1
|
Becker AS, Kluge C, Schofeld C, Zimpfer AH, Schneider B, Strüder D, Redwanz C, Ribbat-Idel J, Idel C, Maletzki C. Identifying Predictive Biomarkers for Head and Neck Squamous Cell Carcinoma Response. Cancers (Basel) 2023; 15:5597. [PMID: 38067301 PMCID: PMC10705351 DOI: 10.3390/cancers15235597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 10/27/2024] Open
Abstract
The 5-year survival rate for head and neck squamous cell carcinoma (HNSCC) is approximately 65%. In addition to radio-chemotherapy, immunotherapy is an approach in the treatment of advanced HNSCC. A better understanding of the immune context would allow personalized treatment by identifying patients who are best suited for different treatment options. In our discovery cohort, we evaluated the expression profiles of CMTM6, PD-L1, CTLA-4, and FOXP3 in 177 HNSCCs from Caucasian patients of all tumor stages and different treatment regimens, correlating marker expression in tumor and immune cells with outcomes. Patients with CMTM6high-expressing tumors had a longer overall survival regardless of treatment. This prognostic benefit of CMTM6 in HNSCC was validated in an independent cohort. Focusing on the in the discovery cohort (n = 177), a good predictive effect of CMTM6high expression was seen in patients receiving radiotherapy (p = 0.07; log rank), but not in others. CMTM6 correlated with PD-L1, CTLA-4 and FOXP3 positivity, with patients possessing CMTM6high/FOXP3high tumors showing the longest survival regardless of treatment. In chemotherapy-treated patients, PD-L1 positivity was associated with longer progression-free survival (p < 0.05). In the 27 patients who received immunotherapy, gene expression analysis revealed lower levels of CTLA-4 and FOXP3 with either partial or complete response to this treatment, while no effect was observed for CMTM6 or PD-L1. The combination of these immunomodulatory markers seems to be an interesting prognostic and predictive signature for HNSCC patients with the ability to optimize individualized treatments.
Collapse
Affiliation(s)
- Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Cornelius Kluge
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Carsten Schofeld
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Annette Helene Zimpfer
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, 18057 Rostock, Germany; (C.K.); (C.S.); (A.H.Z.); (B.S.)
| | - Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Koerner”, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Christian Idel
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, University of Lubeck, University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
2
|
España S, Sánchez-Parcerisa D, Bragado P, Gutiérrez-Uzquiza Á, Porras A, Gutiérrez-Neira C, Espinosa A, Onecha VV, Ibáñez P, Sánchez-Tembleque V, Udías JM, Fraile LM. In vivo production of fluorine-18 in a chicken egg tumor model of breast cancer for proton therapy range verification. Sci Rep 2022; 12:7075. [PMID: 35490180 PMCID: PMC9056503 DOI: 10.1038/s41598-022-11037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/18/2022] [Indexed: 01/02/2023] Open
Abstract
Range verification of clinical protontherapy systems via positron-emission tomography (PET) is not a mature technology, suffering from two major issues: insufficient signal from low-energy protons in the Bragg peak area and biological washout of PET emitters. The use of contrast agents including 18O, 68Zn or 63Cu, isotopes with a high cross section for low-energy protons in nuclear reactions producing PET emitters, has been proposed to enhance the PET signal in the last millimeters of the proton path. However, it remains a challenge to achieve sufficient concentrations of these isotopes in the target volume. Here we investigate the possibilities of 18O-enriched water (18-W), a potential contrast agent that could be incorporated in large proportions in live tissues by replacing regular water. We hypothesize that 18-W could also mitigate the problem of biological washout, as PET (18F) isotopes created inside live cells would remain trapped in the form of fluoride anions (F-), allowing its signal to be detected even hours after irradiation. To test our hypothesis, we designed an experiment with two main goals: first, prove that 18-W can incorporate enough 