1
|
Kwon CH, Ha MW. Pharmacogenetic Approach to Tramadol Use in the Arab Population. Int J Mol Sci 2024; 25:8939. [PMID: 39201627 PMCID: PMC11354576 DOI: 10.3390/ijms25168939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tramdol is one of most popular opioids used for postoperative analgesia worldwide. Among Arabic countries, there are reports that its dosage is not appropriate due to cultural background. To provide theoretical background of the proper usage of tramadol, this study analyzed the association between several genetic polymorphisms (CYP2D6/OPRM1) and the effect of tramadol. A total of 39 patients who took tramadol for postoperative analgesia were recruited, samples were obtained, and their DNA was extracted for polymerase chain reaction products analysis followed by allelic variations of CYP2D6 and OPRM A118G determination. Numerical pain scales were measured before and 1 h after taking tramadol. The effect of tramadol was defined by the difference between these scales. We concluded that CYP2D6 and OPRM1 A118G single nucleotide polymorphisms may serve as crucial determinants in predicting tramadol efficacy and susceptibility to post-surgical pain. Further validation of personalized prescription practices based on these genetic polymorphisms could provide valuable insights for the development of clinical guidelines tailored to post-surgical tramadol use in the Arabic population.
Collapse
Affiliation(s)
- Chan-Hyuk Kwon
- Seoul Shingil Rehabilitation Medicine Clinic, 162 Shingil-ro, Yeongdeungpo-gu, Seoul 07362, Republic of Korea
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Jeju-do, Republic of Korea
| |
Collapse
|
2
|
Alqasrawi MN, Al-Mahayri ZN, Alblooshi H, Alsafar H, Ali BR. Utilizing Pharmacogenomic Data for a Safer Use of Statins among the Emirati Population. Curr Vasc Pharmacol 2024; 22:218-229. [PMID: 38284696 DOI: 10.2174/0115701611283841231227064343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Statins are the most prescribed lipid-lowering drugs worldwide. The associated adverse events, especially muscle symptoms, have been frequently reported despite their perceived safety. Three pharmacogenes, the solute carrier organic anion transporter family member 1B1 (SLCO1B1), ATP-binding cassette subfamily G member 2 (ABCG2), and cytochrome P450 2C9 (CYP2C9) are suggested as safety biomarkers for statins. The Clinical Pharmacogenomic Implementation Consortium (CPIC) issued clinical guidelines for statin use based on these three genes. OBJECTIVES The present study aimed to examine variants in these pharmacogenes to predict the safety of statin use among the Emirati population. METHODS Analyzing 242 whole exome sequencing data at the three genes enabled the determination of the frequencies of the single nucleotide polymorphisms (SNPs), annotating the haplotypes and the predicted functions of their proteins. RESULTS In our cohort, 29.8% and 5.4% had SLCO1B1 decreased and poor function, respectively. The high frequency warns of the possibility of significant side effects of some statins and the importance of pharmacogenomic testing. We found a low frequency (6%) of the ABCG2:rs2231142 variant, which indicates the low probability of Emirati patients being recommended against higher rosuvastatin doses compared with other populations with higher frequencies of this variant. In contrast, we found high frequencies of the functionally impaired CYP2C9 alleles, which makes fluvastatin a less favorable choice. CONCLUSION Among the sparse studies available, the present one demonstrates all SLCO1B1 and CYP2C9 function-impairing alleles among Emiratis. We highlighted how population-specific pharmacogenomic data can predict safer choices of statins, especially in understudied populations.
