1
|
Arya A, Jain A, Kishore N. Thermodynamics of modulation of interaction of α-helix inducer 2, 2, 2-trifluoroethanol with lysozyme in presence of cationic, anionic and non-ionic surfactants. J Biomol Struct Dyn 2024; 42:7289-7303. [PMID: 37493410 DOI: 10.1080/07391102.2023.2239922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
The interactions of anionic sodium dodecyl sulphate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and nonionic triton X-100 (TX-100) surfactants with lysozyme at pH = 2.4 have been studied individually as well as in combination with 2,2,2-trifluoroetanol (TFE). Urea has also been used in combination with surfactants. By using these combinations, efforts have been made to obtain partially folded conformations of the protein in the presence of surfactants and effect of α-helix inducer 2,2,2-trifluoroethanol on these intermediate states. Thermodynamic analysis of all these interactions has been done employing a combination of UV-visible, fluorescence and circular dichroism spectroscopies. The results have been correlated with each other and characterized qualitatively as well as quantitatively. At lower concentration of surfactant, the thermodynamic parameters indicated the destabilizing effect of SDS, stabilizing effect of CTAB and unappreciable destabilizing impact of TX-100 on lysozyme. The enhancement in destabilization effect or reduction in stabilization effect of surfactants on lysozyme in the presence of TFE and urea has also been indicated.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
2
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
3
|
Nakajima K, Ota T, Toda H, Yamaguchi K, Goto Y, Ogi H. Surface Modification of Ultrasonic Cavitation by Surfactants Improves Detection Sensitivity of α-Synuclein Amyloid Seeds. ACS Chem Neurosci 2024; 15:1643-1651. [PMID: 38546732 DOI: 10.1021/acschemneuro.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The rapid amplification and sensitive detection of α-synuclein (αSyn) seeds is an efficient approach for the early diagnosis of Parkinson's disease. Ultrasonication stands out as a promising method for the rapid amplification of αSyn seeds because of its robust fibril fragmentation capability. However, ultrasonication also induces the primary nucleation of αSyn monomers, deteriorating the seed detection sensitivity by generating seed-independent fibrils. In this study, we show that an addition of surfactants to the αSyn monomer solution during αSyn seed detection under ultrasonication remarkably improves the detection sensitivity of the αSyn seeds by a factor of 100-1000. Chemical kinetic analysis reveals that these surfactants reduce the rate of primary nucleation while promoting the fragmentation of the αSyn fibrils under ultrasonication. These effects are attributed to the modification of the ultrasonic cavitation surface by the surfactants. Our study enhances the utility of ultrasonication in clinical assays targeting αSyn seeds as the Parkinson's disease biomarker.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tomoki Ota
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hajime Toda
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zazeri G, Povinelli APR, Pavan NM, Jones AM, Ximenes VF. Solvent-Induced Lag Phase during the Formation of Lysozyme Amyloid Fibrils Triggered by Sodium Dodecyl Sulfate: Biophysical Experimental and In Silico Study of Solvent Effects. Molecules 2023; 28:6891. [PMID: 37836734 PMCID: PMC10574774 DOI: 10.3390/molecules28196891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Amyloid aggregates arise from either the partial or complete loss of the native protein structure or the inability of proteins to attain their native conformation. These aggregates have been linked to several diseases, including Alzheimer's, Parkinson's, and lysozyme amyloidosis. A comprehensive dataset was recently reported, demonstrating the critical role of the protein's surrounding environment in amyloid formation. In this study, we investigated the formation of lysozyme amyloid fibrils induced by sodium dodecyl sulfate (SDS) and the effect of solvents in the medium. Experimental data obtained through fluorescence spectroscopy revealed a notable lag phase in amyloid formation when acetone solution was present. This finding suggested that the presence of acetone in the reaction medium created an unfavorable microenvironment for amyloid fibril formation and impeded the organization of the denatured protein into the fibril form. The in silico data provided insights into the molecular mechanism of the interaction between acetone molecules and the lysozyme protofibril, once acetone presented the best experimental results. It was observed that the lysozyme protofibril became highly unstable in the presence of acetone, leading to the complete loss of its β-sheet conformation and resulting in an open structure. Furthermore, the solvation layer of the protofibril in acetone solution was significantly reduced compared to that in other solvents, resulting in fewer hydrogen bonds. Consequently, the presence of acetone facilitated the exposure of the hydrophobic portion of the protofibril, precluding the amyloid fibril formation. In summary, our study underscores the pivotal role the surrounding environment plays in influencing amyloid formation.
Collapse
Affiliation(s)
- Gabriel Zazeri
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Campo Novo do Parecis 78360-000, Brazil;
| | - Ana Paula Ribeiro Povinelli
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Campo Novo do Parecis 78360-000, Brazil;
| | - Nathália Mariana Pavan
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| | - Alan M. Jones
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil;
| |
Collapse
|
5
|
Khan JM, Malik A, Sharma P, Fatima S. Anionic surfactant causes dual conformational changes in insulin. Int J Biol Macromol 2023; 247:125790. [PMID: 37451378 DOI: 10.1016/j.ijbiomac.2023.125790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Amyloid fibrillation is a process by which proteins aggregate and form insoluble fibrils that are implicated in several neurodegenerative diseases. In n this study, we aimed to investigate the impact of the negatively charged detergent sodium dodecyl sulfate (SDS) on insulin amyloid fibrillation at pH 7.4 and 2.0, as SDS has been linked to the acceleration of amyloid fibrillation in vitro, but the underlying molecular mechanism is not fully understood. Our findings show that insulin forms amyloid-like aggregates in the presence of SDS at concentrations ranging from 0.05 to 1.8 mM at pH 2.0, while no aggregates were observed at SDS concentrations greater than 1.8 mM, and insulin remained soluble. However, at pH 7.4, insulin remained soluble regardless of the concentration of SDS. Interestingly, the aggregated insulin had a cross-β sheet secondary structure, and when incubated with higher SDS concentrations, it gained more alpha-helix. The electrostatics and hydrophobic interaction of SDS and insulin may contribute to amyloid induction. Moreover, the SDS-induced aggregation was not affected by the presence of salts. Furthermore, as the concentration of SDS increased, the preformed insulin amyloid induced by SDS began to disintegrate. Overall, our study sheds light on the mechanism of surfactant-induced amyloid fibrillation in insulin protein.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
AlResaini S, Malik A, Alonazi M, Alhomida A, Khan JM. SDS induces amorphous, amyloid-fibril, and alpha-helical structures in the myoglobin in a concentration-dependent manner. Int J Biol Macromol 2023; 231:123237. [PMID: 36639087 DOI: 10.1016/j.ijbiomac.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Amyloid fibrils have been linked to a number of diseases. Surfactants imitate plasma membrane lipids and induce amyloid fibrils. This study examined the effects of the anionic surfactant sodium dodecyl sulfate (SDS) at pH 4.5 on equine skeletal muscle myoglobin (E-Mb). To analyze the effect of SDS on aggregation and amyloid-fibril formation to E-Mb, we used various spectroscopic techniques (turbidity, light scattering, intrinsic fluorescence, ThT fluorescence, and circular dichroism (CD)), electrophoretic, and microscopic techniques. Turbidity, SDS-PAGE, and light scattering all indicated the formation of E-Mb aggregates at SDS concentrations ranging from 0.2 mM to 1.0 mM. In the presence of 0.4 mM SDS, far-UV CD and TEM data indicate that E-MB forms amorphous aggregates. ThT binding, Far-UV CD, and TEM findings indicate that E-Mb forms amyloid-like structures in the presence of 0.6-1.0 mM SDS. However, no aggregation was seen at SDS concentrations above 1 mM. In the presence of high SDS concentrations (> 1 mM), the E-Mb exhibited native-like α-helical structure. As a result, SDS exhibited three distinct behaviors: amorphous aggregates, amyloid-fibrils, and helix-inducer. These findings also shed light on how amyloid fibrils are formed when anionic surfactants are introduced, which is a significant takeaway.