18O into a living organism to produce a detectable signal from 18F after proton irradiation, and second, determine the amount of activity that remains trapped inside the cells. The experiment was performed on a chicken embryo chorioallantoic membrane tumor model of head and neck cancer. Seven eggs with visible tumors were infused with 18-W and irradiated with 8-MeV protons (range in water: 0.74 mm), equivalent to clinical protons at the end of particle range. The activity produced after irradiation was detected and quantified in a small-animal PET-CT scanner, and further studied by placing ex-vivo tumours in a gamma radiation detector. In the acquired images, specific activity of 18F (originating from 18-W) could be detected in the tumour area of the alive chicken embryo up to 9 h after irradiation, which confirms that low-energy protons can indeed produce a detectable PET signal if a suitable contrast agent is employed. Moreover, dynamic PET studies in two of the eggs evidenced a minimal effect of biological washout, with 68% retained specific 18F activity at 8 h after irradiation. Furthermore, ex-vivo analysis of 4 irradiated tumours showed that up to 3% of oxygen atoms in the targets were replaced by 18O from infused 18-W, and evidenced an entrapment of 59% for specific activity of 18F after washing, supporting our hypothesis that F- ions remain trapped within the cells. An infusion of 18-W can incorporate 18O in animal tissues by replacing regular water inside cells, producing a PET signal when irradiated with low-energy protons that could be used for range verification in protontherapy. 18F produced inside cells remains entrapped and suffers from minimal biological washout, allowing for a sharper localization with longer PET acquisitions. Further studies must evaluate the feasibility of this technique in dosimetric conditions closer to clinical practice, in order to define potential protocols for its use in patients.
Collapse
Affiliation(s)
- Samuel España
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Daniel Sánchez-Parcerisa
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Sedecal Molecular Imaging, Algete, Madrid, Spain
| | - Paloma Bragado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Gutiérrez-Uzquiza
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Porras
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Carolina Gutiérrez-Neira
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Centro de Microanálisis de Materiales, CMAM-UAM, Madrid, Spain
| | - Andrea Espinosa
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Víctor V Onecha
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - José M Udías
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| | - Luis M Fraile
- Grupo de Física Nuclear and IPARCOS, Facultad de CC. Físicas, Universidad Complutense de Madrid, CEI Moncloa, 28040, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
3
|
Mayhew V, Omokehinde T, Johnson RW. Tumor dormancy in bone. Cancer Rep (Hoboken) 2020; 3:e1156. [PMID: 32632400 PMCID: PMC7337256 DOI: 10.1002/cnr2.1156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow is a common site of metastasis for a number of tumor types, including breast, prostate, and lung cancer, but the mechanisms controlling tumor dormancy in bone are poorly understood. In breast cancer, while advances in drug development, screening practices, and surgical techniques have dramatically improved survival rates in recent decades, metastatic recurrence in the bone remains common and can develop years or decades after elimination of the primary tumor. Recent Findings It is now understood that tumor cells disseminate to distant metastatic sites at early stages of tumor progression, leaving cancer survivors at a high risk of recurrence. This review will discuss mechanisms of bone lesion development and current theories of how dormant cancer cells behave in bone, as well as a number of processes suspected to be involved in the maintenance of and exit from dormancy in the bone microenvironment. Conclusions The bone is a complex microenvironment with a multitude of cell types and processes. Many of these factors, including angiogenesis, immune surveillance, and hypoxia, are thought to regulate tumor cell entry and exit from dormancy in different bone marrow niches.
