1
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
2
|
Kikuchi K, Arata M. The interplay between Wnt signaling pathways and microtubule dynamics. In Vitro Cell Dev Biol Anim 2024; 60:502-512. [PMID: 38349554 DOI: 10.1007/s11626-024-00860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Wnt signaling pathways represent an evolutionarily highly conserved, intricate network of molecular interactions that regulates various aspects of cellular behavior, including embryonic development and tissue homeostasis. Wnt signaling pathways share the β-catenin-dependent (canonical) and the multiple β-catenin-independent (non-canonical) pathways. These pathways collectively orchestrate a wide range of cellular processes through distinct mechanisms of action. Both the β-catenin-dependent and β-catenin-independent pathways are closely intertwined with microtubule dynamics, underscoring the complex crosstalk between Wnt signaling and the cellular cytoskeleton. This interplay involves several mechanisms, including how the components of Wnt signaling can influence the stability, organization, and distribution of microtubules. The modulation of microtubule dynamics by Wnt signaling plays a crucial role in coordinating cellular behaviors and responses to external signals. In this comprehensive review, we discussed the current understanding of how Wnt signaling and microtubule dynamics intersect in various aspects of cellular behavior. This study provides insights into our understanding of these crucial cellular processes.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
3
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Mendieta-Serrano MA, Dhar S, Ng BH, Narayanan R, Lee JJY, Ong HT, Toh PJY, Röllin A, Roy S, Saunders TE. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev Cell 2022; 57:2095-2110.e5. [PMID: 36027918 DOI: 10.1016/j.devcel.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Skeletal myogenesis is dynamic, and it involves cell-shape changes together with cell fusion and rearrangements. However, the final muscle arrangement is highly organized with striated fibers. By combining live imaging with quantitative analyses, we dissected fast-twitch myocyte fusion within the zebrafish myotome in toto. We found a strong mediolateral bias in fusion timing; however, at a cellular scale, there was heterogeneity in cell shape and the relationship between initial position of fast myocytes and resulting fusion partners. We show that the expression of the fusogen myomaker is permissive, but not instructive, in determining the spatiotemporal fusion pattern. Rather, we observed a close coordination between slow muscle rearrangements and fast myocyte fusion. In mutants that lack slow fibers, the spatiotemporal fusion pattern is substantially noisier. We propose a model in which slow muscles guide fast myocytes by funneling them close together, enhancing fusion probability. Thus, despite fusion being highly stochastic, a robust myotome structure emerges at the tissue scale.
Collapse
Affiliation(s)
| | - Sunandan Dhar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rachna Narayanan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jorge J Y Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Adrian Röllin
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Paediatrics, National University of Singapore, Singapore 119228, Singapore.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
5
|
Vergarajauregui S, Becker R, Steffen U, Sharkova M, Esser T, Petzold J, Billing F, Kapiloff MS, Schett G, Thievessen I, Engel FB. AKAP6 orchestrates the nuclear envelope microtubule-organizing center by linking golgi and nucleus via AKAP9. eLife 2020; 9:61669. [PMID: 33295871 PMCID: PMC7725499 DOI: 10.7554/elife.61669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.