Collapse
Affiliation(s)
- Sundus AlResaini
- Department of Biochemistry, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ajamaluddin Malik
- Department of Biochemistry, Collage of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mona Alonazi
- Department of Biochemistry, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alhomida
- Department of Biochemistry, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food and Nutrition, Facility of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Khan JM, Malik A, Alresaini SM. Molecular mechanism of insulin aggregation in the presence of a cationic surfactant. Int J Biol Macromol 2023; 230:123370. [PMID: 36693606 DOI: 10.1016/j.ijbiomac.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Protein aggregation and amyloid fibrillation are connected with neurodegenerative disorders. Insulin, a small molecular weight protein related to type II diabetes, has been shown to self-assemble to form protein aggregates. In this work, we investigated the effects of cetyltrimethylammonium bromide (CTAB) of insulin on the in vitro aggregation process at pH 7.4 and 2.0. The aggregation tendency of insulin was measured using a variety of biophysical approaches, including turbidity measurements, light scattering, far UV-CD, ThT dye binding, and transmission electron microscopy. The turbidity results demonstrated that at pH 7.4, a low concentration of CTAB (30-180 μM) causes insulin aggregation but at higer concentration (>180 μM) aggregation was not seen. However, at pH 2.0, both low as well as high concentrations of CTAB were unable to promote insulin aggregation. The ThT dye binding and far-UV CD data suggest that aggregation induced by CTAB is not having an ordered structure. Insulin treated with higher concentrations (>180 μM) of CTAB, the insulin gained a secondary structure. The possible cause of inducing aggregation in insulin is electrostatic and hydrophobic interaction because insulin contains a net negative charge at pH 7.4 and no aggregation at pH 2.0 due to electrostatic repulsion.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Hakeem MJ, Khan JM, Malik A, Husain FM, Alresaini SM, Ahmad A, Alam P. Molecular insight into the modulation of ovalbumin fibrillation by allura red dye at acidic pH. Int J Biol Macromol 2023; 230:123254. [PMID: 36641020 DOI: 10.1016/j.ijbiomac.2023.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The synthetic food additive dye induces amyloid fibrillation has many implications in the laboratory and industries. The effect of Allura red (AR), on the fibrillation of ovalbumin (Ova) at pH 2.0 was investigated. The influence of salt and pH was also seen on AR-induced Ova aggregation. We have used several spectroscopic and microscopy techniques to characterize the changes. The turbidity data suggest that concentrations above 0.05 mM of AR induce aggregation, and the size of aggregates increased in response to AR concentration. The kinetics data showed that the AR induces Ova aggregation quickly without lag time. The aggregates induced by AR have amyloid-like aggregates confirmed by far-UV CD and TEM. NaCl has very marginal effects in AR-induced aggregation. The turbidity results clearly state that Ova is not forming aggregates with pH above 4.0 due to electrostatic repulsion. However, Ova forms bigger aggregates in the presence of 0.5 mM AR at a pH below 4.0. These spectroscopic data suggest that the amyloid fibrillation that occurs in Ova is due to electrostatic and hydrophobic interaction. The amyloid fibrillation induced by AR dye in protein should be taken seriously for food safety purposes.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | | | - Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Solov'eva TF, Bakholdina SI, Khomenko VA, Sidorin EV, Kim NY, Novikova OD, Shnyrov VL, Stenkova AM, Eremeev VI, Bystritskaya EP, Isaeva MP. Expression of membrane beta-barrel protein in E. coli at low temperatures: Structure of Yersinia pseudotuberculosis OmpF porin inclusion bodies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183971. [PMID: 35643329 DOI: 10.1016/j.bbamem.2022.183971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the β-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.
Collapse
Affiliation(s)
- Tamara F Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Svetlana I Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia.