Collapse
Affiliation(s)
- Vera Mayhew
- Graduate Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology
| | - Tolu Omokehinde
- Graduate Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology
| | - Rachelle W. Johnson
- Vanderbilt Center for Bone Biology
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
4
|
De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem Cell Plasticity and Dormancy in the Development of Cancer Therapy Resistance. Front Oncol 2019; 9:626. [PMID: 31355143 PMCID: PMC6636659 DOI: 10.3389/fonc.2019.00626] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer treatment with either standard chemotherapy or targeted agents often results in the emergence of drug-refractory cell populations, ultimately leading to therapy failure. The biological features of drug resistant cells are largely overlapping with those of cancer stem cells and include heterogeneity, plasticity, self-renewal ability, and tumor-initiating capacity. Moreover, drug resistance is usually characterized by a suppression of proliferation that can manifest as quiescence, dormancy, senescence, or proliferative slowdown. Alterations in key cellular pathways such as autophagy, unfolded protein response or redox signaling, as well as metabolic adaptations also contribute to the establishment of drug resistance, thus representing attractive therapeutic targets. Moreover, a complex interplay of drug resistant cells with the micro/macroenvironment and with the immune system plays a key role in dictating and maintaining the resistant phenotype. Recent studies have challenged traditional views of cancer drug resistance providing innovative perspectives, establishing new connections between drug resistant cells and their environment and indicating unexpected therapeutic strategies. In this review we discuss recent advancements in understanding the mechanisms underlying drug resistance and we report novel targeting agents able to overcome the drug resistant status, with particular focus on strategies directed against dormant cells. Research on drug resistant cancer cells will take us one step forward toward the development of novel treatment approaches and the improvement of relapse-free survival in solid and hematological cancer patients.
Collapse
Affiliation(s)
- Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Filippo La Torre
- Department of Surgical Sciences Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell 2018; 21:650-664.e8. [PMID: 29100014 DOI: 10.1016/j.stem.2017.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/18/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Squamous cell carcinomas (SCCs) are heterogeneous tumors sustained by tumor-propagating cancer cells (TPCs). SCCs frequently resist chemotherapy through still unknown mechanisms. Here, we combine H2B-GFP-based pulse-chasing with cell-surface markers to distinguish quiescent from proliferative TPCs within SCCs. We find that quiescent TPCs resist DNA damage and exhibit increased tumorigenic potential in response to chemotherapy, whereas proliferative TPCs undergo apoptosis. Quiescence is regulated by TGF-β/SMAD signaling, which directly regulates cell-cycle gene transcription to control a reversible G1 cell-cycle arrest, independent of p21CIP function. Indeed, genetic or pharmacological TGF-β inhibition increases the susceptibility of TPCs to chemotherapy because it prevents entry into a quiescent state. These findings provide direct evidence that TPCs can reversibly enter a quiescent, chemoresistant state and thereby underscore the need for combinatorial approaches to improve treatment of chemotherapy-resistant SCCs.
Collapse
|
6
|
Svobodova M, Raudenska M, Gumulec J, Balvan J, Fojtu M, Kratochvilova M, Polanska H, Horakova Z, Kostrica R, Babula P, Heger Z, Masarik M. Establishment of oral squamous cell carcinoma cell line and magnetic bead-based isolation and characterization of its CD90/CD44 subpopulations. Oncotarget 2017; 8:66254-66269. [PMID: 29029509 PMCID: PMC5630409 DOI: 10.18632/oncotarget.19914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, we describe the establishment of the human papillomavirus 18-positive, stage II, grade 1, T2N0M0 head and neck tumor primary cell line derived from oral squamous cell carcinoma of a non-smoking patient by using two different protocols. Furthermore, a preparation of subpopulations derived from this primary cell line according to the cluster of differentiation molecules CD44/CD90 status using magnetic bead-based separation and their characterization was performed. Impedance-based real-time cell analysis, enzyme-linked immunsorbant assay (ELISA), wound-healing assay, flow-cytometry, gene expression analysis, and MTT assay were used to characterize these four subpopulations (CD44+/CD90-, CD44-/CD90-, CD44+/CD90+, CD44-/CD90-). We optimised methodics for establishement of primary cell lines derived from oral squamous cell carcinoma tissue samples and subsequent separation of mesenchymal (CD90+) and epithelial (CD90-) types of tumorous cells. Primary cell line prepared by using trypsin proteolysis was more viable than the one prepared by using collagenase. According to our results, CD90 separation is a necessary step in preparation of permanent tumor-tissue derived cell lines. Based on the wound-healing assay, CD44+ cells exhibited stronger migratory capacity than CD44- subpopulations. CD44+ subpopulations had also significantly higher expression of BIRC5 and SOX2, lower expression of FLT1 and IL6, and higher levels of basal autophagy compared to CD44- subpopulations. Furthermore, co-cultivation experiments revealed that CD44-/CD90+ cells supported growth of epithelial tumor cells (CD44+/CD90-). On the contrary, factors released by CD44+/CD90+ type of cells seem to have rather inhibiting effect. The most cisplatin-resistant subpopulation with the shortest doubling time was CD44-/CD90+, but this subpopulation had a low migratory capacity.