Collapse
Affiliation(s)
- Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Sharkova
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jana Petzold
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Billing
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, United States
| | - George Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| |
Collapse
|
6
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
7
|
Lin YT, Deel MD, Linardic CM. RASSF4 is required for skeletal muscle differentiation. Cell Biol Int 2019; 44:381-390. [PMID: 31508857 DOI: 10.1002/cbin.11238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
RASSF4, a member of the classical RASSF family of scaffold proteins, is associated with alveolar rhabdomyosarcoma, an aggressive pediatric cancer of muscle histogenesis. However, the role of RASSF4 in normal myogenesis is unknown. We demonstrate here that RASSF4 is necessary for early in vitro myogenesis. Using primary human myoblasts, we show that RASSF4 expression is dramatically increased during in vitro myogenic differentiation, and conversely that RASSF4-deficient myoblasts cannot differentiate, potentially because of a lack of upregulation of myogenin. In microscopy studies, we show that RASSF4 protein co-localizes with proteins of the myogenic microtubule-organizing center (MTOC) both before and after myogenic differentiation. RASSF4-deficient cells subject to differentiation conditions demonstrate a lack of shape change, suggesting that RASSF4 plays a role in promoting microtubule reorganization and myoblast elongation. In biochemical studies of myotubes, RASSF4 associates with MST1, suggesting that RASSF4 signals to MST1 in the myogenic differentiation process. Expression of MST1 in myoblasts partially reversed the effect of RASSF4 knockdown on differentiation, suggesting that RASSF4 and MST1 coordinately support myogenic differentiation. These data show that RASSF4 is critical for the early steps of myogenic differentiation.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Pediatrics, Division of Hematology-Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael D Deel
- Department of Pediatrics, Division of Hematology-Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Corinne M Linardic
- Department of Pediatrics, Division of Hematology-Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
8
|
Oddoux S, Randazzo D, Kenea A, Alonso B, Zaal KJM, Ralston E. Misplaced Golgi Elements Produce Randomly Oriented Microtubules and Aberrant Cortical Arrays of Microtubules in Dystrophic Skeletal Muscle Fibers. Front Cell Dev Biol 2019; 7:176. [PMID: 31620435 PMCID: PMC6759837 DOI: 10.3389/fcell.2019.00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Differentiated mammalian cells and tissues, such as skeletal muscle fibers, acquire an organization of Golgi complex and microtubules profoundly different from that in proliferating cells and still poorly understood. In adult rodent skeletal muscle, the multinucleated muscle fibers have hundreds of Golgi elements (GE), small stacks of cisternae that serve as microtubule-organizing centers. We are interested in the role of the GE in organizing a peculiar grid of microtubules located in the fiber cortex, against the sarcolemma. Modifications of this grid in the mdx mouse model of Duchenne muscular dystrophy have led to identifying dystrophin, the protein missing in both human disease and mouse model, as a microtubule guide. Compared to wild-type (WT), mdx microtubules are disordered and more dense and they have been linked to the dystrophic pathology. GE themselves are disordered in mdx. Here, to identify the causes of GE and microtubule alterations in the mdx muscle, we follow GFP-tagged microtubule markers in live mdx fibers and investigate the recovery of GE and microtubules after treatment with nocodazole. We find that mdx microtubules grow 10% faster but in 30% shorter bouts and that they begin to form a tangled network, rather than an orthogonal grid, right after nucleation from GE. Strikingly, a large fraction of microtubules in mdx muscle fibers seem to dissociate from GE after nucleation. Moreover, we report that mdx GE are mispositioned and increased in number and size. These results were replicated in WT fibers overexpressing the beta-tubulin tubb6, which is elevated in Duchenne muscular dystrophy, in mdx and in regenerating muscle. Finally, we examine the association of GE with ER exit sites and ER-to-Golgi intermediate compartment, which starts during muscle differentiation, and find it persisting in mdx and tubb6 overexpressing fibers. We conclude that GE are full, small, Golgi complexes anchored, and positioned through ER Exit Sites. We propose a model in which GE mispositioning, together with the absence of microtubule guidance due to the lack of dystrophin, determines the differences in GE and microtubule organization between WT and mdx muscle fibers.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aster Kenea
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno Alonso
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kristien J M Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Randazzo D, Khalique U, Belanto JJ, Kenea A, Talsness DM, Olthoff JT, Tran MD, Zaal KJ, Pak K, Pinal-Fernandez I, Mammen AL, Sackett D, Ervasti JM, Ralston E. Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle. Hum Mol Genet 2019; 28:1117-1135. [PMID: 30535187 DOI: 10.1093/hmg/ddy418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022] Open
Abstract
In healthy adult skeletal muscle fibers microtubules form a three-dimensional grid-like network. In the mdx mouse, a model of Duchenne muscular dystrophy (DMD), microtubules are mostly disordered, without periodicity. These microtubule defects have been linked to the mdx mouse pathology. We now report that increased expression of the beta 6 class V β-tubulin (tubb6) contributes to the microtubule changes of mdx muscles. Wild-type muscle fibers overexpressing green fluorescent protein (GFP)-tubb6 (but not GFP-tubb5) have disorganized microtubules whereas mdx muscle fibers depleted of tubb6 (but not of tubb5) normalize their microtubules, suggesting that increasing tubb6 is toxic. However, tubb6 increases spontaneously during differentiation of mouse and human muscle cultures. Furthermore, endogenous tubb6 is not uniformly expressed in mdx muscles but is selectively increased in fiber clusters, which we identify as regenerating. Similarly, mdx-based rescued transgenic mice that retain a higher than expected tubb6 level show focal expression of tubb6 in subsets of fibers. Tubb6 is also upregulated in cardiotoxin-induced mouse muscle regeneration, in human myositis and DMD biopsies, and the tubb6 level correlates with that of embryonic myosin heavy chain, a regeneration marker. In conclusion, modulation of a β-tubulin isotype plays a role in muscle differentiation and regeneration. Increased tubb6 expression and microtubule reorganization are not pathological per se but reflect a return to an earlier developmental stage. However, chronic elevation of tubb6, as occurs in the mdx mouse, may contribute to the repeated cycles of regeneration and to the pathology of the disease.