Collapse
Affiliation(s)
- Mais N Alqasrawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zeina N Al-Mahayri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
May GB, de Souza BR, Gueuvoghlanian-Silva BY, Dos Reis EC, Mostardeiro SR, Boabaid May PP, Mateo EC, Vietta GG, Hoss GW. Distribution of pharmacogene allele and phenotype frequencies in Brazilian psychiatric patients. Pharmacogenomics 2023; 24:747-760. [PMID: 37846556 DOI: 10.2217/pgs-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Purpose: This work was designed to identify the pharmacogenetic profile of Brazilian psychiatric patients receiving psychoactive drug treatment according to ethnicity. Methods: Based on the GnTech® database, this cross-sectional study analyzed data from self-reported sociodemographic and genetic results from the next-generation sequencing panel composed of 26 pharmacogenes from 359 psychotropic drug users. Results: Variant frequencies of multiple pharmacogenes presented differences between ethnicities (CYP3A5, CYP2D6, CYP1A2, CYP2B6, CYP3A4, UGT1A4, UGT2B15, ABCB1 rs1045642, ADRA2A rs1800544, COMT rs4680, GRIK4 rs1954787, GSK3B rs334558, GSK3B rs6438552, HTR1A rs6295, HTR2A rs7997012, HTR2C rs1414334, MTHFR rs1801131, OPRM1 rs1799971 and 5-HTTLPR), endorsing the necessity of individual-level analyses in drug treatment. Conclusion: A discussion of pharmacogenomic test implementation in psychiatric clinical practice is needed to improve treatment choices, especially in Brazil, a multiethnic country.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Rech Mostardeiro
- Universidade do Sul de Santa Catarina (UNISUL)-Campus Pedra Branca, Palhoça, SC, 88137-270, Brazil
| | | | | | | | | |
Collapse
|
4
|
Hassen LM, Daghestani MH, Omair MA, Althomali AK, Almukaynizi FB, Almaghlouth IA. CYP2D6 genetic polymorphisms in Saudi systemic lupus erythematosus patients: A cross-sectional study. Saudi Med J 2023; 44:237-245. [PMID: 36940959 PMCID: PMC10043891 DOI: 10.15537/smj.2023.44.3.20220581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/22/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES To determine the prevalence of selected single nucleotide polymorphisms (rs1080985, rs28624811, rs1065852, rs28371725, and rs1135840) in cytochrome P450 2D6 (CYP2D6) gene among Saudi systemic lupus erythematosus (SLE) patients and to investigate the association between the genetic variants and clinical features of SLE. METHODS This cross-sectional study was carried out on adult Saudi patients at King Khalid University Hospital, Riyadh, Saudi Arabia. Patients with confirmed SLE based on the 2012 Systemic Lupus International Collaborating Clinics classification criteria were included in the study. Peripheral blood was collected for genomic deoxyribonucleic acid extraction and TaqMan® technologies were used for target genotyping. For statistical analysis, differences in genotype frequencies were determined using the Chi-square test, and the association between the variant genotypes and SLE features was evaluated using logistical regression models. RESULTS There were 107 participants included in this study. Overall, the most predominant (23.4%) recessive genotype was AA in rs28624811, and the least prevalent (1.9%) recessive genotype was TT in rs28371725. Moreover, the variant rs1080985 genotypes (GC or CC) were significantly associated with the presence of serositis manifestation (OR=3.15, p=0.03), even after adjusting for age and gender. However, the dominant rs28624811 genotype (GG) was associated with renal involvement (OR=2.56, p=0.03). CONCLUSION Systemic lupus erythematosus patients carrying CYP2D6 variants might be considered at risk for certain manifestations of SLE. Further studies are needed to investigate the implication of these genetic variations in clinical outcomes and drug response.
Collapse
Affiliation(s)
- Lena M. Hassen
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Maha H. Daghestani
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed A. Omair
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Arwa K. Althomali
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Fatimah B. Almukaynizi
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ibrahim A. Almaghlouth
- From the Department of Zoology (Hassen, Daghestani), College of Sciences; from the Department of Medicine (Hassen, Omair, Almaghlouth), Rheumatology Unit; from the College of Medicine Research Center (Almaghlouth), College of Medicine; and from Prince Naif for Health Research Center (Althomali, Almukaynizi), King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
6
|
Alali M, Ismail Al-khalil W, Rijjal S, Al-Salhi L, Saifo M, Youssef LA. Frequencies of CYP2D6 genetic polymorphisms in Arab populations. Hum Genomics 2022; 16:6. [PMID: 35123571 PMCID: PMC8817534 DOI: 10.1186/s40246-022-00378-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
CYP2D6 is a key drug-metabolizing enzyme implicated in the biotransformation of approximately 25% of currently prescribed drugs. Interindividual and interethnic differences in CYP2D6 enzymatic activity, and hence variability in substrate drug efficacy and safety, are attributed to a highly polymorphic corresponding gene. This study aims at reviewing the frequencies of the most clinically relevant CYP2D6 alleles in the Arabs countries. Articles published before May 2021 that reported CYP2D6 genotype and allelic frequencies in the Arab populations of the Middle East and North Africa (MENA) region were retrieved from PubMed and Google Scholar databases. This review included 15 original articles encompassing 2737 individuals from 11 countries of the 22 members of the League of Arab States. Active CYP2D6 gene duplications reached the highest frequencies of 28.3% and 10.4% in Algeria and Saudi Arabia, respectively, and lowest in Egypt (2.41%) and Palestine (4.9%). Frequencies of the loss-of-function allele CYP2D6*4 ranged from 3.5% in Saudi Arabia to 18.8% in Egypt. The disparity in frequencies of the reduced-function CYP2D6*10 allele was perceptible, with the highest frequency reported in Jordan (14.8%) and the lowest in neighboring Palestine (2%), and in Algeria (0%). The reduced-function allele CYP2D6*41 was more prevalent in the Arabian Peninsula countries; Saudi Arabia (18.4%) and the United Arab Emirates (15.2%), in comparison with the Northern Arab-Levantine Syria (9.7%) and Algeria (8.3%). Our study demonstrates heterogeneity of CYP2D6 alleles among Arab populations. The incongruities of the frequencies of alleles in neighboring countries with similar demographic composition emphasize the necessity for harmonizing criteria of genotype assignment and conducting comprehensive studies on larger MENA Arab populations to determine their CYP2D6 allelic makeup and improve therapeutic outcomes of CYP2D6- metabolized drugs.