| | - Valentina A Khomenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Evgeniy V Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Natalya Yu Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Olga D Novikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Valery L Shnyrov
- Departamento de Bioquimica y Biologia Molecular, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Anna M Stenkova
- Far Eastern Federal University School of Biomedicine, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia
| | - Vyacheslav I Eremeev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Evgenia P Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia
| |
Collapse
|
10
|
Siposova K, Petrenko VI, Garcarova I, Sedlakova D, Almásy L, Kyzyma OA, Kriechbaum M, Musatov A. The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent, Chobimalt. Front Mol Biosci 2022; 9:955282. [PMID: 36060240 PMCID: PMC9437268 DOI: 10.3389/fmolb.2022.955282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viktor I. Petrenko
- BCMaterials—Basque Center for Materials, Applications and Nanostructures, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ivana Garcarova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - László Almásy
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Olena A. Kyzyma
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
11
|
Hoppenreijs L, Fitzner L, Ruhmlieb T, Heyn T, Schild K, van der Goot AJ, Boom R, Steffen-Heins A, Schwarz K, Keppler J. Engineering amyloid and amyloid-like morphologies of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Salahuddin P, Khan RH, Furkan M, Uversky VN, Islam Z, Fatima MT. Mechanisms of amyloid proteins aggregation and their inhibition by antibodies, small molecule inhibitors, nano-particles and nano-bodies. Int J Biol Macromol 2021; 186:580-590. [PMID: 34271045 DOI: 10.1016/j.ijbiomac.2021.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation can be induced by a wide variety of factors, such as dominant disease-associated mutations, changes in the environmental conditions (pH, temperature, ionic strength, protein concentration, exposure to transition metal ions, exposure to toxins, posttranslational modifications including glycation, phosphorylation, and sulfation). Misfolded intermediates interact with similar intermediates and progressively form dimers, oligomers, protofibrils, and fibrils. In amyloidoses, fibrillar aggregates are deposited in the tissues either as intracellular inclusion or extracellular plaques (amyloid). When such proteinaceous deposit occurs in the neuronal cells, it initiates degeneration of neurons and consequently resulting in the manifestation of various neurodegenerative diseases. Several different types of molecules have been designed and tested both in vitro and in vivo to evaluate their anti-amyloidogenic efficacies. For instance, the native structure of a protein associated with amyloidosis could be stabilized by ligands, antibodies could be used to remove plaques, oligomer-specific antibody A11 could be used to remove oligomers, or prefibrillar aggregates could be removed by affibodies. Keeping the above views in mind, in this review we have discussed protein misfolding and aggregation, mechanisms of protein aggregation, factors responsible for aggregations, and strategies for aggregation inhibition.
Collapse
Affiliation(s)
- Parveen Salahuddin
- DISC, Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India.
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, A.M.U., Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O Box 5825, Doha, Qatar
| | - Munazza Tamkeen Fatima
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
13
|
Bakholdina SI, Stenkova AM, Bystritskaya EP, Sidorin EV, Kim NY, Menchinskaya ES, Gorpenchenko TY, Aminin DL, Shved NA, Solov’eva TF. Studies on the Structure and Properties of Membrane Phospholipase A 1 Inclusion Bodies Formed at Low Growth Temperatures Using GFP Fusion Strategy. Molecules 2021; 26:molecules26133936. [PMID: 34203222 PMCID: PMC8271855 DOI: 10.3390/molecules26133936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.
Collapse
Affiliation(s)
- Svetlana I. Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| | - Anna M. Stenkova
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Evgenia P. Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Evgeniy V. Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Tatiana Yu. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, 690022 Vladivostok, Russia;
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Nikita A. Shved
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Tamara F. Solov’eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| |
Collapse
|
14
|
Kaur N, Kaur G, Chaudhary GR, Yashika. Investigating the structural and conformational behavior of HEWL in the presence of iron metallosurfactant and sodium oleate metallo-catanionic aggregates. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Parveen R, Tarannum Z, Ali S, Fatima S. Nanoclay based study on protein stability and aggregation and its implication in human health. Int J Biol Macromol 2020; 166:385-400. [PMID: 33122071 DOI: 10.1016/j.ijbiomac.2020.10.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
Protein aggregation is the major cause of several acute amyloid diseases such as Parkinson's, Huntington's, Alzheimer's, Lysozyme Systemic amyloidosis, Diabetes-II etc. While these diseases have attracted much attention but the cure is still unavailable. In the present study, Human Serum Albumin (HSA) and Human Lysozyme (HL) were used as the model proteins to investigate their aggregations. Nanoclays are hydrous silicates found in clay fraction of soil and known as natural nanomaterials. They have long been used in several applications in health-related products. In the present paper, the different types of nanoclays (MMT K-10, MMT K-30, Halloysite, Bentonite) were used to inhibit the process of HSA and HL aggregation. Aggregation experiments were evaluated using several biophysical tools such as Turbidity measurements, Intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) binding assays and Circular dichroism. Results demonstrated that all the nanoclays inhibit the DTT-induced aggregation. However, bentonite and MMT K-10 were progressively intense and potent as they slowed down nucleation stage which can be perceived using several biophysical techniques. Hence, nanoclays can be used as an artificial chaperone and might provide effective treatment against several protein aggregation related disorders.
Collapse
Affiliation(s)
- Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Zeba Tarannum
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
16
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Fan C, Wang YL, Zhao PJ, Qu HQ, Su YX, Li C, Zhu MQ. AIE-Based Dynamic in Situ Nanoscale Visualization of Amyloid Fibrillation from Hen Egg White Lysozyme. Bioconjug Chem 2020; 31:2303-2311. [PMID: 33002360 DOI: 10.1021/acs.bioconjchem.0c00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein misfolding and denaturation, represented by amyloid fibrillation, are associated with many diseases. However, as a general chemical biological process, the dynamic structure information on amyloid fibrillation has not been demonstrated categorically. Herein, hen egg white lysozyme (HEWL) was used as the model protein of interest to realize in situ nanoscale imaging of protein fibrillation process using the fluorophores with aggregation-induced emission (AIE) activity. The AIE-active fluorophores exhibit the reversible capability of association and dissociation with β-sheet structure and thus dynamic binding-induced emission, which causes the spontaneous switching of fluorescence. The entire HEWL denaturation process induced by sodium dodecyl sulfate (SDS) at ambient conditions was demonstrated in detail by using two AIE-active fluorophores (TPE-NaSO3 and PD-BZ-OH) through reversible electrostatic interaction and specific labeling between AIE probes and β-sheet structures of amyloid fibrils, respectively. The results indicate that PD-BZ-OH is more specific AIE probe for amyloid fibrils than TPE-NaSO3. In comparison, the SEM and TEM results show the same denaturation process of protein fibrillation induced by SDS at different concentrations. The static super-resolution imaging of amyloid fibrils is performed with a resolution of 35 nm using PD-BZ-OH aqueous solution without additional auxiliary conditions. The dynamic evolution process of HEWL amyloid fibrillation is in situ visualized through super-resolution fluorescent microscopy with nanoscale resolution. Both static and dynamic super-resolution imaging of amyloid fibrillation provides detailed nanoscale structure information exceeding 50 nm resolution, which is of great significance in the exploration of amyloid fibrillation and related diseases.