Collapse
Affiliation(s)
- Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Umara Khalique
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Aster Kenea
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Michelle D Tran
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kristien J Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Katherine Pak
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew L Mammen
- Laboratory of Muscle Stem Cells and Gene Regulation, Muscle Disease Unit, NIAMS, NIH, Bethesda, MD, USA.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
11
|
Giacomello E, Ronchi P, Pepperkok R. GM130 and p115 play a key role in the organisation of the early secretory pathway during skeletal muscle differentiation. J Cell Sci 2019; 132:jcs.222083. [DOI: 10.1242/jcs.222083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/20/2018] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT
Skeletal muscle (SKM) differentiation is a highly regulated process leading to the formation of specialised cells with reorganised compartments and organelles, such as those of the early secretory pathway. During SKM differentiation the Golgi complex (GC) redistributes close to the nuclear envelope and in small distinct peripheral structures distributed throughout the myotube. Concurrently, GC elements closely associate with endoplasmic reticulum-exit sites (ERES). The mechanisms underlying this reorganisation and its relevance for SKM differentiation are poorly understood. Here, we show, by time-lapse imaging studies, that the changes in GC organisation involve GC fragmentation and redistribution of ERES with the formation of tightly associated GC–ERES units. We show that knockdown of GM130 (also known as GOLGA2) or p115 (also known as USO1), two regulators of the early secretory pathway, impairs GC and ERES reorganisation. This in turn results in inhibition of myotube fusion and M-cadherin (also known as CDH15) transport to the sarcolemma. Taken together, our data suggest that the correct reorganisation of the early secretory pathway components plays an important role in SKM differentiation and, thus, associated pathologies.
Collapse
Affiliation(s)
- Emiliana Giacomello
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, (EMBL), Meyerhofstraße 1, Heidelberg D-69117, Germany
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste 34149, Italy
| | - Paolo Ronchi
- Electron Microscopy Core Facility, Europen Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, (EMBL), Meyerhofstraße 1, Heidelberg D-69117, Germany
| |
Collapse
|
12
|
Li W, Yu X, Xie F, Zhang B, Shao S, Geng C, Aziz AUR, Liao X, Liu B. A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. iScience 2018; 7:180-190. [PMID: 30267679 PMCID: PMC6153118 DOI: 10.1016/j.isci.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023] Open
Abstract
Cell membrane is the first medium from where a cell senses and responds to external stress stimuli. Exploring the tension changes in cell membrane will help us to understand intracellular force transmission. Here, a biosensor (named MSS) based on fluorescence resonance energy transfer is developed to visualize cell membrane tension. Validity of the biosensor is first verified for the detection of cell membrane tension. Results show a shear stress-induced heterogeneous distribution of membrane tension with the biosensor, which is strengthened by the disruption of microfilaments or enhancement of membrane fluidity, but weakened by the reduction of membrane fluidity or disruption of microtubules. These findings suggest that the MSS biosensor is a beneficial tool to visualize the changes and distribution of cell membrane tension. Besides, cell membrane tension does not display obvious polar distribution, indicating that cellular polarity changes do not first occur on the cell membrane during mechanical transmission. A FRET-based biosensor (named MSS) is developed to study cell membrane tension MSS is a beneficial tool to visualize the distribution of membrane tension Membrane tension is inhomogeneous in response to shear stress Membrane tension does not display polar distribution during mechanotransduction
Collapse
Affiliation(s)
- Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xinlei Yu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Chunyang Geng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing 400030, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
13
|
Sanders AAWM, Chang K, Zhu X, Thoppil RJ, Holmes WR, Kaverina I. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi. Mol Biol Cell 2017; 28:3181-3192. [PMID: 28931596 PMCID: PMC5687021 DOI: 10.1091/mbc.e17-06-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023] Open
