.-M.); (P.I.C.); (I.Z.C.)
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (D.L.P.); (D.T.-M.); (P.I.C.); (I.Z.C.)
| | - Salvador Francisco Aliño
- Pharmacology Department, Faculty of Medicine, Universitat de Valencia, 46010 Valencia, Spain; (M.J.H.); (G.H.); (S.F.A.)
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Unit of Clinical Pharmacology, Medicine Clinical Area, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
4
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Bialojan A, Sohl J, Rausch J, Aranda Lopez P, Denny M, Langguth P, Hartmann AK, Yagita H, Probst HC, Schild H, Radsak MP. Transcutaneous immunization with CD40 ligation boosts cytotoxic T lymphocyte mediated antitumor immunity independent of CD4 helper cells in mice. Eur J Immunol 2019; 49:2083-2094. [PMID: 31393597 DOI: 10.1002/eji.201848039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 11/07/2022]
Abstract
Transcutaneous immunization (TCI) is a novel vaccination strategy that utilizes skin-associated lymphatic tissue to induce immune responses. Employing T-cell epitopes and the TLR7 agonist imiquimod onto intact skin mounts strong primary, but limited memory CTL responses. To overcome this limitation, we developed a novel imiquimod-containing vaccination platform (IMI-Sol) rendering superior primary CD8+ and CD4+ T-cell responses. However, it has been unclear whether IMI-Sol per se is restricted in terms of memory formation and tumor protection. In our present work, we demonstrate that the combined administration of IMI-Sol and CD40 ligation unleashes fullblown specific T-cell responses in the priming and memory phase, strongly enhancing antitumor protection in mice. Interestingly, these effects were entirely CD4+ T cell independent, bypassing the necessity of helper T cells. Moreover, blockade of CD70 in vivo abrogated the boosting effect of CD40 ligation, indicating that the adjuvant effect of CD40 in TCI is mediated via CD70 on professional APCs. Furthermore, this work highlights the so far underappreciated importance of the CD70/CD27 interaction as a promising adjuvant target in TCI. Summing up, we demonstrate that the novel formulation IMI-Sol represents a powerful vaccination platform when applied in combination with sufficient adjuvant thereby overcoming current limitations of TCI.
Collapse
Affiliation(s)
- Ariane Bialojan
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Julian Sohl
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Rausch
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Pamela Aranda Lopez
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Mark Denny
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Ann-Kathrin Hartmann
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hideo Yagita
- Department of Immunology, Juntendo University, Tokyo, Japan
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus P Radsak
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Ferreira FM, Palle P, Vom Berg J, Prajwal P, Laman JD, Buch T. Bone marrow chimeras-a vital tool in basic and translational research. J Mol Med (Berl) 2019; 97:889-896. [PMID: 31028417 DOI: 10.1007/s00109-019-01783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
Abstract
Bone marrow chimeras are used routinely in immunology research as well as in other fields of biology. Here, we provide a concise state-of-the-art review about the types of chimerisms that can be achieved and the type of information that each model generates. We include separate sections for caveats and future developments. We provide examples from the literature in which different types of chimerism were employed to answer specific questions. While simple bone marrow chimeras allow to dissect the role of genes in distinct cell populations such as the hematopoietic cells versus non-hematopoietic cells, mixed bone marrow chimeras can provide detailed information about hematopoietic cell types and the intrinsic and extrinsic roles of individual genes. The advantages and caveats of bone marrow chimerism for the study of microglia are addressed, as well as alternatives to irradiation that minimize blood-brain-barrier disruption. Elementary principles are introduced and their potential is exemplified through summarizing recent studies.
