1
|
Kumar S, Chauhan SB, Upadhyay S, Singh SS, Verma V, Kumar R, Engwerda C, Nylén S, Sundar S. Altered IL-7 signaling in CD4+ T cells from patients with visceral leishmaniasis. PLoS Negl Trop Dis 2024; 18:e0011960. [PMID: 38408097 PMCID: PMC10919868 DOI: 10.1371/journal.pntd.0011960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/07/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND CD4+ T cells play a central role in control of L. donovani infection, through IFN-γ production required for activation of macrophages and killing of intracellular parasites. Impaired control of parasites can in part be explained by hampered CD4+ T cells effector functions in visceral leishmaniasis (VL) patients. In a recent studies that defined transcriptional signatures for CD4+ T cells from active VL patients, we found that expression of the IL-7 receptor alpha chain (IL-7Rα; CD127) was downregulated, compared to CD4+ T cells from endemic controls (ECs). Since IL-7 signaling is critical for the survival and homeostatic maintenance of CD4+ T cells, we investigated this signaling pathway in VL patients, relative to ECs. METHODS CD4+ T cells were enriched from peripheral blood collected from VL patients and EC subjects and expression of IL7 and IL7RA mRNA was measured by real time qPCR. IL-7 signaling potential and surface expression of CD127 and CD132 on CD4+ T cell was analyzed by multicolor flow cytometry. Plasma levels of soluble IL-7 and sIL-7Rα were measured by ELISA. RESULT Transcriptional profiling data sets generated previously from our group showed lower IL7RA mRNA expression in VL CD4+ T cells as compared to EC. A significant reduction was, however not seen when assessing IL7RA mRNA by RT-qPCR. Yet, the levels of soluble IL-7Rα (sIL-7Rα) were reduced in plasma of VL patients compared to ECs. Furthermore, the levels of soluble IL-7 were higher in plasma from VL patients compared to ECs. Interestingly, expression of the IL-7Rα protein was higher on VL patient CD4+ T cells as compared to EC, with activated CD38+ CD4+ T cells showing higher surface expression of IL-7Rα compared to CD38- CD4+ T cells in VL patients. CD4+ T cells from VL patients had higher signaling potential baseline and after stimulation with recombinant human IL-7 (rhIL-7) compared to EC, as measured by phosphorylation of STAT5 (pSTAT5). Interestingly, it was the CD38 negative cells that had the highest level of pSTAT5 in VL patient CD4+ T cells after IL-7 stimulation. Thus, despite unaltered or potentially lowered IL7RA mRNA expression by CD4+ T cells from VL patients, the surface expression of the IL-7Rα was higher compared to EC and increased pSTAT5 was seen following exposure to rhIL-7. Accordingly, IL-7 signaling appears to be functional and even enhanced in VL CD4+ T cells and cannot explain the impaired effector function of VL CD4+ T cells. The enhanced plasma IL-7 may serve as part of homeostatic feedback mechanism regulating IL7RA expression in CD4+ T cells.
Collapse
Affiliation(s)
- Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Shashi Bhushan Chauhan
- School of Medicine & Health Sciences, The George Washington University, Washington, Washington, United States of America
| | - Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Siddharth Sankar Singh
- University of Massachusetts Chan Medical School, Shrewsbury, Massachusetts, United States of America
| | - Vimal Verma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Banaras Hindu University, Varanasi, India
| | | | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi Uttar Pradesh India
| |
Collapse
|
2
|
Wang Y, Wei H, Song Z, Jiang L, Zhang M, Lu X, Li W, Zhao Y, Wu L, Li S, Shen H, Shu Q, Xie Y. Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. J Ginseng Res 2024; 48:77-88. [PMID: 38223829 PMCID: PMC10785239 DOI: 10.1016/j.jgr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Song
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mi Zhang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Lu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Wu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Pioli KT, Pioli PD. Thymus antibody-secreting cells: once forgotten but not lost. Front Immunol 2023; 14:1170438. [PMID: 37122712 PMCID: PMC10130419 DOI: 10.3389/fimmu.2023.1170438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Antibody-secreting cells are essential contributors to the humoral response. This is due to multiple factors which include: 1) the ability to secrete thousands of antibodies per second, 2) the ability to regulate the immune response and 3) the potential to be long-lived. Not surprisingly, these cells can be found in numerous sites within the body which include organs that directly interface with potential pathogens (e.g., gut) and others that provide long-term survival niches (e.g., bone marrow). Even though antibody-secreting cells were first identified in the thymus of both humans and rodents in the 1960s, if not earlier, only recently has this population begun to be extensively investigated. In this article, we provide an update regarding the current breath of knowledge pertaining to thymus antibody-secreting cells and discuss the potential roles of these cells and their impact on health.