Abstract
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Kevin Chang
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Xiaodong Zhu
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Roslin J Thoppil
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - William R Holmes
- Physics and Astronomy, Vanderbilt University, Nashville, TN 37240
| | - Irina Kaverina
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
14
|
Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells. Curr Biol 2017; 27:2999-3009.e9. [PMID: 28966089 PMCID: PMC5640514 DOI: 10.1016/j.cub.2017.08.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022]
Abstract
The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1, 2, 3, 4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5, 6, 7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8, 9, 10, 11, 12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE. BioID of Nesprin-1α identifies centrosomal proteins at myotube nuclear envelope Nesprin-1α-containing LINC complexes recruit Akap450 to myotube nuclear envelope Akap450 is required for microtubule nucleation at the nuclear envelope Microtubule nucleation at the nuclear envelope is involved in nuclear positioning
Collapse
|
15
|
Collins MA, Mandigo TR, Camuglia JM, Vazquez GA, Anderson AJ, Hudson CH, Hanron JL, Folker ES. Emery-Dreifuss muscular dystrophy-linked genes and centronuclear myopathy-linked genes regulate myonuclear movement by distinct mechanisms. Mol Biol Cell 2017. [PMID: 28637766 PMCID: PMC5555658 DOI: 10.1091/mbc.e16-10-0721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Drosophila is used as a model system to show that the common phenotype of mispositioned nuclei occurs via distinct mechanisms in Emery–Dreifuss muscular dystrophy and centronuclear myopathy. Muscle cells are a syncytium in which the many nuclei are positioned to maximize the distance between adjacent nuclei. Although mispositioned nuclei are correlated with many muscle disorders, it is not known whether this common phenotype is the result of a common mechanism. To answer this question, we disrupted the expression of genes linked to Emery–Dreifuss muscular dystrophy (EDMD) and centronuclear myopathy (CNM) in Drosophila and evaluated the position of the nuclei. We found that the genes linked to EDMD and CNM were each necessary to properly position nuclei. However, the specific phenotypes were different. EDMD-linked genes were necessary for the initial separation of nuclei into distinct clusters, suggesting that these factors relieve interactions between nuclei. CNM-linked genes were necessary to maintain the nuclei within clusters as they moved toward the muscle ends, suggesting that these factors were necessary to maintain interactions between nuclei. Together these data suggest that nuclear position is disrupted by distinct mechanisms in EDMD and CNM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John L Hanron
- Biology Department, Boston College, Chestnut Hill, MA 02467
| | - Eric S Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
16
|
Wang S, Volk T. Composite biopolymer scaffolds shape muscle nucleus: Insights and perspectives from Drosophila. BIOARCHITECTURE 2016; 5:35-43. [PMID: 26605802 DOI: 10.1080/19490992.2015.1106061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Contractile muscle fibers produce enormous intrinsic forces during contraction/relaxation waves. These forces are directly applied to their cytoplasmic organelles including mitochondria, sarcoplasmic reticulum, and multiple nuclei. Data from our analysis of Drosophila larval somatic muscle fibers suggest that an intricate network of organized microtubules (MT) intermingled with Spectrin-Repeat-Containing Proteins (SRCPs) are major structural elements that protect muscle organelles and maintain their structure and position during muscle contraction. Whereas the perinuclear MT network provides structural rigidity to the myonucleus, the SRCPs Nesprin and Spectraplakin form semiflexible filamentous biopolymer networks, providing nuclei with the elasticity required to resist the contractile cytoplasmic forces produced by the muscle. Spectrin repeats are domains found in numerous structural proteins, which are able to unfold under tension and are subject to mechanical stresses in the cell. This unique composite scaffold combines rigidity and resilience in order to neutralize the oscillating cellular forces occurring during muscle contraction/relaxation waves and thereby protect myonuclei. We suggest that the elastic properties of SRCPs are critical for nuclear protection and proper function in muscle fibers.