Collapse
Affiliation(s)
- Filipa M Ferreira
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | | | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Prajwal Prajwal
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland. .,Institute of Laboratory Animal Science, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| |
Collapse
|
7
|
Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, Alignani D, Guruceaga E, Lasarte JJ, Sarobe P. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget 2018; 8:2659-2671. [PMID: 27926522 PMCID: PMC5356831 DOI: 10.18632/oncotarget.13736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 01/05/2023] Open
Abstract
Vaccination induces immunostimulatory signals that are often accompanied by regulatory mechanisms such as IL-10, which control T-cell activation and inhibit vaccine-dependent antitumor therapeutic effect. Here we characterized IL-10-producing cells in different tumor models treated with therapeutic vaccines. Although several cell subsets produced IL-10 irrespective of treatment, an early vaccine-dependent induction of IL-10 was detected in dendritic cells (DC). IL-10 production defined a DC population characterized by a poorly mature phenotype, lower expression of T-cell stimulating molecules and upregulation of PD-L1. These IL-10+ DC showed impaired in vitro T-cell stimulatory capacity, which was rescued by incubation with IL-10R and PD-L1-inhibiting antibodies. In vivo IL-10 blockade during vaccination decreased the proportion of IL-10+ DC and improved their maturation, without modifying PD-L1 expression. Similarly, PD-L1 blockade did not affect IL- 10 expression. Interestingly, vaccination combined with simultaneous blockade of IL-10 and PD-L1 induced stronger immune responses, resulting in a higher therapeutic efficacy in tumor-bearing mice. These results show that vaccine-induced immunoregulatory IL- 10+ DC impair priming of antitumor immunity, suggesting that therapeutic vaccination protocols may benefit from combined targeting of inhibitory molecules expressed by this DC subset.
Collapse
Affiliation(s)
- Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Stefany Infante
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Lorea Villanueva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Leyre Silva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Diego Alignani
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Elizabeth Guruceaga
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Haeberlein S, Chevalley-Maurel S, Ozir-Fazalalikhan A, Koppejan H, Winkel BMF, Ramesar J, Khan SM, Sauerwein RW, Roestenberg M, Janse CJ, Smits HH, Franke-Fayard B. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load. Sci Rep 2017; 7:10372. [PMID: 28871201 PMCID: PMC5583236 DOI: 10.1038/s41598-017-10480-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022] Open
Abstract
In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Institute of Parasitology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Séverine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hester Koppejan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
9
|
Hartmann AK, Aranda Lopez P, Zajac M, Freichel M, Schild H, Radsak MP, Stassen M. 9-Phenanthrol enhances the generation of an CD8 + T cell response following transcutaneous immunization with imiquimod in mice. J Dermatol Sci 2017; 87:260-267. [PMID: 28823644 DOI: 10.1016/j.jdermsci.2017.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transcutaneous immunization (TCI) is a non-invasive vaccination strategy targeting the skin-associated lymphoid tissue. Topical application of the TLR7 agonist imiquimod as adjuvant in combination with peptide antigens activates the innate immune system and mounts cytotoxic T lymphocyte (CTL) responses. OBJECTIVE Based on the commercial 5% imiquimod-containing drug Aldara we aimed to develop an improved formulation with superior vaccination efficiencies. The primary target was the enhancement of mast cell activation as important key for the function of the innate immune system. METHODS We investigated the effects of 9-phenanthrol (9-phe) on the activation of mast cells in vitro and in vivo. For TCI, we applied 0.2% 9-phe in Aldara or Aldara alone as adjuvants in combination with the MHC class I - restricted peptide SIINFEKL. To monitor vaccination, mast cell degranulation, migration of DC and frequencies of epitope-specific CTL was assessed. In a transgenic tumor model, the efficiencies of prophylactic immunization against a tumor antigen were also monitored. RESULTS 9-phe induced degranulation of mast cells in vitro and upon topical application in vivo. A mixture of 0.2% 9-phe in Aldara showed superior results regarding the migration of DC and the expansion of antigen-specific CTL. Consequently, prophylactic immunization with 0.2% 9-phe in Aldara caused enhanced protection against tumor inoculation. CONCLUSION Our data demonstrate that a simple modification of an adjuvant formulation can yield superior results in experimental vaccination protocols by boosting critical steps leading to the generation of an efficient CTL response.