Collapse
Affiliation(s)
- Mousa Alali
- Department of Oncology, Albairouni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - Wouroud Ismail Al-khalil
- Program of Clinical and Hospital Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Sara Rijjal
- Program of Clinical and Hospital Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Lana Al-Salhi
- Program of Clinical and Hospital Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Maher Saifo
- Department of Oncology, Albairouni University Hospital, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - Lama A. Youssef
- Program of Clinical and Hospital Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
- Faculty of Pharmacy, International University for Science and Technology (IUST), Ghabagheb, Daraa Syrian Arab Republic
- National Commission for Biotechnology (NCBT), Damascus, Syrian Arab Republic
| |
Collapse
|
7
|
Aklillu E, Engidawork E. The impact of catha edulis (vahl) forssk. ex endl. (celestraceae) (khat) on pharmacokinetics of clinically used drugs. Expert Opin Drug Metab Toxicol 2021; 17:1125-1138. [PMID: 34410209 DOI: 10.1080/17425255.2021.1971194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Catha edulis (Vahl) Forssk. ex Endl. (Celestraceae) is used as a recreational drug on daily basis for its euphoric and psychostimulant effects. It is also chewed by individuals who are on medications, raising the possibility of drug-khat interaction. However, limited data are available in the literature, although clinically significant interactions are expected, as khat contains a complex mixture of pharmacologically active constituents. AREAS COVERED It provides an overview of the phytochemistry, pharmacokinetics, pharmacodynamics, and pharmacogenetics of khat based on the literature mined from PubMed, Google Scholar, and Cochrane databases. It also presents a detailed account of drug-khat interactions with specific examples and their clinical significance. The interactions mainly occur at the pharmacokinetics level and particular attention is paid for the phases of absorption and cytochrome P450 enzyme-mediated metabolism. EXPERT OPINION Despite the increasing trend of khat chewing with medications among the populace and the potential risk for the occurrence of clinically significant interactions, there is paucity of data in the literature demonstrating the magnitude of the risk. The available data, however, clearly demonstrate that the consequence of drug-khat interaction is dependent on genotype. Genotyping, where feasible, could be used to improve clinical outcome and minimize adverse reactions.
Collapse
Affiliation(s)
- Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Chan CWH, Law BMH, Ng MSN, Wong CCY, Wong CWY, Quinley M, Orgusyan JM, Chow KM, Waye MMY. Association of single nucleotide polymorphisms of cytochrome P450 enzymes with experience of vasomotor, vaginal and musculoskeletal symptoms among breast cancer patients: a systematic review. BMC Cancer 2021; 21:570. [PMID: 34006247 PMCID: PMC8130378 DOI: 10.1186/s12885-021-08268-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/28/2021] [Indexed: 02/20/2023] Open
Abstract
Background Adjuvant endocrine therapies are known to induce undesirable adverse effects such as vasomotor, vaginal and musculoskeletal symptoms among breast cancer patients. Drugs used in these therapies are often metabolised by cytochrome P450 (CYP) enzymes, in which their metabolising activities can be modified by single nucleotide polymorphisms (SNP) in CYP genes and CYP genotypes. This review aims to explore whether SNPs or genotypes of CYP are associated with the occurrence, frequency and severity of vasomotor, vaginal and musculoskeletal symptoms in breast cancer patients on adjuvant endocrine therapies. Methods A literature review was conducted using five electronic databases, resulting in the inclusion of 14 eligible studies, and their findings were presented narratively. Selected items from the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist were used for critical appraisal of the reporting quality of the included studies. Results Most of the included studies showed that SNPs or genotypes of CYP that modify its metabolising activity have no effect on the occurrence, frequency or severity of vasomotor symptoms, including hot flashes. One study showed no correlation of these genetic variations in CYP with musculoskeletal symptoms, and no data were available on the association between such genetic variations and vaginal symptoms. Conclusions Overall, genetic variations in CYP have no effect on the experience of hot flashes among breast cancer patients. We recommend exploration of the link between the active metabolites of chemotherapeutic drugs and the molecules shown to affect the occurrence or severity of hot flashes, and the establishment of the relationship between such genetic variations and patients’ experience of musculoskeletal and vaginal symptoms. Subgroup analyses based on patients’ duration of adjuvant endocrine therapies in such studies are recommended.