Collapse
Affiliation(s)
- Shuoshuo Wang
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| | - Talila Volk
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| |
Collapse
|
17
|
Sanders AAWM, Kaverina I. Nucleation and Dynamics of Golgi-derived Microtubules. Front Neurosci 2015; 9:431. [PMID: 26617483 PMCID: PMC4639703 DOI: 10.3389/fnins.2015.00431] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Integrity of the Golgi apparatus requires the microtubule (MT) network. A subset of MTs originates at the Golgi itself, which in this case functions as a MT-organizing center (MTOC). Golgi-derived MTs serve important roles in post-Golgi trafficking, maintenance of Golgi integrity, cell polarity and motility, as well as cell type-specific functions, including neurite outgrowth/branching. Here, we discuss possible models describing the formation and dynamics of Golgi-derived MTs. How Golgi-derived MTs are formed is not fully understood. A widely discussed model implicates that the critical step of the process is recruitment of molecular factors, which drive MT nucleation (γ-tubulin ring complex, or γ-TuRC), to the Golgi membrane via specific scaffolding interactions. Based on recent findings, we propose to introduce an additional level of regulation, whereby MT-binding proteins and/or local tubulin dimer concentration at the Golgi helps to overcome kinetic barriers at the initial nucleation step. According to our model, emerging MTs are subsequently stabilized by Golgi-associated MT-stabilizing proteins. We discuss molecular factors potentially involved in all three steps of MT formation. To preserve proper cell functioning, a balance must be maintained between MT subsets at the centrosome and the Golgi. Recent work has shown that certain centrosomal factors are important in maintaining this balance, suggesting a close connection between regulation of centrosomal and Golgi-derived MTs. Finally, we will discuss potential functions of Golgi-derived MTs based on their nucleation site location within a Golgi stack.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
18
|
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 2015; 4. [PMID: 26247711 PMCID: PMC4541494 DOI: 10.7554/elife.05563] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/30/2015] [Indexed: 12/23/2022] Open
Abstract
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI:http://dx.doi.org/10.7554/eLife.05563.001 Muscle cells in the heart contract in regular rhythms to pump blood around the body. In humans, rats and other mammals, the vast majority of heart muscle cells lose the ability to divide shortly after birth. Therefore, the heart is unable to replace cells that are lost over the life of the individual, for example, during a heart attack. If too many of these cells are lost, the heart will be unable to pump effectively, which can lead to heart failure. Currently, the only treatment option in humans with heart failure is to perform a heart transplant. Some animals, such as newts and zebrafish, are able to replace lost heart muscle cells throughout their lifetimes. Thus, these species are able to fully regenerate their hearts even after 20% has been removed. This suggests that it might be possible to manipulate human heart muscle cells to make them divide and regenerate the heart. Recent research has suggested that structures called centrosomes, known to be required to separate copies of the DNA during cell division, are used as a hub to integrate the initial signals that determine whether a cell should divide or not. Here, Zebrowski et al. studied the centrosomes of heart muscle cells in rats, newts and zebrafish. The experiments show that the centrosomes in rat heart muscle cells are dissembled shortly after birth. Centrosomes are made of several proteins and, in the rat cells, these proteins moved to the membrane that surrounded the nucleus. On the other hand, the centrosomes in the heart muscle cells of the adult newts and zebrafish remained intact. Further experiments found that that breaking apart the centrosomes of heart muscle cells taken from newborn rats stops these cells from dividing. Zebrowski et al.'s findings suggest that the loss of centrosomes after birth is a possible reason why the hearts of adult humans and other mammals are unable to regenerate after injury. In the future, these findings may aid the development of methods to regenerate human heart muscle and new treatments that may limit division of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.05563.002
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chi-Chung Wu
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Tanja Piatkowski
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Hirth
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Filomena Ricciardi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathalie Falk
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Giessl
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Just
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Abstract
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.