Collapse
Affiliation(s)
- Ann-Kathrin Hartmann
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Pamela Aranda Lopez
- 3rd Dept. of Medicine, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marek Zajac
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Markus P Radsak
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Michael Stassen
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Rausch J, Lopez PA, Bialojan A, Denny M, Langguth P, Probst HC, Schild H, Radsak MP. Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization. J Dermatol Sci 2017; 87:300-306. [PMID: 28666747 DOI: 10.1016/j.jdermsci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The epidermal application of the Toll Like Receptor 7 agonist imiquimod and a T-cell peptide epitope (transcutaneous immunization, TCI) mediates systemic peptide-specific cytotoxic T-cell (CTL) responses and leads to tumor protection in a prophylactic tumor setting. However, it does not accomplish memory formation or permanent defiance of tumors in a therapeutic set-up. As a distinct immunologic approach, CTLA-4 blockade augments systemic immune responses and has shown long-lasting effects in preclinical experiments as well as in clinical trials. OBJECTIVE The study investigates the vaccination capacity of TCI in combination with the checkpoint inhibitor CTLA-4 in matters of primary response, memory formation and tumor protection and characterizes the role of regulatory T cells (Tregs). METHODS After performing TCI with IMI-Sol (containing 5% Imiquimod) and the model epitope SIINFEKL, 6-8 week old C57BL/6 mice received anti-CTLA-4 antibody either s.c or i.p. The CTL responses and frequency of peptide specific CD8+ T-cells were then evaluated on day 8. To determine anti-tumor effects, a therapeutic tumor challenge with B16 OVA melanoma was performed. RESULTS The combination of s.c. anti-CTLA-4 antibody and TCI leads to an enhanced systemic cytotoxic response, to memory formation and allows significantly improved survival in a tumor setting with B16 OVA melanoma. Towards the mechanism, we show that in this vaccination protocol the CTLA-4 antibody acts mainly Treg-independent. CONCLUSION We demonstrate that the combination of TCI with IMI-Sol and anti-CTLA-4 can confer potent immune responses and tumor-protection. These results might contribute to the development of advanced vaccination approaches targeting tumors or persistent infectious diseases.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Aminoquinolines/pharmacology
- Aminoquinolines/therapeutic use
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Drug Synergism
- Flow Cytometry
- Humans
- Imiquimod
- Immunologic Memory/drug effects
- Immunotherapy/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Mice
- Mice, Inbred C57BL
- Ovalbumin/pharmacology
- Ovalbumin/therapeutic use
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Toll-Like Receptor 7/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Johanna Rausch
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Pamela Aranda Lopez
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ariane Bialojan
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Mark Denny
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus P Radsak
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
11
|
Provinciali M, Barucca A, Orlando F, Pierpaoli E. Booster immunizations with DNA plasmids encoding HER-2/neu prevent spontaneous mammary cancer in HER-2/neu transgenic mice over life span. Sci Rep 2017; 7:3078. [PMID: 28596550 PMCID: PMC5465096 DOI: 10.1038/s41598-017-03286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022] Open
Abstract
Cancer vaccines are less effective at old than at young age because of immunosenescence. Besides, in preliminary observations we showed that the immunization with HER-2/neu DNA plasmid in transgenic young mice (standard immunization, SI) delays but not abrogate spontaneous mammary tumours progressively appearing during aging. In this study we evaluated whether booster immunizations (BI) of HER-2/neu transgenic mice with HER-2/neu DNA plasmids every 6 (ECD6), 3 (ECD3), or 1.5 (ECD1.5) months after SI induce a protective immunity that could be maintained over life span. The long term BI significantly improved the effect of SI increasing the number of tumour free mice at 110 weeks of age from 13% (SI) to 58% (BI). Both the number and the volume of tumour masses were reduced in BI than in SI groups. The protective effect of BI was associated with increased antibody production with isotype switching to IgG2a, augmented CD4 T cells, and increased in vivo cytotoxicity of HER-2/neu specific cytotoxic T lymphocytes, mainly in ECD1.5 and ECD3 groups. The transfer of sera from ECD1.5 mice to untreated HER-2/neu mice highly protected against tumour development than sera from SI mice. We conclude that BI induce a protective immunity effective over life span.