Collapse
Affiliation(s)
- Cheng Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ya-Long Wang
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Peng-Ju Zhao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Hong-Qing Qu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu-Xuan Su
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
18
|
Pal S, Maity S, Sardar S, Begum S, Dalui R, Parvej H, Bera K, Pradhan A, Sepay N, Paul S, Halder UC. Antioxidant ferulic acid prevents the aggregation of bovine β-lactoglobulin in vitro. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01796-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Scanavachi G, Espinosa Y, Yoneda J, Rial R, Ruso J, Itri R. Aggregation features of partially unfolded bovine serum albumin modulated by hydrogenated and fluorinated surfactants: Molecular dynamics insights and experimental approaches. J Colloid Interface Sci 2020; 572:9-21. [DOI: 10.1016/j.jcis.2020.03.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
|
20
|
Strazdaite S, Navakauskas E, Kirschner J, Sneideris T, Niaura G. Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4766-4775. [PMID: 32251594 DOI: 10.1021/acs.langmuir.9b03826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use vibrational sum-frequency generation (VSFG) spectroscopy to study the structure of hen egg-white lysozyme (HEWL) aggregates adsorbed to DOPG/D2O and air/D2O interfaces. We find that aggregates with a parallel and antiparallel β-sheet structure together with smaller unordered aggregates and a denaturated protein are adsorbed to both interfaces. We demonstrate that to retrieve this information, fitting of the VSFG spectra is essential. The number of bands contributing to the VSFG spectrum might be misinterpreted, due to interference between peaks with opposite orientation and a nonresonant background. Our study identified hydrophobicity as the main driving force for adsorption to the air/D2O interface. Adsorption to the DOPG/D2O interface is also influenced by hydrophobic interaction; however, electrostatic interaction between the charged protein's groups and the lipid's headgroups has the most significant effect on the adsorption. We find that the intensity of the VSFG spectrum at the DOPG/D2O interface is strongly enhanced by varying the pH of the solution. We show that this change is not due to a change of lysozyme's and its aggregates' charge but due to dipole reorientation at the DOPG/D2O interface. This finding suggests that extra care must be taken when interpreting the VSFG spectrum of proteins adsorbed at the lipid/water interface.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - E Navakauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, Vienna Technical University, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
21
|
Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech 2020; 10:193. [PMID: 32269898 PMCID: PMC7128022 DOI: 10.1007/s13205-020-2166-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Protein aggregation, their mechanisms and trends in the field of neurodegenerative diseases is still far from completely being decoded. It is mainly attributed to the complexity surrounding the interaction between proteins which includes various regulatory mechanisms involved with the presentation of abnormal conditions. Although most proteins are functional in their soluble form, they have also been reported to convert themselves into insoluble aggregates under certain conditions naturally. Misfolded protein forms aggregates which are mostly unwanted by the cellular system and are mostly involved in various pathophysiologies including Alzheimer's, Type II Diabetes mellitus, Kurus's etc. Challenges lie in understanding the complex mechanism of protein misfolding and its correlation with clinical evidence. It is often understood that due to the slowness of the process and its association with ageing, timely intervention with drugs or preventive measures will play an essential role in lowering the rate of dementia causing diseases and associated ailments in the future. Today approximately more than 35 proteins have been identified capable of forming amyloids under defined conditions, and nearly all of them have been associated with disease outcomes. This review incorporates a major understanding from the history of diseases associated with protein misfolding, to the current state of neurodegenerative diseases globally, highlighting challenges in drug development and current state of research in a comprehensive manner in the field of protein misfolding diseases. There is increasing clinical association of protein misfolding with regards to amyloids compelling us to thread questions solved and further helping us design possible solutions by generating a pathway-based research on which future work in this field could be driven.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Kumari Prerna
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Rahul Chaurasia
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Manoj Kumar Bharty
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| |
Collapse
|
22
|
Du X, Wang Z, Lv Z, Ma L, Ye S, Liu F, Zhang R, Cao H, Li C. Content of anti-β-amyloid 42 oligomers antibodies in multiple batches from different immunoglobulin preparations. Biologicals 2020; 65:25-32. [PMID: 32165080 DOI: 10.1016/j.biologicals.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/19/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022] Open
Abstract
Immunoglobulin preparations are one of the promising drugs for Alzheimer's disease (AD). Anti-β-amyloid (Aβ) oligomers antibodies in immunoglobulin preparations are considered to be critical for the therapeutic effect against Alzheimer's disease. However, the antibodies content in immunoglobulin preparations varies greatly. In order to determine which factor contributes to the difference of the antibodies content, the content of anti-Aβ oligomers antibodies in multiple batches of immunoglobulin preparations from two manufacturers were measured by enzyme-linked immunosorbent assay. The results showed that no significant difference was found in the antibodies content among different bathes of normal immunoglobulin preparations prepared by the same process from the same manufacturer, whereas significant difference was found in the antibodies content between normal immunoglobulin preparations prepared by ethanol fractionation and those by chromatography process from the same manufacturer. In addition, significant variation existed in the antibodies content between normal immunoglobulin preparations and specific immunoglobulin preparations that are produced by plasma pool of immunized donors. Based on analysis of these results, the preparation process and raw plasma could be the main contributing factors affecting the content of anti-Aβ oligomers antibodies in immunoglobulin preparations. This finding might help to develop AD-specific immunoglobulin preparation containing higher content of anti-Aβ oligomers antibodies.
Collapse
Affiliation(s)
- Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Zhaoji Lv
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences& Peking Union Medical College, 26 Huacai Road, Chenghua District, Chengdu, 610052, China.