Collapse
Affiliation(s)
- Carmen W H Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, the New Territories, Hong Kong SAR, China.,The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bernard M H Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, the New Territories, Hong Kong SAR, China
| | - Marques S N Ng
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, the New Territories, Hong Kong SAR, China
| | | | - Carissa W Y Wong
- University College London Cancer Institution, University College London, London, UK
| | - Morgan Quinley
- Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | | | - Ka Ming Chow
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, the New Territories, Hong Kong SAR, China. .,Asia-Pacific Genomic and Genetic Nursing Centre, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Mary M Y Waye
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, the New Territories, Hong Kong SAR, China.,The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Hong Kong SAR, China.,Asia-Pacific Genomic and Genetic Nursing Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Mutawi TM, Zedan MM, Yahya RS, Zakria MM, El-Sawi MR, Gaedigk A. Genetic variability of CYP2D6, CYP3A4 and CYP3A5 among the Egyptian population. Pharmacogenomics 2021; 22:323-334. [PMID: 33789449 DOI: 10.2217/pgs-2020-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study investigated major allelic variants of CYP2D6, CYP3A4 and CYP3A5 in Egyptians, an Arabic population for which there is little information regarding these important pharmacogenes. Patients & methods: CYP2D6*2, *4, *5, *10, *41 and gene copy number variation, as well as CYP3A4*22 and CYP3A5*3 were determined with commercially available TaqMan assays in 145 healthy study participants. Results: The CYP2D6 alleles identified suggest that the prevalence of poor metabolizers is low as none were found among the 145 subjects investigated. The frequency for CYP3A5 nonexpressers was 74.5% and the CYP3A4*22 allele frequency was low at 2.0%. Conclusion: These preliminary findings indicate that pharmacogene variation in Egyptians is different from those of other Middle Eastern/Arabic populations and warrants further investigation.
Collapse
Affiliation(s)
- Thuraya M Mutawi
- Department of Laboratories, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed M Zedan
- Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Raida S Yahya
- Department of Laboratories, Children Hospital, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud M Zakria
- The Urology & Nephrology Center, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh R El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City & School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
10
|
Salem Hareedy M, Rashad SM, Hetta HF, Hassanien SM, Abdellatif H, Hassanien M. CYP2D6 and CYP3A4 variants influence the risk and outcome of COVID-19 infection among rheumatoid arthritis patients maintained on hydroxychloroquine. Drug Metab Pers Ther 2021; 0:dmdi-2020-0164. [PMID: 33770833 DOI: 10.1515/dmdi-2020-0164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Hydroxychloroquine (HCQ) has been used as an off label for the management of coronavirus disease (Covid-19) infection with other drugs. However, different genetic variants can affect the metabolism of HCQ leading to inter-individual differences in its efficacy. In this study, we investigated the effects of variants in CYP2D6, CYP3A4 and CYP3A5 on the risk of Covid-19 infection among patients receiving HCQ for controlling rheumatoid arthritis (RA). METHODS A total of 60 patients were genotyped for CYP2D6*2XN, CYP2D6*4, CYP3A4*1B and CYP3A5*2. They were receiving HCQ for the treatment of RA. The patients were evaluated clinically for fever and dry cough, radiologically via chest computed tomography (CT) and immunologically via anti-Covid-19 IgG and IgM titers. RESULTS Variants in CYP2D6 significantly affected the grade of ground glass (CYP2D6*4 AA carriers showed the higher risk for grade 3) and the risk of positive anti-Covid-19 IgM (CYP2D6*2XN CC and CYP3A4*1B AA had the lowest risk), the duration of HCQ, the use of corticosteroids or gender did not affect the Covid-19 status significantly. CONCLUSIONS In general, the outcome of the studied patients receiving HCQ was good (no deaths, no intubation needed). CYP2D6 variants could affect the outcome of Covid-19 infection.
Collapse
Affiliation(s)
- Mohammad Salem Hareedy
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | | - Manal Hassanien
- Department of Rheumatology and Rehabilitation, Assuit University, Assiut, Egypt
| |
Collapse
|
11
|
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, Iemwimangsa N, Fukunaga K, Mushiroda T, Chantratita W, Ali BR. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10:21310. [PMID: 33277594 PMCID: PMC7718919 DOI: 10.1038/s41598-020-78231-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency ≤ 0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.,Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates. .,Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
12
|
Abstract
Introduction: Genetic polymorphism is associated with individual responses to medication and susceptibility to diseases, and it represents the basis for individualized medical treatment and drug genomics studies. Genetic variation at CYP2D6 is high, both among populations and among individuals in the same population. Aim: The aim of the study was to investigate the CYP2D6 gene duplication and the non-synonymous single-nucleotide polymorphisms (SNP) 100C>T in the CYP2D6 gene in members of the Bosnian population. Material and Methods: The blood samples were collected from 151 unrelated and healthy donors from Bosnian populations consisted of 94 females and 57 males. Duplex long-range PCR was used to determine whether individuals carrying CYP2D6 gene duplication. The resulting PCR product of 5.1 kb, containing all nine CYP2D6 exons, was used as template for detection of the CYP2D6 100C>T allele by nested PCR. Results: The CYP2D6 gene duplication frequency found in the Bosnian population (2.73%) was related to the frequencies of this allele in other Caucasians. The gene duplication is the result of inheritance of more than two copies of the fully functional CYP2D6 alleles. In contrast, the frequency of the CYP2D6 100C>T variant, with possibly damaging function, in the Bosnian population (15.56%) was significantly higher when compared with the other Caucasians but significantly lower when compared with Asians. Conclusion: CYP2D6 metabolizes many commonly prescribed drugs. Variations in the gene encoding this enzyme have been associated with individual differences in drug metabolism rates. The individuals with multiple CYP2D6 gene copies metabolize drugs more rapidly and therapeutic plasma levels will not be achieved at ordinary drug dosages. The non-synonymous coding SNP (100C>T) were predicted to have damaging effects on the protein function.