Collapse
Affiliation(s)
- Marketa Svobodova
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Hana Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne’s Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne’s Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, CZ-61600 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic
| |
Collapse
|
7
|
Ahmedah HT, Patterson LH, Shnyder SD, Sheldrake HM. RGD-Binding Integrins in Head and Neck Cancers. Cancers (Basel) 2017; 9:cancers9060056. [PMID: 28587135 PMCID: PMC5483875 DOI: 10.3390/cancers9060056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alterations in integrin expression and function promote tumour growth, invasion, metastasis and neoangiogenesis. Head and neck cancers are highly vascular tumours with a tendency to metastasise. They express a wide range of integrin receptors. Expression of the αv and β1 subunits has been explored relatively extensively and linked to tumour progression and metastasis. Individual receptors αvβ3 and αvβ5 have proved popular targets for diagnostic and therapeutic agents but lesser studied receptors, such as αvβ6, αvβ8, and β1 subfamily members, also show promise. This review presents the current knowledge of integrin expression and function in squamous cell carcinoma of the head and neck (HNSCC), with a particular focus on the arginine-glycine-aspartate (RGD)-binding integrins, in order to highlight the potential of integrins as targets for personalised tumour-specific identification and therapy.
Collapse
Affiliation(s)
- Hanadi Talal Ahmedah
- Radiological Sciences Department, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia.
| | | | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
8
|
Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CSO, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C, Di Croce L, Benitah SA. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2016; 541:41-45. [PMID: 27974793 DOI: 10.1038/nature20791] [Citation(s) in RCA: 917] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44bright cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36+ metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36+ metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Stefania Mejetta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Andrés Castellanos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Antoni Berenguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Agustí Toll
- IMIM, Department of Dermatology, Hospital del Mar, 08003 Barcelona
| | - Juan Antonio Hueto
- Vall D´Hebron Hospital, Barcelona, Department of Oral and Maxillofacial Surgery, Universitat Autònoma de Barcelona, Barcelona 08035 Spain
| | - Coro Bescós
- Vall D´Hebron Hospital, Barcelona, Department of Oral and Maxillofacial Surgery, Universitat Autònoma de Barcelona, Barcelona 08035 Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
9
|
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 2016; 62:122-135. [PMID: 27865365 DOI: 10.1016/j.oraloncology.2016.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
10
|
Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, Kunz-Schughart L, Baumann M, Dubrovska A. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget 2016; 6:34494-509. [PMID: 26460734 PMCID: PMC4741468 DOI: 10.18632/oncotarget.5417] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances in understanding of the molecular pathogenesis and improvement of treatment techniques, locally advanced head and neck squamous cell carcinoma (HNSCC) remains associated with an unfavorable prognosis. Compelling evidence suggests that cancer stem cells (CSC) may cause tumor recurrence if they are not eradicated by current therapies as radiotherapy or radio-chemotherapy. Recent in vitro studies have demonstrated that CSCs may be protected from treatment-induced death by multiple intrinsic and extrinsic mechanisms. Therefore, early determination of CSC abundance in tumor biopsies prior-treatment and development of therapeutics, which specifically target CSCs, are promising strategies to optimize treatment. Here we provide evidence that aldehyde dehydrogenase (ALDH) activity is indicative for radioresistant HNSCC CSCs. Our study suggests that ALDH+ cells comprise a population that maintains its tumorigenic properties in vivo after irradiation and may provide tumor regrowth after therapy. We found that ALDH activity in HNSCC cells can be attributed, at least in part, to the ALDH1A3 isoform and inhibition of the ALDH1A3 expression by small interfering RNA (siRNA) decreases tumor cell radioresistance. The expression dynamic of ALDH1A3 upon irradiation by either induction or selection of the ALDH1A3 positive population correlates to in vivo curability, suggesting that changes in protein expression during radiotherapy are indicative for tumor radioresistance. Our data indicate that ALDH1A3+ HNSCC cells may contribute to tumor relapse after irradiation, and inhibition of this cell population might improve therapeutic response to radiotherapy.