| |
Collapse
|
23
|
Khan MS, Bhatt S, Tabrez S, Rehman MT, Alokail MS, AlAjmi MF. Quinoline yellow (food additive) induced conformational changes in lysozyme: a spectroscopic, docking and simulation studies of dye-protein interactions. Prep Biochem Biotechnol 2020; 50:673-681. [PMID: 32101072 DOI: 10.1080/10826068.2020.1725774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinoline yellow (QY) is a synthetic yellow dye widely used as a coloring agent for various foodstuffs. In the current study, we have examined the role of QY on the aggregation propensity of hen egg-white lysozyme (HEWL) under physiological conditions. The dye induced conformational changes in HEWL leading to aggregate formation were identified by circular dichroism (CD), turbidity analysis, fluorescence measurement and microscopic (TEM) imaging. Molecular docking and molecular dynamics simulation studies were also employed to strengthen binding and aggregation results. Our results indicate that 25-100 µM of QY induces aggregation in HEWL, while lower QY concentrations (5 and 10 µM) does not have any effect on the aggregation propensity of HEWL. The kinetics of HEWL aggregation demonstrate nucleation independent aggregation of HEWL without lag phase. On the other hand, far UV-CD analysis illustrated the loss of α-helical structure with the increasing concentration of QY. TEM results also support the formation of aggregate structures in HEWL when exposed to QY. Molecular docking and simulation studies revealed that the HEWL-QY complex is stable as compared to individual entities. In silico analysis also illustrated that QY-induced aggregation of HEWL proceeds through the formation of hydrogen bonds, electrostatic (Pi-Anion) and Pi-Sulfur interactions. The above-mentioned results highlight the possible detrimental effect by food additive dyes, particularly in protein misfolding.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sheraz Bhatt
- Department of Biochemistry, College of Sciences, Cluster University, Srinagar, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacology, Collage of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Majed Saleh Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacology, Collage of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Khan JM, Malik A, Ahmad Khan M, Sharma P, Sen P. Pre-micellar concentrations of sodium dodecylbenzene sulphonate induce amyloid-like fibril formation in myoglobin at pH 4.5. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Kalayan J, Henchman RH, Warwicker J. Model for Counterion Binding and Charge Reversal on Protein Surfaces. Mol Pharm 2020; 17:595-603. [PMID: 31887056 DOI: 10.1021/acs.molpharmaceut.9b01047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural stability and solubility of proteins in liquid therapeutic formulations is important, especially since new generations of therapeutics are designed for efficacy before consideration of stability. We introduce an electrostatic binding model to measure the net charge of proteins with bound ions in solution. The electrostatic potential on a protein surface is used to separately group together acidic and basic amino acids into patches, which are then iteratively bound with oppositely charged counterions. This model is aimed toward formulation chemists for initial screening of a range of conditions prior to lab-work. Computed results compare well with experimental zeta potential measurements from the literature covering a range of solution conditions. Importantly, the binding model reproduces the charge reversal phenomenon that is observed with polyvalent ion binding to proteins and its dependence on ion charge and concentration. Intriguingly, protein sequence can be used to give similarly good agreement with experiment as protein structure, interpreted as resulting from the close proximity of charged side chains on a protein surface. Further, application of the model to human proteins suggests that polyanion binding and overcharging, including charge reversal for cationic proteins, is a general feature. These results add to evidence that addition of polyanions to protein formulations could be a general mechanism for modulating solution stability.
Collapse
Affiliation(s)
- Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom, and School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , United Kingdom
| |
Collapse
|
26
|
Banerjee S. Methylglyoxal modification reduces the sensitivity of hen egg white lysozyme to stress-induced aggregation: Insight into the anti-amyloidogenic property of α-dicarbonyl compound. J Biomol Struct Dyn 2019; 38:5474-5487. [PMID: 31814530 DOI: 10.1080/07391102.2019.1702589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The reactive α-oxoaldehyde, methylglyoxal reacts with different proteins to form Advanced Glycation End Products (AGEs) through Maillard reaction. Its level increases significantly in diabetic condition. Here, we have investigated the effect of different concentrations of methylglyoxal (200-400 µM) on the monomeric protein, hen egg white lysozyme (HEWL) following incubation for 3 weeks. Reaction of methylglyoxal with HEWL induced considerable changes in tertiary structure of the protein, but no significant alteration in secondary structure, as evident from different spectroscopic and biophysical studies. Interestingly, methylglyoxal modification was found to enhance the thermal stability of the protein and reduce its sensitivity to stress-induced aggregation. Finally, peptide mass fingerprinting revealed modification of arginine (Arg-45, Arg-14, Arg-68 or Arg-72) and lysine (Lys-116) residues of the protein to AGE adducts, namely, hydroimidazolone, tetrahydropyrimidine, and carboxyethyllysine. Methylglyoxal-derived AGE adducts (MAGE) appear to be responsible for the observed changes in protein. As demonstrated in the present study, the findings may highlight a possible therapeutic potential of the α-oxoaldehyde against protein misfolding and conformational disorder.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sauradipta Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, Kolkata, India
| |
Collapse
|
27
|
Tomaselli S, La Vitola P, Pagano K, Brandi E, Santamaria G, Galante D, D’Arrigo C, Moni L, Lambruschini C, Banfi L, Lucchetti J, Fracasso C, Molinari H, Forloni G, Balducci C, Ragona L. Biophysical and in Vivo Studies Identify a New Natural-Based Polyphenol, Counteracting Aβ Oligomerization in Vitro and Aβ Oligomer-Mediated Memory Impairment and Neuroinflammation in an Acute Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4462-4475. [PMID: 31603646 DOI: 10.1021/acschemneuro.9b00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study natural-based complex polyphenols, obtained through a smart synthetic approach, have been evaluated for their ability to inhibit the formation of Aβ42 oligomers, the most toxic species causing synaptic dysfunction, neuroinflammation, and neuronal death leading to the onset and progression of Alzheimer's disease. In vitro neurotoxicity tests on primary hippocampal neurons have been employed to select nontoxic candidates. Solution NMR and molecular docking studies have been performed to clarify the interaction mechanism of Aβ42 with the synthesized polyphenol derivatives, and highlight the sterical and chemical requirements important for their antiaggregating activity. NMR results indicated that the selected polyphenolic compounds target Aβ42 oligomeric species. Combined NMR and docking studies indicated that the Aβ42 central hydrophobic core, namely, the 17-31 region, is the main interaction site. The length of the peptidomimetic scaffold and the presence of a guaiacol moiety were identified as important requirements for the antiaggregating activity. In vivo experiments on an Aβ42 oligomer-induced acute mouse model highlighted that the most promising polyphenolic derivative (PP04) inhibits detrimental effects of Aβ42 oligomers on memory and glial cell activation. NMR kinetic studies showed that PP04 is endowed with the chemical features of true inhibitors, strongly affecting both the Aβ42 nucleation and growth rates, thus representing a promising candidate to be further developed into an effective drug against neurodegenerative diseases of the amyloid type.