Collapse
Affiliation(s)
- Hilada Nefic
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
13
|
Khalaj Z, Baratieh Z, Nikpour P, Khanahmad H, Mokarian F, Salehi R, Salehi M. Distribution of CYP2D6 polymorphism in the Middle Eastern region. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:61. [PMID: 31523247 PMCID: PMC6670283 DOI: 10.4103/jrms.jrms_1076_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is an important drug-metabolizing enzyme involved in the pharmacokinetic metabolism of drugs. CYP2D6 gene is highly polymorphic, and the combination of its different alleles yields different phenotypes including extensive metabolizer (EM), intermediate metabolizer (IM), poor metabolizer (PM), and ultrarapid metabolizer (UM). Genotyping of the important alleles for this gene in different ethnicities is of particular importance for assessing the efficacy of various drugs. In this study, we reviewed the CYP2D6 allele and phenotype frequencies predicted from the genotypes of CYP2D6 in the Middle East area. Regardless of different ethnicities, the CYP2D6*41 allele frequency was shown to be higher than that of other reduced functional alleles. In addition, CYP2D6*4 was the most frequent nonfunctional allele in all studied populations in the Middle East. Taken together, our findings illustrated that the frequencies of PM or IM alleles and different genotypes harboring these alleles are relatively high in the Middle Eastern countries. Therefore, the study of CYP2D6 alleles for each patient to detect those that are at risk is of great importance to prevent adverse drug reactions through individualization therapy.
Collapse
Affiliation(s)
- Zahra Khalaj
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Baratieh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Assessment of Dapagliflozin Effectiveness as Add-on Therapy for the Treatment of Type 2 Diabetes Mellitus in a Qatari Population. Sci Rep 2019; 9:6864. [PMID: 31053747 PMCID: PMC6499803 DOI: 10.1038/s41598-019-43052-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
The effectiveness of dapagliflozin in the management of type-2 diabetes mellitus (T2-DM) is an essential issue for establishing a basis for prescribing dapagliflozin. This study aimed to assess the effectiveness of dapagliflozin in combination with other hypoglycemic agents (OHAs) in reducing glycated hemoglobin (HbA1c) and fasting blood glucose (FBG) at 3, 6, 9 and 12 months. This retrospective observational study included all patients who visited the endocrine clinics at Hamad Medical Corporation (HMC) and were treated with dapagliflozin. Demographics and laboratory data were obtained retrospectively from computerized patient medical profiles (eMR-viewer). The main outcome measures were the differences in HbA1c and FBG from baseline at different months. Eighty-one Qatari patients were found to have received dapagliflozin during the study period; 72% of them (n = 58) were males, with a mean age of 57.0 ± 9.0 years and a mean baseline HbA1c of 9.0 ± 1.4%. Administration of dapagliflozin as an add-on therapy was found to decrease HbA1c significantly by 0.8 percentage point after 6 months (P = 0.006) and by 1.5 percentage point after 12 months (P = 0.062). FBG was significantly reduced at 6 months and 9 months (P = 0.001 and P = 0.03, respectively). Dapagliflozin effectively reduced the HbA1c level and FBG when used in combination with other OHAs or insulin within 6 to 12 months.