Collapse
|
4
|
Yan M, Yang Y, Zhou Y, Yu C, Li R, Gong W, Zheng J. Interleukin-7 aggravates myocardial ischaemia/reperfusion injury by regulating macrophage infiltration and polarization. J Cell Mol Med 2021; 25:9939-9952. [PMID: 34581005 PMCID: PMC8572772 DOI: 10.1111/jcmm.16335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Interleukin (IL)‐7 is known to enhance the macrophages cytotoxic activity and that macrophages play a pivotal role in the development and progression of myocardial ischaemia/reperfusion (I/R) injury. However, the effects of IL‐7 on macrophages infiltration and polarization in myocardial I/R injury are currently unclear. This study aimed to evaluate the effects of the IL‐7 expression on myocardial I/R injury and their relationship with macrophages. The data showed that IL‐7 expression in mouse heart tissue increases following I/R injury and that IL‐7 knockout or anti‐IL‐7 antibody treatment significantly improve I/R injury, including reduction in myocardial infarction area, a serum troponin T level decreases and an improvement in cardiac function. On the other hand, recombinant IL‐7 (rIL‐7) supplementation induces opposite effects and the anti‐IL‐7 antibody significantly reduces the cardiomyocyte apoptosis and macrophage infiltration. rIL‐7 cannot directly cause apoptosis, but it can induce cardiomyocyte apoptosis through macrophages, in addition to increase the macrophages migration in vitro. Anti‐IL‐7 antibody affects the cytokine production in T helper (Th) 1 and Th2 cells and also promotes the macrophages differentiation to M2 macrophages. However, anti‐IL‐7 antibody does not reduce the M1 macrophage number, and it only increases the ratio of M2/M1 macrophages in mice heart tissues after I/R injury. Taking together, these data reveal that IL‐7 plays an intensifying role in myocardial I/R injury by promoting cardiomyocyte apoptosis through the regulation of macrophage infiltration and polarization.
Collapse
Affiliation(s)
- Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yaliu Yang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Rui Li
- Department of Health Care, China-Japan Freindship Hospital, Ministry of Health, Beijing, China
| | - Wei Gong
- Emergency and Critical Care Center, Beijing Anzhen Hospital Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China.,Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
5
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
6
|
Kulling PM, Olson KC, Olson TL, Hamele CE, Carter KN, Feith DJ, Loughran TP. Calcitriol-mediated reduction in IFN-γ output in T cell large granular lymphocytic leukemia requires vitamin D receptor upregulation. J Steroid Biochem Mol Biol 2018; 177:140-148. [PMID: 28736298 PMCID: PMC5775933 DOI: 10.1016/j.jsbmb.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
Constitutively activated STAT1 and elevated IFN-γ are both characteristic of T cell large granular lymphocytic leukemia (T-LGLL), a rare incurable leukemia with clonal expansion of cytotoxic T cells due to defective apoptosis. Interferon gamma (IFN-γ) is an inflammatory cytokine that correlates with worse progression and symptomology in multiple autoimmune diseases and cancers. In canonical IFN-γ-STAT1 signaling, IFN-γ activates STAT1, a transcription factor, via phosphorylation of tyrosine residue 701 (p-STAT1). p-STAT1 then promotes transcription of IFN-γ, creating a positive feedback loop. We previously found that calcitriol treatment of the TL-1 cell line, a model of T-LGLL, significantly decreased IFN-γ secretion and p-STAT1 while increasing the vitamin D receptor (VDR) protein. Here we further explore these observations. Using TL-1 cells, IFN-γ decreased starting at 4h following calcitriol treatment, with a reduction in the intracellular and secreted protein levels as well as the mRNA content. A similar reduction in IFN-γ transcript levels was observed in primary T-LGLL patient peripheral blood mononuclear cells (PBMCs). p-STAT1 inhibition followed a similar temporal pattern and VDR upregulation inversely correlated with IFN-γ levels. Using EB1089 and 25(OH)D3, which have high or low affinity for VDR, respectively, we found that the decrease in IFN-γ correlated with the ability of EB1089, but not 25(OH)D3, to upregulate VDR. However, both compounds inhibited p-STAT1; thus the reduction of p-STAT1 is not solely responsible for IFN-γ inhibition. Conversely, cells treated with VDR siRNA exhibited decreased basal IFN-γ production upon VDR knockdown in a dose-dependent manner. Calcitriol treatment upregulated VDR and decreased IFN-γ regardless of initial VDR knockdown efficiency, strengthening the connection between VDR upregulation and IFN-γ reduction. Our findings suggest multiple opportunities to further explore the clinical relevance of the vitamin D pathway and the potential role for vitamin D supplementation in T-LGLL.