Collapse
Affiliation(s)
- Ina Kurth
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Linda Hein
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Katrin Mäbert
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Claudia Peitzsch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Lydia Koi
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monica Cojoc
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Leoni Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines. Med Oncol 2015; 32:157. [PMID: 25840791 DOI: 10.1007/s12032-015-0596-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/18/2015] [Indexed: 12/28/2022]
Abstract
The refractory pulmonary adenocarcinoma is characterized by its metastasis and resistance to cytotoxic agents. While the underlying molecular mechanism is unclear, the property of chemoresistance may mainly lie in the presence of highly resistant cancer stem cells. We examined the function of Wnt/β-catenin signaling in maintaining cancer stem cells (CSCs) in lung adenocarcinoma. Lentivirus-mediated knockdown of β-catenin expression accelerated cell cycle. Subsequently, β-catenin knockdown PC9 cells improve the sensitivity to chemotherapy. Further focusing on Wnt signal by administrating PP and EGFR-TKIs as Wnt antagonists can decrease metastasis and induce apoptosis. Collectively, these results indicate that Wnt signaling pathway plays an essential role in maintaining highly resistant CSCs, regulation of cell cycle, metastasis and apoptosis in lung adenocarcinoma.
Collapse
|
12
|
Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, Ekpin E, George A, Zheng Y, Lam HM, Morrissey C, Chung CY, Farias EF, Bernstein E, Aguirre-Ghiso JA. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun 2015; 6:6170. [PMID: 25636082 PMCID: PMC4313575 DOI: 10.1038/ncomms7170] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
Metastases can originate from disseminated tumour cells (DTCs), which may be dormant for years before reactivation. Here we find that the orphan nuclear receptor NR2F1 is epigenetically upregulated in experimental head and neck squamous cell carcinoma (HNSCC) dormancy models and in DTCs from prostate cancer patients carrying dormant disease for 7-18 years. NR2F1-dependent dormancy is recapitulated by a co-treatment with the DNA-demethylating agent 5-Aza-C and retinoic acid across various cancer types. NR2F1-induced quiescence is dependent on SOX9, RARβ and CDK inhibitors. Intriguingly, NR2F1 induces global chromatin repression and the pluripotency gene NANOG, which contributes to dormancy of DTCs in the bone marrow. When NR2F1 is blocked in vivo, growth arrest or survival of dormant DTCs is interrupted in different organs. We conclude that NR2F1 is a critical node in dormancy induction and maintenance by integrating epigenetic programmes of quiescence and survival in DTCs.