Collapse
Affiliation(s)
- Simona Tomaselli
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Edoardo Brandi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Giulia Santamaria
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Denise Galante
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Genoa 16149, Italy
| | - Cristina D’Arrigo
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Genoa 16149, Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Luca Banfi
- Department of Chemistry and Industrial Chemistry, Università di Genova, Genova 16146, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Claudia Fracasso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan 20156, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole (ISMAC), CNR, Milan 20133, Italy
| |
Collapse
|
28
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Wang Y, Jia B, You M, Fan H, Cao S, Li H, Zhang W, Ma G. Modulation of Surface-Catalyzed Secondary Nucleation during Amyloid Fibrillation of Hen Egg White Lysozyme by Two Common Surfactants. J Phys Chem B 2019; 123:6200-6211. [DOI: 10.1021/acs.jpcb.9b04036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Baohuan Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Min You
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Haoran Fan
- Department of Chemistry, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Siyu Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
30
|
Khan AN, Hassan MN, Khan RH. Gallic acid: A naturally occurring bifunctional inhibitor of amyloid and metal induced aggregation with possible implication in metal-based therapy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Khan JM, Ahmed A, Freeh Alamery S, Farah MA, Hussain T, Khan MI, Khan RH, Malik A, Fatima S, Sen P. Millimolar concentration of sodium dodecyl sulfate inhibit thermal aggregation in hen egg white lysozyme via increased α-helicity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
33
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
34
|
Furkan M, Siddiqi MK, Zakariya SM, Khan FI, Hassan MI, Khan RH. An In Vitro elucidation of the antiaggregatory potential of Diosminover thermally induced unfolding of hen egg white lysozyme; A preventive quest for lysozyme amyloidosis. Int J Biol Macromol 2019; 129:1015-1023. [DOI: 10.1016/j.ijbiomac.2019.02.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
|
35
|
Different conformational states of hen egg white lysozyme formed by exposure to the surfactant of sodium dodecyl benzenesulfonate. Int J Biol Macromol 2019; 128:54-60. [DOI: 10.1016/j.ijbiomac.2019.01.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022]
|
36
|
Experimental and computational investigation on the molecular interactions of safranal with bovine serum albumin: Binding and anti-amyloidogenic efficacy of ligand. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Tiwari P, Kaila P, Guptasarma P. Understanding anomalous mobility of proteins on SDS‐PAGE with special reference to the highly acidic extracellular domains of human E‐ and N‐cadherins. Electrophoresis 2019; 40:1273-1281. [DOI: 10.1002/elps.201800219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Prince Tiwari
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| | - Pallavi Kaila
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| | - Purnananda Guptasarma
- Centre for Protein ScienceDesign and EngineeringDepartment of Biological SciencesIndian Institute of Science Education and Research (IISER) Mohali Punjab India
| |
Collapse
|
38
|
Konar M, Mathew A, Dasgupta S. Effect of Silica Nanoparticles on the Amyloid Fibrillation of Lysozyme. ACS OMEGA 2019; 4:1015-1026. [PMID: 31459377 PMCID: PMC6648903 DOI: 10.1021/acsomega.8b03169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 05/18/2023]
Abstract
Protein fibrils are regarded as undesired products as these are associated with numerous neuro- and non-neurodegenerative disorders. Increasing evidence suggests that the mechanism of fibrillation involves the formation of various oligomeric intermediates, which are known to be more toxic than mature fibrils. Here, we report the impact of synthesized silica nanoparticles (SiNPs) of diameters ∼52 nm on the aggregation behavior of hen egg white lysozyme (HEWL) under heat and acidic conditions. Congo red as well as ThT binding assays and AFM imaging studies indicate that SiNPs trigger the amyloid formation of HEWL in a dose-dependent manner. ThT kinetic studies and FTIR studies suggest that the fibrillation kinetics does not involve the formation of toxic oligomeric intermediates at higher concentrations of SiNPs. By measuring fluorescence lifetime values of the bound ThT, SiNP-induced fibrillation of HEWL can easily be realized. CD spectroscopic studies indicate that native HEWL becomes unfolded upon incubation under the experimental conditions and is rapidly converted into the β-sheet-rich fibrillar aggregates in the presence of SiNPs with increasing concentrations. It has been further revealed that fibrillar aggregates formed at higher concentrations of SiNPs preferably adopt an antiparallel β-sheet configuration. The enhanced fibrillation in the presence of SiNPs is likely because of preferential adsorption of the non-amyloidogenic regions of HEWL, resulting in the exposure of the aggregation-prone regions of HEWL toward the solvent. The study will provide deeper insights into the evolution of oligomer-free fibrillation that can be useful to demonstrate the underlying mechanism of amyloid fibrillation.
Collapse
|
39
|
Alkudaisi N, Russell BA, Jachimska B, Birch DJS, Chen Y. Detecting lysozyme unfolding via the fluorescence of lysozyme encapsulated gold nanoclusters. J Mater Chem B 2019; 7:1167-1175. [PMID: 32254785 DOI: 10.1039/c9tb00009g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein misfolding plays a critical role in the manifestation of amyloidosis type diseases. Therefore, understanding protein unfolding and the ability to track protein unfolding in a dynamic manner are of considerable interest. Fluorescence-based techniques are powerful tools for gaining real-time information about the local environmental conditions of a probe on the nanoscale. Fluorescent gold nanoclusters (AuNCs) are a new type of fluorescent probes which are <2 nm in diameter, incredibly robust and offer highly sensitive, wavelength tuneable emission. Their small size minimises intrusion and makes AuNCs ideal for studying protein dynamics. Lysozyme has previously been used to encapsulate AuNCs. The unfolding dynamics of lysozyme under different environmental conditions have been well-studied and being an amyloid type protein makes lysozyme an ideal candidate for encapsulating AuNCs in order to test their sensitivity to protein unfolding. In this study, we tracked the fluorescence characteristics of AuNCs encapsulated in lysozyme while inducing protein unfolding using urea, sodium dodecyl sulphate (SDS) and elevated temperature and compared them to complimentary circular dichroism spectra. It is found that AuNC fluorescence emission is quenched upon induced protein unfolding either due to a decrease in Forster Resonance Energy Transfer (FRET) efficiency between tryptophan and AuNCs or solvent exposure of the AuNC. Fluorescence lifetime measurements confirmed quenching to be collisional via oxygen dissolved in a solution which increases as the AuNC was exposed to the solvent during unfolding. Moreover, the longer decay component τ1 was observed to decrease as the protein unfolded, due to the increased collisional quenching. It is suggested that AuNC sensitivity to solvent exposure might be utilised in the future as a new approach to studying and possibly even detecting amyloidosis type diseases.