Collapse
Affiliation(s)
- Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy.
| | - Alessandra Barucca
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| |
Collapse
|
12
|
Liu J, Zhang H, Jia L, Sun H. Effects of Treg cells and IDO on human epithelial ovarian cancer cells under hypoxic conditions. Mol Med Rep 2014; 11:1708-14. [PMID: 25376937 PMCID: PMC4270340 DOI: 10.3892/mmr.2014.2893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/18/2014] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to explore the effect of hypoxia on ovarian cancer. A total of 6 samples were analyzed: SKOV3‑IP cells (ovarian cancer cell line); SKOV3‑IP and regulatory T (Treg) cells; SKOV3‑IP and cytotoxic T lymphocytes (CTLs); SKOV3‑IP and natural killer (NK) cells; SKOV3‑IP co-cultured with CTLs and Treg cells; and SKOV3‑IP co-cultured with Treg cells and NK cells. The expression of indoleamine 2,3‑dioxygenase (IDO) was detected by reverse transcription-polymerase chain reaction (RT‑PCR) and western blot analysis. An enzyme‑linked immunosorbent assay (ELISA) was used to detect the concentration of transforming growth factor‑β (TGF‑β), interferon‑γ (IFN‑γ), interleukin‑2 (IL‑2), interleukin‑10 (IL‑10), and perforin. Moreover, ovarian cancer cell apoptosis and invasive ability were examined using flow cytometry and a Transwell chamber assay. IDO expression was significantly reduced in hypoxia and enhanced by Treg cells. Treg cells inhibited the IL‑2, IFN‑γ and perforin secretion, and significantly (P<0.05) increased the IL‑10 and TGF‑β levels. The effects of Treg cells were enhanced with prolongation of the cell exposure to hypoxic conditions. In addition, Treg cells attenuated the promotive effect of CTLs and NK cells on cancer cell apoptosis. In addition, Treg cells significantly increased the SKOV3‑IP invasive ability (P=0.00109) under hypoxic conditions. Our results suggest that IDO and Treg cells may serve as important therapeutic targets for patients with ovarian cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Haiyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Luoqi Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| |
Collapse
|
13
|
Stein P, Gogoll K, Tenzer S, Schild H, Stevanovic S, Langguth P, Radsak MP. Efficacy of imiquimod-based transcutaneous immunization using a nano-dispersed emulsion gel formulation. PLoS One 2014; 9:e102664. [PMID: 25025233 PMCID: PMC4099367 DOI: 10.1371/journal.pone.0102664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/20/2014] [Indexed: 01/27/2023] Open
Abstract
Background Transcutaneous immunization (TCI) approaches utilize skin associated lymphatic tissues to elicit specific immune responses. In this context, the imidazoquinoline derivative imiquimod formulated in Aldara applied onto intact skin together with a cytotoxic T lymphocyte (CTL) epitope induces potent CTL responses. However, the feasibility and efficacy of the commercial imiquimod formulation Aldara is limited by its physicochemical properties as well as its immunogenicity. Methodology/Principal Findings To overcome these obstacles, we developed an imiquimod-containing emulsion gel (IMI-Gel) and characterized it in comparison to Aldara for rheological properties and in vitro mouse skin permeation in a Franz diffusion cell system. Imiquimod was readily released from Aldara, while IMI-Gel showed markedly decreased drug release. Nevertheless, comparing vaccination potency of Aldara or IMI-Gel-based TCI in C57BL/6 mice against the model cytotoxic T-lymphocyte epitope SIINFEKL, we found that IMI-Gel was equally effective in terms of the frequency of peptide-specific T-cells and in vivo cytolytic activity. Importantly, transcutaneous delivery of IMI-Gel for vaccination was clearly superior to the subcutaneous or oral route of administration. Finally, IMI-Gel based TCI was at least equally effective compared to Aldara-based TCI in rejection of established SIINFEKL-expressing E.G7 tumors in a therapeutic setup indicated by enhanced tumor rejection and survival. Conclusion/Significance In summary, we developed a novel imiquimod formulation with feasible pharmaceutical properties and immunological efficacy that fosters the rational design of a next generation transcutaneous vaccination platform suitable for the treatment of cancer or persistent virus infections.