Collapse
Affiliation(s)
- Maria Soledad Sosa
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Falguni Parikh
- 1] Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA [2] Department of Otolaryngology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Alexandre Gaspar Maia
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Yeriel Estrada
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Almudena Bosch
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Paloma Bragado
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Esther Ekpin
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Ajish George
- Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Yang Zheng
- Department of Otolaryngology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, Washington, WA 98195, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, WA 98195, USA
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Eduardo F Farias
- 1] Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA [2] Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Emily Bernstein
- 1] Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA [2] Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York 10029, USA [3] Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Julio A Aguirre-Ghiso
- 1] Division of Hematology and Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA [2] Department of Otolaryngology, Mount Sinai School of Medicine, New York, New York 10029, USA [3] Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York 10029, USA [4] Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
13
|
Zhu G, Liu L, She L, Tan H, Wei M, Chen C, Su Z, Huang D, Tian Y, Qiu Y, Liu Y, Zhang X. Elevated expression of histone demethylase PHF8 associates with adverse prognosis in patients of laryngeal and hypopharyngeal squamous cell carcinoma. Epigenomics 2014; 7:143-53. [PMID: 25496457 DOI: 10.2217/epi.14.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Overexpression of histone demethylase PHF8 has been reported to function as an oncoprotein in many cancers; however, the implications of PHF8 involvement in laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) remain unclear. This study aims to explore the expression of PHF8 and its clinical significance in LHSCC. MATERIALS & METHODS Western blotting and immunohistochemistry were performed to evaluate PHF8 protein expression in fresh and archived LHSCC samples. Global expressions of H3K27 and H3K9 methylation were analyzed in a cell line with PHF8 siRNA treatment. RESULTS & CONCLUSION In our study, PHF8 was upregulated in fresh LHSCC tissues. Immunohistochemical staining revealed that the expression of PHF8 was positively associated with T classification, clinical stage, primary tumor position and tumor relapse. Survival analysis demonstrated that high PHF8 expression was significantly associated with shorter overall survival and disease-free survival. Moreover, PHF8 regulates the levels of H3K9me2 and H3K27me2 in LHSCC. Taken together, PHF8 might be a novel prognostic marker for this disease.
Collapse
Affiliation(s)
- Gangcai Zhu
- Department of Otolaryngology Head & Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Saba NF, Wilson M, Doho G, DaSilva J, Benjamin Isett R, Newman S, Chen ZG, Magliocca K, Rossi MR. Mutation and Transcriptional Profiling of Formalin-Fixed Paraffin Embedded Specimens as Companion Methods to Immunohistochemistry for Determining Therapeutic Targets in Oropharyngeal Squamous Cell Carcinoma (OPSCC): A Pilot of Proof of Principle. Head Neck Pathol 2014; 9:223-35. [PMID: 25236499 PMCID: PMC4424213 DOI: 10.1007/s12105-014-0566-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/17/2014] [Indexed: 11/24/2022]
Abstract
The role of molecular methods in the diagnosis of head and neck cancer is rapidly evolving and holds great potential for improving outcomes for all patients who suffer from this diverse group of malignancies . However, there is considerable debate as to the best clinical approaches, particularly for Next Generation Sequencing (NGS). The choices of NGS methods such as whole exome, whole genome, whole transcriptomes (RNA-Seq) or multiple gene resequencing panels, each have strengths and weakness based on data quality, the size of the data, the turnaround time for data analysis, and clinical actionability. There have also been a variety of gene expression signatures established from microarray studies that correlate with relapse and response to treatment, but none of these methods have been implemented as standard of care for oropharyngeal squamous cell carcinoma (OPSCC). Because many genomic methodologies are still far from the capabilities of most clinical laboratories, we chose to explore the use of a combination of off the shelf targeted mutation analysis and gene expression analysis methods to complement standard anatomical pathology methods. Specifically, we have used the Ion Torrent AmpliSeq cancer panel in combination with the NanoString nCounter Human Cancer Reference Kit on 8 formalin-fixed paraffin embedded (FFPE) OPSCC tumor specimens, (4) HPV-positive and (4) HPV-negative. Differential expression analysis between HPV-positive and negative groups showed that expression of several genes was highly likely to correlate with HPV status. For example, WNT1, PDGFA and OGG1 were all over-expressed in the positive group. Our results show the utility of these methods with routine FFPE clinical specimens to identify potential therapeutic targets which could be readily applied in a clinical trial setting for clinical laboratories lacking the instrumentation or bioinformatics infrastructure to support comprehensive genomics workflows. To the best of our knowledge, these preliminary experiments are among the earliest to combine both mutational and gene expression profiles using Ion Torrent and NanoString technologies. This reports serves as a proof of principle methodology in OPSCC.