Collapse
Affiliation(s)
- Paige M Kulling
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA; Department of Pathology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Kristine C Olson
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Thomas L Olson
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Cait E Hamele
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Kathryn N Carter
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - David J Feith
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 29908, USA; Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 29908, USA.
| |
Collapse
|
7
|
Le Saout C, Luckey MA, Villarino AV, Smith M, Hasley RB, Myers TG, Imamichi H, Park JH, O'Shea JJ, Lane HC, Catalfamo M. IL-7-dependent STAT1 activation limits homeostatic CD4+ T cell expansion. JCI Insight 2017; 2:96228. [PMID: 29202461 DOI: 10.1172/jci.insight.96228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
IL-7 regulates homeostatic mechanisms that maintain the overall size of the T cell pool throughout life. We show that, under steady-state conditions, IL-7 signaling is principally mediated by activation of signal transducers and activators of transcription 5 (STAT5). In contrast, under lymphopenic conditions, there is a modulation of STAT1 expression resulting in an IL-7-dependent STAT1 and STAT5 activation. Consequently, the IL-7-induced transcriptome is altered with enrichment of IFN-stimulated genes (ISGs). Moreover, STAT1 overexpression was associated with reduced survival in CD4+ T cells undergoing lymphopenia-induced proliferation (LIP). We propose a model in which T cells undergoing LIP upregulate STAT1 protein, "switching on" an alternate IL-7-dependent program. This mechanism could be a physiological process to regulate the expansion and size of the CD4+ T cell pool. During HIV infection, the virus could exploit this pathway, leading to the homeostatic dysregulation of the T cell pools observed in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Timothy G Myers
- Genomic Technologies Section, Research Technologies Branch, NIAID, NIH, Bethesda, Maryland, USA
| | | | | | | | | | - Marta Catalfamo
- CMRS/Laboratory of Immunoregulation, NIAID.,Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
8
|
Cnops J, De Trez C, Bulte D, Radwanska M, Ryffel B, Magez S. IFN-γ mediates early B-cell loss in experimental African trypanosomosis. Parasite Immunol 2015; 37:479-84. [PMID: 26079128 DOI: 10.1111/pim.12208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
African trypanosomes infect humans and animals throughout the African continent. These parasites maintain chronic infections by various immune evasion strategies. While antigenic variation of their surface coat is the most studied strategy linked to evading the host humoral response, African trypanosomes also induce impaired B-cell lymphopoiesis, the destruction of the splenic B-cell compartment and abrogation of protective memory responses. Here we investigate the mechanism of follicular B-cell destruction. We show that during infection follicular B cells undergo apoptosis, correlating to enhanced Fas death receptor surface expression. Investigation of various type 1 cytokine knockout mice indicates a crucial role of IFN-γ in the early onset of FoB cell destruction. Indeed, both IFN-γ(-/-) and IFN-γR(-/-) mice are protected from trypanosomosis-associated FoB cell depletion, exhibiting an inhibition of B-cell apoptosis as well as a reduced activation of FoB cells during the first week post-infection. The data presented herein offer new insights into B-cell dysfunctioning during experimental African trypanosome infections.