Collapse
Affiliation(s)
- Pamela Stein
- Institute for Immunology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Karsten Gogoll
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Stefan Stevanovic
- Department of Immunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Markus P. Radsak
- Third Department of Medicine, Johannes Gutenberg-University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
14
|
Lu H. TLR Agonists for Cancer Immunotherapy: Tipping the Balance between the Immune Stimulatory and Inhibitory Effects. Front Immunol 2014; 5:83. [PMID: 24624132 PMCID: PMC3939428 DOI: 10.3389/fimmu.2014.00083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/17/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hailing Lu
- Tumor Vaccine Group, University of Washington , Seattle, WA , USA
| |
Collapse
|
15
|
Kleijwegt FS, Jansen DTSL, Teeler J, Joosten AM, Laban S, Nikolic T, Roep BO. Tolerogenic dendritic cells impede priming of naïve CD8⁺ T cells and deplete memory CD8⁺ T cells. Eur J Immunol 2012; 43:85-92. [PMID: 23042025 DOI: 10.1002/eji.201242879] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/03/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
Type 1 diabetes is a T-cell-mediated autoimmune disease in which autoreactive CD8(+) T cells destroy the insulin-producing pancreatic beta cells. Vitamin D3 and dexamethasone-modulated dendritic cells (Combi-DCs) loaded with islet antigens inducing islet-specific regulatory CD4(+) T cells may offer a tissue-specific intervention therapy. The effect of Combi-DCs on CD8(+) T cells, however, remains unknown. To investigate the interaction of CD8(+) T cells with Combi-DCs presenting epitopes on HLA class I, naive, and memory CD8(+) T cells were co-cultured with DCs and proliferation and function of peptide-specific T cells were analyzed. Antigen-loaded Combi-DCs were unable to prime naïve CD8(+) T cells to proliferate, although a proportion of T cells converted to a memory phenotype. Moreover, expansion of CD8(+) T cells that had been primed by mature monocyte-derived DCs (moDCs) was curtailed by Combi-DCs in co-cultures. Combi-DCs expanded memory T cells once, but CD8(+) T-cell numbers collapsed by subsequent re-stimulation with Combi-DCs. Our data point that (re)activation of CD8(+) T cells by antigen-pulsed Combi-DCs does not promote, but rather deteriorates, CD8(+) T-cell immunity. Yet, Combi-DCs pulsed with CD8(+) T-cell epitopes also act as targets of cytotoxicity, which is undesirable for survival of Combi-DCs infused into patients in therapeutic immune intervention strategies.
Collapse
Affiliation(s)
- Fleur S Kleijwegt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Hackstein H, Hagel N, Knoche A, Kranz S, Lohmeyer J, von Wulffen W, Kershaw O, Gruber AD, Bein G, Baal N. Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells. PLoS One 2012; 7:e43320. [PMID: 22927956 PMCID: PMC3425551 DOI: 10.1371/journal.pone.0043320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/19/2012] [Indexed: 01/08/2023] Open
Abstract
The TLR7 agonist imiquimod has been used successfully as adjuvant for skin treatment of virus-associated warts and basal cell carcinoma. The effects of skin TLR7 triggering on respiratory leukocyte populations are unknown. In a placebo-controlled experimental animal study we have used multicolour flow cytometry to systematically analyze the modulation of respiratory leukocyte subsets after skin administration of imiquimod. Compared to placebo, skin administration of imiquimod significantly increased respiratory dendritic cells (DC) and natural killer cells, whereas total respiratory leukocyte, alveolar macrophages, classical CD4+ T helper and CD8+ T killer cell numbers were not or only moderately affected. DC subpopulation analyses revealed that elevation of respiratory DC was caused by an increase of respiratory monocytic DC and CD11bhi DC subsets. Lymphocyte subpopulation analyses indicated a marked elevation of respiratory natural killer cells and a significant reduction of B lymphocytes. Analysis of cytokine responses of respiratory leukocytes after stimulation with Klebsiella pneumonia indicated reduced IFN-γ and TNF-α expression and increased IL-10 and IL-12p70 production after 7 day low dose skin TLR7 triggering. Additionally, respiratory NK cytotoxic activity was increased after 7d skin TLR7 triggering. In contrast, lung histology and bronchoalveolar cell counts were not affected suggesting that skin TLR7 stimulation modulated respiratory leukocyte composition without inducing overt pulmonary inflammation. These data suggest the possibility to modulate respiratory leukocyte composition and respiratory cytokine responses against pathogens like Klebsiella pneumonia through skin administration of a clinically approved TLR7 ligand. Skin administration of synthetic TLR7 ligands may represent a novel, noninvasive means to modulate respiratory immunity.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|