Collapse
Affiliation(s)
- Nabil F. Saba
- />Department of Otolaryngology and Head and Neck Oncology Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA USA , />Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Malania Wilson
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Gregory Doho
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Juliana DaSilva
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - R. Benjamin Isett
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Scott Newman
- />Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, GA USA
| | - Zhuo Georgia Chen
- />Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Kelly Magliocca
- />Department of Otolaryngology and Head and Neck Oncology Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA USA , />Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Michael R. Rossi
- />Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA , />Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
15
|
Abstract
Metastases arise from residual disseminated tumour cells (DTCs). This can happen years after primary tumour treatment because residual tumour cells can enter dormancy and evade therapies. As the biology of minimal residual disease seems to diverge from that of proliferative lesions, understanding the underpinnings of this new cancer biology is key to prevent metastasis. Analysis of approximately 7 years of literature reveals a growing focus on tumour and normal stem cell quiescence, extracellular and stromal microenvironments, autophagy and epigenetics as mechanisms that dictate tumour cell dormancy. In this Review, we attempt to integrate this information and highlight both the weaknesses and the strengths in the field to provide a framework to understand and target this crucial step in cancer progression.
Collapse
Affiliation(s)
- María Soledad Sosa
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Paloma Bragado
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Tisch Cancer Institute
- Black Family Stem Cell Institute, Ichan School of Medicine at Mount Sinai, New York NY 10029, USA
| |
Collapse
|
16
|
Sztiller-Sikorska M, Koprowska K, Majchrzak K, Hartman M, Czyz M. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells. PLoS One 2014; 9:e90783. [PMID: 24595456 PMCID: PMC3940936 DOI: 10.1371/journal.pone.0090783] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. Methods We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. Findings Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5)-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF) and proto-oncogene c-MYC. Conclusion Selected anti-clonogenic compounds might be further investigated as potential adjuvants targeting melanoma stem-like cells in the combined anti-melanoma therapy, whereas selected cytotoxic but not anti-clonogenic compounds, which increased the frequency of ABCB5-positive cells and remained slow-cycling cells unaffected, might be considered as a tool to enrich cultures with cells exhibiting melanoma stem cell characteristics.
Collapse
Affiliation(s)
| | - Kamila Koprowska
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Kinga Majchrzak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Mariusz Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
17
|
Lee N, Barthel SR, Schatton T. Melanoma stem cells and metastasis: mimicking hematopoietic cell trafficking? J Transl Med 2014; 94:13-30. [PMID: 24126889 PMCID: PMC3941309 DOI: 10.1038/labinvest.2013.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a highly metastatic cancer that bears responsibility for the majority of skin cancer-related deaths. Amidst the research efforts to better understand melanoma progression, there has been increasing evidence that hints at a role for a subpopulation of virulent cancer cells, termed malignant melanoma stem or initiating cells (MMICs), in metastasis formation. MMICs are characterized by their preferential ability to initiate and propagate tumor growth and their selective capacity for self-renewal and differentiation into less tumorigenic melanoma cells. The frequency of MMICs has been shown to correlate with poor clinical prognosis in melanoma. In addition, MMICs are enriched among circulating tumor cells in the peripheral blood of cancer patients, suggesting that MMICs may be a critical factor in the metastatic cascade. Although these links exist between MMICs and metastatic disease, the mechanisms by which MMICs may advance metastatic progression are only beginning to be elucidated. Recent studies have shown that MMICs express molecules critical for hematopoietic cell maintenance and trafficking, providing a possible explanation for how circulating MMICs could drive melanoma dissemination. We therefore propose that MMICs might fuel melanoma metastasis by exploiting homing mechanisms commonly utilized by hematopoietic cells. Here we review the biological properties of MMICs and the existing literature on their metastatic potential. We will discuss possible mechanisms by which MMICs might initiate metastases in the context of established knowledge of cancer stem cells in other cancers and of hematopoietic homing molecules, with a particular focus on selectins, integrins, chemokines and chemokine receptors known to be expressed by melanoma cells. Biological understanding of how these molecules might be utilized by MMICs to propel the metastatic cascade could critically impact the development of more effective therapies for advanced disease.