Collapse
Affiliation(s)
- J Cnops
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - C De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - D Bulte
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| | - M Radwanska
- Ghent University Global Campus, Incheon, South Korea
| | - B Ryffel
- Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-University of Orleans and IDM, University of Cape Town, Cape Town, South Africa
| | - S Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology SBRC, VIB, Brussels, Belgium
| |
Collapse
|
9
|
Zhao PW, Shi X, Li C, Ayana DA, Niu JQ, Feng JY, Wang J, Jiang YF. IL-33 Enhances Humoral Immunity Against Chronic HBV Infection Through Activating CD4(+)CXCR5(+) TFH Cells. J Interferon Cytokine Res 2015; 35:454-63. [PMID: 25714983 PMCID: PMC4490772 DOI: 10.1089/jir.2013.0122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/07/2014] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the potential effect of interleukin 33 (IL-33) on humoral responses to hepatitis B virus (HBV) and the possible mechanisms underlying the action of IL-33 in regulating follicular helper T (TFH) cells. The impact of IL-33 treatment on the levels of serum HBV DNA, HBsAg, HBeAg, HBsAb, and HBeAb, as well as the frequencies of CD4(+)CXCR5(+) TFH cells in wild-type HBV transgenic (HBV-Tg) mice and in a transwell coculture of HepG2.2.15 with IL-33-treated peripheral blood mononuclear cells (PBMCs) were determined. Furthermore, the gene transcription profiles in IL-33-treated TFH cells were determined by microarrays. IL-33 treatment significantly reduced the levels of serum HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb in HBV-Tg mice, accompanied by increased frequency of splenic infiltrating CD4(+)CXCR5(+) TFH cells in HBV-Tg. Similarly, coculture of HepG2.2.15 cells with IL-33-treated PBMCs reduced the levels of HBV DNA, HBsAg, and HBeAg, but increased the levels of HBsAb and HBeAb. Microarray analyses indicated that IL-33 significantly modulated the transcription of many genes involved in regulating TFH activation and differentiation. Our findings suggest that IL-33 may activate TFH cells, promoting humoral responses to HBV during the pathogenic process.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Coculture Techniques
- Gene Expression Regulation
- Hep G2 Cells
- Hepatitis B Surface Antigens/blood
- Hepatitis B e Antigens/blood
- Hepatitis B virus/immunology
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Immunity, Humoral/drug effects
- Interleukin-33/genetics
- Interleukin-33/immunology
- Interleukin-33/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Mice
- Mice, Transgenic
- Receptors, CXCR5/agonists
- Receptors, CXCR5/genetics
- Receptors, CXCR5/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/virology
Collapse
Affiliation(s)
- Ping-Wei Zhao
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xu Shi
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Cong Li
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | | | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Jun-Yan Feng
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Juan Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yan-Fang Jiang
- Key Laboratory for Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Department of Pediatrics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
10
|
Le Saout C, Hasley RB, Imamichi H, Tcheung L, Hu Z, Luckey MA, Park JH, Durum SK, Smith M, Rupert AW, Sneller MC, Lane HC, Catalfamo M. Chronic exposure to type-I IFN under lymphopenic conditions alters CD4 T cell homeostasis. PLoS Pathog 2014; 10:e1003976. [PMID: 24603698 PMCID: PMC3946368 DOI: 10.1371/journal.ppat.1003976] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/07/2014] [Indexed: 02/05/2023] Open
Abstract
HIV infection and the associated chronic immune activation alter T cell homeostasis leading to CD4 T cell depletion and CD8 T cell expansion. The mechanisms behind these outcomes are not totally defined and only partially explained by the direct cytopathic effect of the virus. In this manuscript, we addressed the impact of lymphopenia and chronic exposure to IFN-α on T cell homeostasis. In a lymphopenic murine model, this interaction led to decreased CD4 counts and CD8 T cell expansion in association with an increase in the Signal Transducer and Activator of Transcription 1 (STAT1) levels resulting in enhanced CD4 T cell responsiveness to IFN-α. Thus, in the setting of HIV infection, chronic stimulation of this pathway could be detrimental for CD4 T cell homeostasis.