Collapse
Affiliation(s)
- Nora Alkudaisi
- Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, UK.
| | | | | | | | | |
Collapse
|
40
|
Huda N, Hossain M, Bhuyan AK. Complete observation of all structural, conformational, and fibrillation transitions of monomeric globular proteins at submicellar sodium dodecyl sulfate concentrations. Biopolymers 2019; 110:e23255. [PMID: 30633322 DOI: 10.1002/bip.23255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 11/06/2022]
Abstract
Although considerable information is available regarding protein-sodium dodecyl sulfate (SDS) interactions, it is still unclear as to how much SDS is needed to denature proteins. The role of protein charge and micellar surfactant concentration on amyloid fibrillation is also unclear. This study reports on equilibrium measurements of SDS interaction with six model proteins and analyzes the results to obtain a general understanding of conformational breakdown, reorganization and restructuring of secondary structure, and entry into the amyloid fibrillar state. Significantly, all of these responses are entirely resolved at much lower than the critical micellar concentration (CMC) of SDS. Electrostatic interaction of the dodecyl sulfate anion (DS- ) with positive surface potential on the protein can completely unfold both secondary and tertiary structures, which is followed by protein chain restructuration to α-helices. All SDS-denatured proteins contain more α-helices than the corresponding native state. SDS interaction stochastically drives proteins to the aggregated fibrillar state.
Collapse
Affiliation(s)
- Noorul Huda
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Mujahid Hossain
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Abani K Bhuyan
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
41
|
Tian J, Yu Y, Wang Y, Li H, Yang L, Du B, Ma G. Tannic Acid-Induced Surface-Catalyzed Secondary Nucleation during the Amyloid Fibrillation of Hen Egg-White Lysozyme. Int J Mol Sci 2018; 19:E4009. [PMID: 30545098 PMCID: PMC6320987 DOI: 10.3390/ijms19124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023] Open
Abstract
Amyloid fibrillation by hen egg white lysozyme under the influence of tannic acid was investigated by atomic force microscopy and fluorescence spectroscopy. Tannic acid was found to be able to induce the formation of amyloid fibrils with an interesting mixed morphology. Such morphology features with the existence of areas of thickening alternating with areas of normal height. This novel modulation effect of tannic acid on amyloid fibrillation was interpreted by the established surface-catalyzed secondary nucleation theory. We further performed a fluorescence quenching study to investigate the intermolecular interaction between tannic acid and lysozyme. The results support that lysozyme and tannic acid interact with each other mainly through hydrophobic interactions. We also discussed why hydrogen-bonding interaction is not a dominant factor in the interaction between tannic acid and lysozyme though tannic acid contains a significant amount of hydroxyl groups. Our work provides new insight into the effect of tannic acid, a well-known amyloid inhibitor, on amyloid fibrillation.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Yang Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Yao Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Haoyi Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Lujuan Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Baoan Du
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
42
|
Khan JM, Khan MR, Sen P, Malik A, Irfan M, Khan RH. An intermittent amyloid phase found in gemini (G5 and G6) surfactant induced β-sheet to α-helix transition in concanavalin A protein. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Ali MS, Al-Lohedan HA. Spectroscopic and computational evaluation on the binding of safranal with human serum albumin: Role of inner filter effect in fluorescence spectral correction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:434-442. [PMID: 29894957 DOI: 10.1016/j.saa.2018.05.102] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/21/2023]
Abstract
For determining the pharmacological properties of medicinal compounds, their binding with serum albumins is very crucial. Herein, we have selected safranal, a major constituent of saffron which is known to retain a number of medicinal properties including antioxidant, anti-inflammatory, tumoricidal, anti-genotoxic, and anti-aging activities; and studied its mechanism of binding with human serum albumin at physiological pH using various spectroscopic methods along with computational approach using molecular docking. A change in the difference UV-visible spectrum of HSA in presence of safranal was found which is due to the complex formation. Owing to the strong absorption of safranal at the fluorescence excitation wavelength of HSA (295 nm) and in the whole range of emission, the fluorescence spectra of HSA in presence of safranal were corrected for the inner filter effect. After the correction the spectra were free from the safranal absorption effect and it was found that addition of safranal causes the quenching of HSA fluorescence and a blue shift of the emission maximum which are attributed to the binding of safranal to the protein and dominance of hydrophobic forces in the interaction, respectively. It was evident from the comparison of observed and corrected fluorescence spectra that before correction there was a large red shift while after correction appearance of blue shift was occurred. The involvement of hydrophobic interaction was also found from the extrinsic fluorescence measurements using ANS dye as well as from the analyzed thermodynamic parameters. Safranal was found to partially induce the secondary structure of HSA as construed from the CD measurements. The size of the HSA was also decreased as evident from the DLS and RLS measurements. Both site marker studies and molecular docking simulations suggested that the primary binding site of the safranal in the HSA is Sudlow's site 1 located in the subdomain IIA. Hydrophobic interaction provides the major contribution to the binding forces along with a little amount of hydrogen bonding.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad A Al-Lohedan
- Surfactant Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Ismael MA, Khan JM, Malik A, Alsenaidy MA, Hidayathulla S, Khan RH, Sen P, Irfan M, Alsenaidy AM. Unraveling the molecular mechanism of the effects of sodium dodecyl sulfate, salts, and sugars on amyloid fibril formation in camel IgG. Colloids Surf B Biointerfaces 2018; 170:430-437. [DOI: 10.1016/j.colsurfb.2018.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
|
45
|
Ferreira GMD, Ferreira GMD, Agudelo ÁJP, Hudson EA, Pires ACDS, da Silva LHM. Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization. Int J Biol Macromol 2018; 117:1039-1049. [DOI: 10.1016/j.ijbiomac.2018.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
|
46
|
Applications of rice protein in nanomaterials synthesis, nanocolloids of rice protein, and bioapplicability. Int J Biol Macromol 2018; 120:394-404. [PMID: 30144545 DOI: 10.1016/j.ijbiomac.2018.08.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Rice protein conjugated nanomaterials were synthesized and characterized by using anionic and cationic forms of rice protein. Both forms showed unique characteristic features when used in in situ reaction conditions for synthesizing the protein stabilized gold (Au) and silver (Ag) nanoparticles (NPs). Au NPs synthesis was highly facilitated than Ag NPs synthesis while the reverse was true when rice protein was simply used in the basic medium. Photophysical behavior clearly showed the contributions of both electrostatic and non-electrostatic interactions driving the rice protein surface adsorption on nanometallic surfaces. Rice protein conjugated NPs were easily transferred and extracted into the organic phase while the extraction process was related to the amount of protein coating. Under the controlled pH reaction conditions, rice protein - dye colored NPs were synthesized which were further characterized by the DLS and SDS Page analysis. Both rice protein conjugated Au/Ag NPs and rice protein NPs showed remarkable biocompatibility with blood cells. These NPs demonstrated their excellent ability to selectively extract protein fractions from complex biological fluid like serum. The results proposed significant applications of rice protein conjugated NPs in biological systems as well as bio-nanotechnology.