Collapse
|
15
|
Sivadas A, Scaria V. Population-scale genomics-Enabling precision public health. ADVANCES IN GENETICS 2018; 103:119-161. [PMID: 30904093 DOI: 10.1016/bs.adgen.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current excitement for affordable genomics technologies and national precision medicine initiatives marks a turning point in worldwide healthcare practices. The last decade of global population sequencing efforts has defined the enormous extent of genetic variation in the human population resulting in insights into differential disease burden and response to therapy within and between populations. Population-scale pharmacogenomics helps to provide insights into the choice of optimal therapies and an opportunity to estimate, predict and minimize adverse events. Such an approach can potentially empower countries to formulate national selection and dosing policies for therapeutic agents thereby promoting public health with precision. We review the breadth and depth of worldwide population-scale sequencing efforts and its implications for the implementation of clinical pharmacogenetics toward making precision medicine a reality.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
16
|
Mitropoulos K, Cooper DN, Mitropoulou C, Agathos S, Reichardt JKV, Al-Maskari F, Chantratita W, Wonkam A, Dandara C, Katsila T, Lopez-Correa C, Ali BR, Patrinos GP. Genomic Medicine Without Borders: Which Strategies Should Developing Countries Employ to Invest in Precision Medicine? A New "Fast-Second Winner" Strategy. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:647-657. [PMID: 29140767 DOI: 10.1089/omi.2017.0141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genomic medicine has greatly matured in terms of its technical capabilities, but the diffusion of genomic innovations worldwide faces significant barriers beyond mere access to technology. New global development strategies are sorely needed for biotechnologies such as genomics and their applications toward precision medicine without borders. Moreover, diffusion of genomic medicine globally cannot adhere to a "one-size-fits-all-countries" development strategy, in the same way that drug treatments should be customized. This begs a timely, difficult but crucial question: How should developing countries, and the resource-limited regions of developed countries, invest in genomic medicine? Although a full-scale investment in infrastructure from discovery to the translational implementation of genomic science is ideal, this may not always be feasible in all countries at all times. A simple "transplantation of genomics" from developed to developing countries is unlikely to be feasible. Nor should developing countries be seen as simple recipients and beneficiaries of genomic medicine developed elsewhere because important advances in genomic medicine have materialized in developing countries as well. There are several noteworthy examples of genomic medicine success stories involving resource-limited settings that are contextualized and described in this global genomic medicine innovation analysis. In addition, we outline here a new long-term development strategy for global genomic medicine in a way that recognizes the individual country's pressing public health priorities and disease burdens. We term this approach the "Fast-Second Winner" model of innovation that supports innovation commencing not only "upstream" of discovery science but also "mid-stream," building on emerging highly promising biomarker and diagnostic candidates from the global science discovery pipeline, based on the unique needs of each country. A mid-stream entry into innovation can enhance collective learning from other innovators' mistakes upstream in discovery science and boost the probability of success for translation and implementation when resources are limited. This à la carte model of global innovation and development strategy offers multiple entry points into the global genomics innovation ecosystem for developing countries, whether or not extensive and expensive discovery infrastructures are already in place. Ultimately, broadening our thinking beyond the linear model of innovation will help us to enable the vision and practice of genomics without borders in both developed and resource-limited settings.
Collapse
Affiliation(s)
| | - David N Cooper
- 2 Institute of Medical Genetics, School of Medicine, Cardiff University , Cardiff, United Kingdom
| | | | - Spiros Agathos
- 4 Yachay Tech University , San Miguel de Urcuquí, Ecuador
| | | | - Fatima Al-Maskari
- 5 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates .,6 Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - Wasun Chantratita
- 7 Department of Pathology, Medical Genomic Center, Ramathibodi Hospital, Faculty of Medicine, Mahidol University , Bangkok, Thailand
| | - Ambroise Wonkam
- 8 Division of Human Genetics, Department of Medicine and Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 8 Division of Human Genetics, Department of Medicine and Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Theodora Katsila
- 9 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| | | | - Bassam R Ali
- 5 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates .,6 Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates
| | - George P Patrinos
- 5 Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates .,6 Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University , Al-Ain, United Arab Emirates .,9 Department of Pharmacy, School of Health Sciences, University of Patras , Patras, Greece
| |
Collapse
|
17
|
Sivadas A, Scaria V. Pharmacogenomic survey of Qatari populations using whole-genome and exome sequences. THE PHARMACOGENOMICS JOURNAL 2018; 18:590-600. [PMID: 29720721 DOI: 10.1038/s41397-018-0022-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
The Arabs represent one of the most genetically heterogeneous populations characterized by a high prevalence of Mendelian disorders due to consanguinity. Population-scale genomic datasets provide a unique opportunity to understand the epidemiology of variants associated with differential therapeutic response. We analyzed publicly available genomic data for 1005 Qatari individuals encompassing five subpopulations. The frequencies of known and novel pharmacogenetic variants were compared with global populations. Impact of genetic substructure on the pharmacogenetic landscape of the population was studied. We report an average of three clinically actionable pharmacogenetic variants with FDA-recommended genetic testing per Qatari individual regardless of their genetic ancestry. We observed extensive differences in the frequencies of clinically actionable pharmacogenetic variants among the Qatari subpopulations. Our analysis revealed 3579 deleterious pharmacogenetic variants potentially altering the function of 1163 genes associated with 1565 drugs. This study has thus compiled the first comprehensive landscape of pharmacogenetic variants for any Arab population.