Collapse
Affiliation(s)
- Cecile Le Saout
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Rebecca B. Hasley
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Hiromi Imamichi
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Lueng Tcheung
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Zonghui Hu
- Biostatistics Research Branch, DCR, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Megan A. Luckey
- Experimental Immunology Branch, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Jung-Hyun Park
- Experimental Immunology Branch, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Scott K. Durum
- Laboratory of Immunoregulation, CCR, NCI, NIH, Frederick, Maryland, United States of America
| | - Mindy Smith
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Adam W. Rupert
- AIDS Monitoring Labs. Leidos Biomedical Research, Inc, Frederick, Maryland, United States of America
| | - Michael C. Sneller
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - H. Clifford Lane
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Marta Catalfamo
- CMRS/Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Liu ZH, Wang MH, Ren HJ, Qu W, Sun LM, Zhang QF, Qiu XS, Wang EH. Interleukin 7 signaling prevents apoptosis by regulating bcl-2 and bax via the p53 pathway in human non-small cell lung cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:870-881. [PMID: 24695377 PMCID: PMC3971289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
Interleukin 7/Interleukin 7 receptor (IL-7/IL-7R) signaling induces the upregulation of cyclin D1 to promote cell proliferation in lung cancer, but its role in preventing the apoptosis of non-small cell lung cancer (NSCLC) cell lines remains unknown. To study the role of IL-7 in lung cancer cell apoptosis, normal HBE cells as well as A549 and H1299 NSCLC cells were examined using flow cytometry. The results showed that the activation of IL-7R by its specific ligand, exogenous interleukin-7, was associated with a significant decline in apoptotic cells. Western blot and real-time PCR assays indicated that the activation of IL-7/IL-7R significantly upregulated anti-apoptotic bcl-2 and downregulated pro-apoptotic bax and p53 at both protein and mRNA levels. The knockdown of IL-7R through small interfering RNAs significantly attenuated these effects of exogenous IL-7. However, there was no significant anti-apoptotic effect in H1299 (p53-) cells. Furthermore, the inhibition of p53 significantly abolished the effects of IL-7/IL-7R on lung cancer cell apoptosis. These results strongly suggest that IL-7/IL-7R prevents apoptosis by upregulating the expression of bcl-2 and by downregulating the expression of bax, potentially via the p53 pathway in A549 and HBE cells.
Collapse
Affiliation(s)
- Zi-Hui Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Ming-Hui Wang
- Department of Breast Surgery, The Affiliated Hospital of Chengde Medical College Chengde, China
| | - Hong-Jiu Ren
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Wei Qu
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Li-Mei Sun
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Qing-Fu Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Xue-Shan Qiu
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China ; Department of Pathology, The First Affiliated Hospital of China Medical University Shenyang, China
| | - En-Hua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University Shenyang, China ; Department of Pathology, The First Affiliated Hospital of China Medical University Shenyang, China
| |
Collapse
|
12
|
Abstract
A variety of B-cell dysfunctions are manifested during HIV-1 infection, as reported early during the HIV-1 epidemic. It is not unusual that the pathogenic mechanisms presented to elucidate impairment of B-cell responses during HIV-1 infection focus on the impact of reduced T-cell numbers and functions, and lack of germinal center formation in lymphoid tissues. To our understanding, however, perturbation of B-cell phenotype and function during HIV-1 infection may begin at several different B-cell developmental stages. These impairments can be mediated by intrinsic B-cell defects as well as by the lack of proper T-cell help. In this review, we will highlight some of the pathways and molecular interactions leading to B-cell impairment prior to germinal center formation and B-cell activation mediated through the B-cell receptor in response to HIV-1 antigens. Recent studies indicate a regulatory role for B cells on T-cell biology and immune responses. We will discuss some of these novel findings and how these regulatory mechanisms could potentially be affected by the intrinsic defects of B cells taking place during HIV-1 infection.
Collapse
|
13
|
Yu X, Li Z, Zhou Z, Kilby JM, Jiang W. Microbial TLR Agonists and Humoral Immunopathogenesis in HIV Disease. EPIDEMIOLOGY (SUNNYVALE, CALIF.) 2013; 3:120. [PMID: 24795844 PMCID: PMC4005894 DOI: 10.4172/2161-1165.1000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Although T cells are the primary and most-studied targets of the Human Immunodeficiency Virus (HIV), B cells, especially memory B lymphocytes, are also chronically depleted in the course of HIV disease. Although the lack of CD4+ T cell help may explain these deficiencies, intrinsic defects in B lymphocytes appear to contribute to B cell depletion and reduced antibody (Ab) production in the setting of HIV, especially of some antigens eliciting T cell-independent responses. The gut mucosal barrier is disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Toll-Like Receptor (TLR) agonists. The association of enhanced systemic levels of TLR agonists and B cell dysfunction in HIV disease is not understood. This review discusses the potential role of microbial TLR agonists in the B cell depletion, enhanced autoantibody production and impaired responses to vaccination observed in HIV-infected hosts. Increased microbial translocation in HIV infection may drive B cells to produce autoantibodies and increase susceptibilities of B cells to apoptosis through activation-induced cell death. Determining the mechanisms of B cell perturbations in HIV disease will inform the design of novel strategies of improve immune responses to vaccines, reduce opportunistic infections and slow disease progression.