Collapse
Affiliation(s)
- Rosa M Rios
- Cell Signalling Department, CABIMER-CSIC, Seville 41092, Spain
| |
Collapse
|
20
|
Park JG, Palmer AE. Verifying the function and localization of genetically encoded Ca2+ sensors and converting FRET ratios to Ca2+ concentrations. Cold Spring Harb Protoc 2015; 2015:pdb.prot076547. [PMID: 25561614 DOI: 10.1101/pdb.prot076547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetically encoded, ratiometric, fluorescent Ca(2+) biosensors can be used in living cells to quantitatively measure free Ca(2+) concentrations in the cytosol or in organelles. This protocol describes how to perform a calibration of a Ca(2+) sensor expressed in cultured mammalian cells as images are acquired using a widefield fluorescence microscope. This protocol also explains how to calculate Förster resonance energy transfer (FRET) ratios from acquired images and how to convert FRET ratios to Ca(2+) concentrations.
Collapse
Affiliation(s)
- J Genevieve Park
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
21
|
Yip1B isoform is localized at ER-Golgi intermediate and cis-Golgi compartments and is not required for maintenance of the Golgi structure in skeletal muscle. Histochem Cell Biol 2014; 143:235-43. [PMID: 25208654 DOI: 10.1007/s00418-014-1277-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
The mechanism of endoplasmic reticulum (ER)-Golgi complex (GC) traffic is conserved from yeast to higher animals, but the architectures and the dynamics of vesicles' traffic between ER and GC vary across cell types and species. Skeletal muscle is a unique tissue in which ER and GC undergo a structural reorganization during differentiation that completely remodels the secretory pathway. In mature skeletal muscle, the ER is turned into sarcoplasmic reticulum, which is composed of junctional and longitudinal regions specialized, respectively, in calcium release and uptake during contraction. During skeletal muscle differentiation, GC acquires a particular fragmented organization as it appears as spots both at the nuclear poles and along the fibers. The ubiquitary-expressed Yip1A isoform has been proposed to be involved in anterograde trafficking from the ER exit sites to the cis-side of the GC and in ER and GC architecture organization. We investigated the role of Yip1 in skeletal muscle. Here we report that, following skeletal muscle development, the expression of the Yip1A decreases and is replaced by the muscle-specific Yip1B isoform. Confocal microscope analysis revealed that in adult skeletal muscle the Yip1B isoform is localized in the ER-Golgi intermediate and cis-Golgi compartments. Finally, skeletal muscle knockdown experiments in vitro and in vivo suggested that Yip1B is not involved in GC structure maintenance.
Collapse
|
22
|
Masedunskas A, Appaduray M, Gunning PW, Hardeman EC. Lighting up microtubule cytoskeleton dynamics in skeletal muscle. INTRAVITAL 2014; 3:e29293. [PMID: 28243508 PMCID: PMC5312709 DOI: 10.4161/intv.29293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/02/2022]
Abstract
In the past few decades, live cell microscopy techniques in combination with fluorescent tagging have provided a true explosion in our knowledge of the inner functioning of the cell. Dynamic phenomena can be observed inside living cells and the behavior of individual molecules participating in those events can be documented. However, our preference for simple or easy model systems such as cell culture, has come at a cost of chasing artifacts and missing out on understanding real biology as it happens in complex multicellular organisms. We are now entering a new era where developing meaningful, but also tractable model systems to study biological phenomenon dynamically in vivo in a mammal is not only possible; it will become the gold standard for scientific quality and translational potential.1,2 A study by Oddoux et al. describing the dynamics of the microtubule (MT) cytoskeleton in skeletal muscle is one example that demonstrates the power of developing in vivo/ex vivo models.3 MTs have long attracted attention as targets for cancer therapeutics 4 and more recently as mediators of Duchene muscular dystrophy.5 The muscle fiber MT cytoskeleton forms an intricate rectilinear lattice beneath the sarcolemma and is essential for the structural integrity of the muscle. Cultured cells do not develop such a specialized organization of the MT cytoskeleton and our understanding of it has come from static snapshots of muscle sections.6 In this context, the methodology and the findings reported by Oddoux et al. are a significant step forward.