Collapse
|
47
|
Rutin attenuates negatively charged surfactant (SDS)-induced lysozyme aggregation/amyloid formation and its cytotoxicity. Int J Biol Macromol 2018; 120:45-58. [PMID: 30081131 DOI: 10.1016/j.ijbiomac.2018.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Amyloid fibrils are highly ordered protein assemblies known to contribute to the pathology of a variety of genetic and aging-associated diseases. Here, we have investigated the aggregation propensity of lysozyme in the presence of a negatively charged surfactant (SDS) and evaluated the anti-aggregation activity of rutin. Multiple approaches such as turbidity measurements, dye binding assays, intrinsic fluorescence, circular dichroism (CD), transmission electron microscopy (TEM), MTT and comet assays have been used for this purpose. We inferred that SDS induces aggregation of lysozyme in 0.2-0.6 mM concentration range while at higher concentration range (0.8-1.0 mM), it leads to solubilization/stabilization of protein. Intrinsic/extrinsic fluorescence and CD analysis confirmed significant conformational changes in lysozyme at 0.2 mM SDS. Thioflavin T (ThT), congo red binding and TEM analysis further reaffirmed the formation of lysozyme fibrils. Moreover, MTT assay demonstrated cytotoxicity of these fibrils towards neuroblastoma cell lines (SH-SY5Y) and their attenuation by rutin. Comet assay supported the cytotoxicity mechanism via DNA damage. Molecular docking results also advocate a strong interaction between lysozyme and rutin. The current study indicates a mechanistic approach assuming structural constraints and specific aromatic interactions of rutin with HEWL aggregates.
Collapse
|
48
|
Yadav KK, Arakha M, Das B, Mallick B, Jha S. Preferential binding to zinc oxide nanoparticle interface inhibits lysozyme fibrillation and cytotoxicity. Int J Biol Macromol 2018; 116:955-965. [PMID: 29778879 DOI: 10.1016/j.ijbiomac.2018.05.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
The aim of present investigation is to explore the effect of zinc oxide nanoparticles (ZnONP, 30 nm) interface on conformational dynamics and stability of lysozyme, at pH 7.4 and pH 9.0. Lysozyme adopts partially disordered conformation at pH 9.0, which adopts fibril morphology in presence of sodium dodecyl sulfate (SDS), compared to the conformation adopted at pH 7.4. However, the presence of ZnONP interface renders partially disordered lysozyme relatively regular and non-amyloidogenic conformation, and enhances the functional efficacy of lysozyme at pH 9.0. Additionally, the thermograms reveal a non-cooperative unfolding of the pH 9.0 lysozyme conformation, which accompanied with intermediate conformations that increased with increase in the interface concentration. The binding thermodynamics indicate that at pH 9.0, lysozyme conformation preferentially binds to ZnONP interface than SDS interface. The preferential binding is attributed for the resulting anti-fibrillation propensity of ZnONP interface. The data, altogether, suggest that the presence of ZnONP interface resulted in conformational rearrangements in the partially disordered lysozyme at pH 9.0 causing accumulation of non-amyloidogenic and functionally active intermediates, thus shielding the lysozyme from SDS induced fibrillation and cytotoxicity.
Collapse
Affiliation(s)
- Kanti K Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Manoranjan Arakha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Basudeb Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bibekanand Mallick
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
49
|
Ma XJ, Zhang YJ, Zeng CM. Inhibition of Amyloid Aggregation of Bovine Serum Albumin by Sodium Dodecyl Sulfate at Submicellar Concentrations. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534670 DOI: 10.1134/s000629791801008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium dodecyl sulfate (SDS), as an anionic surfactant, can induce protein conformational changes. Recent investigations demonstrated different effects of SDS on protein amyloid aggregation. In the present study, the effect of SDS on amyloid aggregation of bovine serum albumin (BSA) was evaluated. BSA transformed to β-sheet-rich amyloid aggregates upon incubation at pH 7.4 and 65°C, as demonstrated by thioflavin T fluorescence, circular dichroism, and transmission electron microscopy. SDS at submicellar concentrations inhibited BSA amyloid aggregation with IC50 of 47.5 µM. The inhibitory effects of structural analogs of SDS on amyloid aggregation of BSA were determined to explore the structure-activity relationship, with results suggesting that both anionic and alkyl moieties of SDS were critical, and that an alkyl moiety with chain length ≥10 carbon atoms was essential to amyloid inhibition. We attributed the inhibitory effect of SDS on BSA amyloid aggregation to interactions between the detergent molecule and the fatty acid binding sites on BSA. The bound SDS stabilized BSA, thereby inhibiting protein transformation to amyloid aggregates. This study reports for the first time that the inhibitory effect of SDS on albumin fibrillation is closely related to its alkyl structure. Moreover, the specific binding of SDS to albumin is the main driving force in amyloid inhibition. This study not only provides fresh insight into the role of SDS in amyloid aggregation of serum albumin, but also suggests rational design of novel anti-amyloidogenic reagents based on specific-binding ligands.
Collapse
Affiliation(s)
- Xue-Jiao Ma
- Shaanxi Normal University, School of Chemistry and Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi'an, 710119, China.
| | | | | |
Collapse
|
50
|
Al-Shabib NA, Khan JM, Alsenaidy MA, Alsenaidy AM, Khan MS, Husain FM, Khan MR, Naseem M, Sen P, Alam P, Khan RH. Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:116-124. [PMID: 29028503 DOI: 10.1016/j.saa.2017.09.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/20/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0mM of TZ at pH3.5, but no amyloid fibril were seen at pH7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.
Collapse
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia.
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Mohammad A Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman M Alsenaidy
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Naseem
- Electrical Engineering Department, Integral University Lucknow, 226026, India
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|