Collapse
Affiliation(s)
- Xiaocong Yu
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Zhenxian Zhou
- NanJing Second Hospital, Infectious Diseases, NanJing, China
| | - J Michael Kilby
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Department of Medicine, Division of Infectious Diseases, Medical University of South Carolina, BSB214E, Charleston, SC, 29425, USA
| |
Collapse
|
14
|
Concerted effect of lymphopenia, viraemia and T-cell activation on Fas expression of peripheral B cells in HIV-1-infected patients. AIDS 2013; 27:155-62. [PMID: 23238551 DOI: 10.1097/qad.0b013e32835b8c5e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Decreased memory B-cell maintenance during HIV-1 infection has been associated with the viraemia-induced accumulation of activated memory B cells, sensitive to Fas-mediated apoptosis. We aimed at clarifying whether other B-cell subsets might also be affected by an increased Fas expression in HIV-1-infected patients, and we studied the possible contribution of viraemia, lymphopenia or T-cell activation in Fas upregulation on B cells. We analysed whether Fas upregulation might have collaborative effects with the dysregulation of other B-cell modulatory molecules, leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) and programmed cell death protein 1 (PD-1), on B-cell homeostasis. DESIGN Fas, LAIR1 and PD-1 were analysed on B-cell subpopulations in HIV-1-infected patients who were treatment naive, nonlymphopenic; antiretroviral therapy (ART)-treated, nonlymphopenic; or ART-treated, lymphopenic or in noninfected controls. METHODS Flow cytometry was used to study B-cell subsets and Milliplex for serum cytokines. RESULTS Fas expression increased on all B-cell subpopulations of viraemic or lymphopenic individuals. The decreased ratio of resting memory B cells and their increased Fas expression were not normalized by ART. Cytokines associated with T-cell activation might influence Fas expression on the naive and transitional B cells. LAIR1 expression decreased in all HIV-1-infected patients, but only on memory B cells, whereas PD-1 increased on resting memory B cells in viraemic patients. CONCLUSION Fas is regulated by the concerted action of viraemia, lymphopenia and T-cell activation during HIV-1 infection, and Fas expression is altered on all peripheral B-cell subsets. Resting memory B-cell homeostasis shows the highest sensitivity to HIV-1-induced perturbations.
Collapse
|
15
|
Capello D, Gloghini A, Baldanzi G, Martini M, Deambrogi C, Lucioni M, Piranda D, Famà R, Graziani A, Spina M, Tirelli U, Paulli M, Larocca LM, Gaidano G, Carbone A, Sinigaglia F. Alterations of negative regulators of cytokine signalling in immunodeficiency-related non-Hodgkin lymphoma. Hematol Oncol 2012; 31:22-8. [PMID: 22488585 DOI: 10.1002/hon.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/07/2012] [Accepted: 02/20/2012] [Indexed: 12/19/2022]
Abstract
We investigated immunodeficiency-related non-Hodgkin lymphoma for the presence of molecular alterations affecting negative regulators of the Janus family protein tyrosine kinase/signal transducer and activator of transcription pathway. Protein tyrosine phosphatase, non-receptor type 6/Src homology 2-containing tyrosine phosphatase-1 epigenetic silencing was recurrent in primary effusion lymphoma (100%), and diffuse large B-cell lymphoma (63%), with a higher prevalence in the non-germinal centre subtype, and was associated with the activation of the Janus family protein tyrosine kinase/signal transducer and activator of transcription 3 pathway. Suppressor of cytokine signalling (SOCS)1 and SOCS3 epigenetic silencing were occasionally detected, whereas SOCS1 was frequently mutated in diffuse large B-cell lymphoma and polymorphic post-transplant lymphoproliferative disorders, possibly as a cause of aberrant somatic hypermutation. However, the mutation profile of the coding region of the gene was different from that expected from the aberrant somatic hypermutation process, suggesting that, at least in some cases, SOCS1 mutations may have been selected for their functional activity.
Collapse
Affiliation(s)
- Daniela Capello
- Division of Hematology, 'Amedeo Avogadro' University of Eastern Piedmont, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|