Collapse
Affiliation(s)
- Andrius Masedunskas
- Oncology Research Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Mark Appaduray
- Neuromuscular and Regenerative Medicine Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Peter W Gunning
- Oncology Research Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit; School of Medical Sciences; UNSW Australia; Sydney, NSW Australia
| |
Collapse
|
23
|
Liu W, Ralston E. A new directionality tool for assessing microtubule pattern alterations. Cytoskeleton (Hoboken) 2014; 71:230-40. [PMID: 24497496 DOI: 10.1002/cm.21166] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/04/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022]
Abstract
The cytoskeleton (microtubules, actin and intermediate filaments) has a cell type-specific spatial organization that is essential and reflects cell health. We are interested in understanding how changes in the organization of microtubules contribute to muscle diseases such as Duchenne muscular dystrophy (DMD). The grid-like immunofluorescence microtubule pattern of fast-twitch muscle fibers lends itself well to visual assessment. The more complicated pattern of other fibers does not. Furthermore, visual assessment is not quantitative. Therefore we have developed a robust software program for detecting and quantitating microtubule directionality. Such a tool was necessary because existing methods focus mainly on local image features and are not well suited for microtubules. Our tool, texture detection technique (TeDT), is based on the Haralick texture method and takes into account both local and global features with more weight on the latter. The results are expressed in a graphic form responsive to subtle variations in microtubule distribution, while a numerical score allows quantitation of directionality. Furthermore, the results are not affected by imaging conditions or post-imaging procedures. TeDT successfully assesses test images and microtubules in fast-twitch fibers of wild-type and mdx mice (a model for DMD); TeDT also identifies and quantitates microtubule directionality in slow-twitch fibers, in the fibers of young animals, and in other mouse models which could not be assessed visually. TeDT might also contribute to directionality assessments of other cytoskeletal components.
Collapse
Affiliation(s)
- Wenhua Liu
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
24
|
Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. ACTA ACUST UNITED AC 2013; 203:205-13. [PMID: 24145165 PMCID: PMC3812964 DOI: 10.1083/jcb.201304063] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Live imaging reveals that muscle microtubules are highly dynamic and build a durable network nucleated by static Golgi elements. Skeletal muscle microtubules (MTs) form a nonclassic grid-like network, which has so far been documented in static images only. We have now observed and analyzed dynamics of GFP constructs of MT and Golgi markers in single live fibers and in the whole mouse muscle in vivo. Using confocal, intravital, and superresolution microscopy, we find that muscle MTs are dynamic, growing at the typical speed of ∼9 µm/min, and forming small bundles that build a durable network. We also show that static Golgi elements, associated with the MT-organizing center proteins γ-tubulin and pericentrin, are major sites of muscle MT nucleation, in addition to the previously identified sites (i.e., nuclear membranes). These data give us a framework for understanding how muscle MTs organize and how they contribute to the pathology of muscle diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rønning SB, Pedersen ME, Andersen PV, Hollung K. The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells. Differentiation 2013; 86:13-22. [PMID: 23933398 DOI: 10.1016/j.diff.2013.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022]
Abstract
Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real-time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.
Collapse
|
26
|
TrkAIII promotes microtubule nucleation and assembly at the centrosome in SH-SY5Y neuroblastoma cells, contributing to an undifferentiated anaplastic phenotype. BIOMED RESEARCH INTERNATIONAL 2013; 2013:740187. [PMID: 23841091 PMCID: PMC3690223 DOI: 10.1155/2013/740187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/18/2013] [Indexed: 01/15/2023]
Abstract
The alternative TrkAIII splice variant is expressed by advanced stage human neuroblastomas (NBs) and exhibits oncogenic activity in NB models. In the present study, employing stable transfected cell lines and assays of indirect immunofluorescence, immunoprecipitation, Western blotting, microtubule regrowth, tubulin kinase, and tubulin polymerisation, we report that TrkAIII binds α -tubulin and promotes MT nucleation and assembly at the centrosome. This effect depends upon spontaneous TrkAIII activity, TrkAIII localisation to the centrosome and pericentrosomal area, and the capacity of TrkAIII to bind, phosphorylate, and polymerise tubulin. We propose that this novel role for TrkAIII contributes to MT involvement in the promotion and maintenance of an undifferentiated anaplastic NB cell morphology by restricting and augmenting MT nucleation and assembly at the centrosomal MTOC.