Collapse
Affiliation(s)
- Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, 110020, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi, 110020, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
18
|
Al-Ahmad MM, Amir N, Dhanasekaran S, John A, Abdulrazzaq YM, Ali BR, Bastaki SMA. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2) among Emiratis. PLoS One 2017; 12:e0183424. [PMID: 28934216 PMCID: PMC5608188 DOI: 10.1371/journal.pone.0183424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the CYP450 mixed-function oxidase system that is of clinical importance due to the large number of drug interactions associated with its induction and inhibition. In addition, significant inter-individual differences in the elimination of drugs metabolized by CYP1A2 enzyme have been observed which are largely due to the highly polymorphic nature of CYP1A2 gene. However, there are limited studies on CYP1A2 phenotypes and CYP1A2 genotypes among Emiratis and thus this study was carried out to fill this gap. Five hundred and seventy six non-smoker Emirati subjects were asked to consume a soft drink containing caffeine (a non-toxic and reliable probe for predicting CYP1A2 phenotype) and then provide a buccal swab along with a spot urine sample. Taq-Man Real Time PCR was used to determine the CYP1A2 genotype of each individual. Phenotyping was carried out by analyzing the caffeine metabolites using High Performance Liquid Chromatography (HPLC) analysis. We found that 1.4%, 16.3% and 82.3% of the Emirati subjects were slow, intermediate and rapid CYP1A2 metabolizers, respectively. In addition, we found that 1.4% of the subjects were homozygote for derived alleles while 16.1% were heterozygote and 82.5% were homozygote for the ancestral allele. The genotype frequency of the ancestral allele, CYP1A2*1A/*1A, is the highest in this population, followed by CYP1A2 *1A/*1C and CYP1A2 *1A/*1K genotypes, with frequencies of 0.825, 0.102 and 0.058, respectively. The degree of phenotype/genotype concordance was equal to 81.6%. The CYP1A2*1C/*1C and CYP1A2*3/*3 genotypes showed significantly the lowest enzyme phenotypic activity. The frequency of slow activity CYP1A2 enzyme alleles is very low among Emiratis which correlates with the presence of low frequencies of derived alleles in CYP1A2 gene.
Collapse
Affiliation(s)
- Mohammad M. Al-Ahmad
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Subramanian Dhanasekaran
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anne John
- Department of Pathology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Yousef M. Abdulrazzaq
- Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bassam R. Ali
- Department of Pathology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Salim M. A. Bastaki
- Department of Pharmacology, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
- * E-mail:
| |
Collapse
|
19
|
He X, He N, Ren L, Ouyang Y, Zhang N, Ma Y, Yuan D, Kang L, Jin T. Genetic polymorphisms analysis of CYP2D6 in the Uygur population. BMC Genomics 2016; 17:409. [PMID: 27228982 PMCID: PMC4882831 DOI: 10.1186/s12864-016-2719-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate genetic polymorphisms of CYP2D6 among healthy Uygur individuals. Genetic polymorphisms of CYP2D6 could greatly affect CYP2D6 activity and lead to differences among individuals in drug efficacy or side effects. To investigate genetic polymorphisms of CYP2D6 in the Uygur population, we directly sequenced the whole gene in 96 unrelated, healthy Uygur volunteers from the Xinjiang Uygur Autonomous Region and screened for genetic variants in the promoter, intron, exons, and 3'UTR. RESULTS We detected 62 genetic polymorphisms of CYP2D6, 16 of which were novel SNP with three novel non-synonymous mutations detected for the first time. The allelic frequencies of CYP2D6*1, *10, *39, and *48 were 0.542, 0.156, 0.068, 0.229, and 0.073, respectively. The frequency of CYP2D6*1/*10 which decreased CYP2D6 enzyme activity was 31.3 %. CONCLUSIONS Our results provided basic information about CYP2D6 polymorphisms, suggested that the enzymatic activities of CYP2D6 might be different within the Uygur ethnic group, and provide a basis for safer drug administration and better therapeutic treatment of Uygur individuals.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China.,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China
| | - Na He
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China.,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China
| | - Lisong Ren
- National Engineering Research Center for Miniaturized Detection Systems, Xi'an, Shaanxi, 710069, China
| | - Yongri Ouyang
- National Engineering Research Center for Miniaturized Detection Systems, Xi'an, Shaanxi, 710069, China
| | - Ning Zhang
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China.,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China
| | - Yini Ma
- National Engineering Research Center for Miniaturized Detection Systems, Xi'an, Shaanxi, 710069, China
| | - Dongya Yuan
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China.,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China
| | - Longli Kang
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China.,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China
| | - Tianbo Jin