Collapse
|
27
|
Nevalainen M, Kaakinen M, Metsikkö K. Distribution of mRNA transcripts and translation activity in skeletal myofibers. Cell Tissue Res 2013; 353:539-48. [PMID: 23736382 DOI: 10.1007/s00441-013-1659-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 01/26/2023]
Abstract
We examine the distribution of gene products in skeletal myofibers, which are highly differentiated multinucleated cells exhibiting a specific cellular architecture. In situ hybridization studies of adult rat myofibers with a single nucleus infected with influenza virus suggested that the viral mRNA products were distributed beneath the sarcolemma around the nucleus of origin. In situ hybridization studies with a poly-T oligonucleotide probe to detect endogenous mRNAs indicated their concentration around the nuclei and distribution beneath the sarcolemma in a cross-striated fashion at the A-I junctions (costamers). Labeling with bromouridine resulted in a similar distribution pattern. The ribosomal distribution pattern indicated concentration around the myonuclei but an intracellular component was also seen. Localization of the translating ribosomes by puromycylation revealed prominent spots perinuclearly and in the core regions of the myofibers. These spots flanked Golgi elements. Our results thus suggest that the total mRNA pool is heavily concentrated within the perinuclear and subsarcolemmal regions. However, the ribosomes and the translational activity did not follow this distribution pattern, so the mRNA transcripts were not restricted to a region beneath the sarcolemma. Furthermore, experiments utilizing green fluorescent protein showed the rapid movement of proteins within the endomembrane system, which thus facilitated proteins to reach their site of function irrespective of the site of synthesis.
Collapse
Affiliation(s)
- Mika Nevalainen
- Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, Aapistie 7, FI-90014, Oulu, Finland.
| | | | | |
Collapse
|
28
|
Wilson MH, Holzbaur ELF. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J Cell Sci 2012; 125:4158-69. [PMID: 22623723 DOI: 10.1242/jcs.108688] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic interactions with the cytoskeleton drive the movement and positioning of nuclei in many cell types. During muscle cell development, myoblasts fuse to form syncytial myofibers with nuclei positioned regularly along the length of the cell. Nuclear translocation in developing myotubes requires microtubules, but the mechanisms involved have not been elucidated. We find that as nuclei actively translocate through the cell, they rotate in three dimensions. The nuclear envelope, nucleoli and chromocenters within the nucleus rotate together as a unit. Both translocation and rotation require an intact microtubule cytoskeleton, which forms a dynamic bipolar network around nuclei. The plus- and minus-end-directed microtubule motor proteins, kinesin-1 and dynein, localize to the nuclear envelope in myotubes. Kinesin-1 localization is mediated at least in part by interaction with klarsicht/ANC-1/Syne homology (KASH) proteins. Depletion of kinesin-1 abolishes nuclear rotation and significantly inhibits nuclear translocation, resulting in the abnormal aggregation of nuclei at the midline of the myotube. Dynein depletion also inhibits nuclear dynamics, but to a lesser extent, leading to altered spacing between adjacent nuclei. Thus, oppositely directed motors acting from the surface of the nucleus drive nuclear motility in myotubes. The variable dynamics observed for individual nuclei within a single myotube are likely to result from the stochastic activity of competing motors interacting with a complex bipolar microtubule cytoskeleton that is also continuously remodeled as the nuclei move. The three-dimensional rotation of myotube nuclei may facilitate their motility through the complex and crowded cellular environment of the developing muscle cell, allowing for proper myonuclear positioning.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, D400 Richards Building, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|