- Key Laboratory for Basic life science Research of Tibet autonomous region School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China. .,Key laboratory for molecular genetic mechanisms and intervention research on high altitude disease of Tibet autonomous region, School of Medicine, Xizang Mingzu University, Xianyang, Shaanxi, 712082, China. .,National Engineering Research Center for Miniaturized Detection Systems, Xi'an, Shaanxi, 710069, China. .,School of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
20
|
Kuzmanovska M, Dimishkovska M, Maleva Kostovska I, Noveski P, Sukarova Stefanovska E, Plaseska-Karanfilska D. CYP2D6 allele distribution in Macedonians, Albanians and Romanies in the Republic of Macedonia. Balkan J Med Genet 2015; 18:49-58. [PMID: 27785397 PMCID: PMC5026269 DOI: 10.1515/bjmg-2015-0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is an enzyme of great importance for the metabolism of clinically used drugs. More than 100 variants of the CYP2D6 gene have been identified so far. The aim of this study was to investigate the allele distribution of CYP2D6 gene variants in 100 individuals of each of the Macedonian, Albanian and Romany population, by genotyping using long range polymerase chain reaction (PCR) and a multiplex single base extension method. The most frequent variants and almost equally distributed in the three groups were the fully functional alleles *1 and *2. The most common non functional allele in all groups was *4 that was found in 22.5% of the Albanians. The most common allele with decreased activity was *41 which was found in 23.0% of the Romany ethnic group, in 11.0% of the Macedonians and in 10.5% of the Albanians. Seven percent of the Albanians, 6.0% of the Romani and 4.0% of the Macedonians were poor metabolizers, while 5.0% of the Macedonians, 1.0% of Albanians and 1.0% of the Romanies were ultrarapid metabolizers. We concluded that the CYP2D6 gene locus is highly heterogeneous in these groups and that the prevalence of the CYP2D6 allele variants and genotypes in the Republic of Macedonia is in accordance with that of other European populations.
Collapse
|
21
|
Mitropoulos K, Al Jaibeji H, Forero DA, Laissue P, Wonkam A, Lopez-Correa C, Mohamed Z, Chantratita W, Lee MTM, Llerena A, Brand A, Ali BR, Patrinos GP. Success stories in genomic medicine from resource-limited countries. Hum Genomics 2015; 9:11. [PMID: 26081768 PMCID: PMC4485996 DOI: 10.1186/s40246-015-0033-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/09/2015] [Indexed: 02/08/2023] Open
Abstract
In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments.
Collapse
Affiliation(s)
| | - Hayat Al Jaibeji
- University of Maastricht, Maastricht, The Netherlands. .,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| | - Paul Laissue
- Unidad de Genética, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | | | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Wasun Chantratita
- Department of Pathology, Medical Genomic Center, Ramathibodi Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand.
| | - Ming Ta Michael Lee
- Laboratory for International Alliance on Genomic Research, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Adrian Llerena
- CICAB Clinical Research Center, Extremadura University Hospital and Medical School, Badajoz, Spain.
| | - Angela Brand
- University of Maastricht, Maastricht, The Netherlands.
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece.
| |
Collapse
|
22
|
Weber A, Szalai R, Sipeky C, Magyari L, Melegh M, Jaromi L, Matyas P, Duga B, Kovesdi E, Hadzsiev K, Melegh B. Increased prevalence of functional minor allele variants of drug metabolizing CYP2B6 and CYP2D6 genes in Roma population samples. Pharmacol Rep 2015; 67:460-4. [DOI: 10.1016/j.pharep.2014.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023]
|
23
|
Distribution of the most Common Genetic Variants Associated with a Variable Drug Response in the Population of the Republic of Macedonia. Balkan J Med Genet 2015; 17:5-14. [PMID: 25937793 PMCID: PMC4413437 DOI: 10.2478/bjmg-2014-0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic variation in the regulation, expression and activity of genes coding for Phase I, Phase II drug metabolizing enzymes (DMEs) and drug targets, can be defining factors for the variability in both the effectiveness and occurrence of drug therapy side effects. Information regarding the geographic structure and multi-ethnic distribution of clinically relevant genetic variations is becoming increasingly useful for improving drug therapy and explaining inter-individual and inter-ethnic differences in drug response. This study summarizes our current knowledge about the frequency distribution of the most common allelic variants in three broad gene categories: the Phase I oxidation-cytochrome P450 (CYP450) family (CYP2C9, CYP2C19, CYP3A5, CYP2D6); the Phase II conjugation (GSTT1, SULT1A1; UGT1A1) and drug target (TYMS-TSER, MTHFR and VKORC1) in the population of the Republic of Macedonia and compares the information obtained with data published for other indigenous European populations. Our findings define the population of the Republic of Macedonia as an ethnic group with a highly polymorphic genetic profile. These results add to the evidence regarding the distribution of clinically important variant alleles in DME and drug target genes in populations of European ancestry.
Collapse
|
24
|
Mustafina OE, Tuktarova IA, Karimov DD, Somova RS, Nasibullin TR. CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E. Interethnic variability ofCYP2D6alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol 2014; 10:1569-83. [DOI: 10.1517/17425255.2014.964204] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|