Collapse
Affiliation(s)
- Nayoung Lee
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven R. Barthel
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Schatton
- Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Transplantation Research Center, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA,To whom correspondence should be addressed: Tobias Schatton, Pharm.D., Ph.D., Department of Dermatology, Brigham and Women’s Hospital, Harvard Institutes of Medicine, Rm. 673B, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| |
Collapse
|
18
|
Deng R, Wang X, Liu Y, Yan M, Hanada S, Xu Q, Zhang J, Han Z, Chen W, Zhang P. A new gamboge derivative compound 2 inhibits cancer stem-like cells via suppressing EGFR tyrosine phosphorylation in head and neck squamous cell carcinoma. J Cell Mol Med 2013; 17:1422-33. [PMID: 24112466 PMCID: PMC4117555 DOI: 10.1111/jcmm.12129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/14/2013] [Indexed: 02/04/2023] Open
Abstract
Cancer stem-like cells represent a population of tumour-initiating cells that lead to the relapse and metastasis of cancer. Conventional anti-cancer therapeutic drugs are usually ineffective in eliminating the cancer stem-like cells. Therefore, new drugs or therapeutic methods effectively targeting cancer stem-like cells are in urgent need to successfully cure cancer. Gamboge is a natural anti-cancer medicine whose pharmacological effects are different from those of conventional chemotherapeutical drugs and they can kill some kinds of cancer cells selectively. In this study, we identified a new gamboge derivative, Compound 2 (C2), which presents eminent suppression effects on cancer cells. Interestingly, when compared with cisplatin (CDDP), C2 effectively suppresses the growth of both cancer stem-like cells and non-cancer stem-like cells derived from head and neck squamous cell carcinoma (HNSCC), inhibiting the formation of tumour spheres and colony in vitro, resulting in the loss of expression of multiple cancer stem cell (CSC)-related molecules in HNSCC. Treating with C2 effectively inhibited the growth of HNSCC in BALB/C nude mice. Further investigation found that C2 notably inhibits the activation of epithelial growth factor receptor and the phosphorylation of its downstream protein kinase homo sapiens v-akt murine thymoma viral oncogene homolog (AKT) in HNSCC, resulting in down-regulation of multiple CSC-related molecules in HNSCC. Our study has demonstrated that C2 effectively inhibits the stem-like property of cancer stem-like cells in HNSCC and may be a hopeful targeting drug in cancer therapy.
Collapse
Affiliation(s)
- Rongxin Deng
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
IFN-γ selectively exerts pro-apoptotic effects on tumor-initiating label-retaining colon cancer cells. Cancer Lett 2013; 336:174-84. [DOI: 10.1016/j.canlet.2013.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/01/2013] [Accepted: 04/26/2013] [Indexed: 12/29/2022]
|
20
|
Inactivation of the mTORC1-eukaryotic translation initiation factor 4E pathway alters stress granule formation. Mol Cell Biol 2013; 33:2285-301. [PMID: 23547259 DOI: 10.1128/mcb.01517-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG.
Collapse
|
21
|
Abstract
In recent years, major advances in single-cell measurement systems have included the introduction of high-throughput versions of traditional flow cytometry that are now capable of measuring intracellular network activity, the emergence of isotope labels that can enable the tracking of a greater variety of cell markers and the development of super-resolution microscopy techniques that allow measurement of RNA expression in single living cells. These technologies will facilitate our capacity to catalog and bring order to the inherent diversity present in cancer cell populations. Alongside these developments, new computational approaches that mine deep data sets are facilitating the visualization of the shape of the data and enabling the extraction of meaningful outputs. These applications have the potential to reveal new insights into cancer biology at the intersections of stem cell function, tumor-initiating cells and multilineage tumor development. In the clinic, they may also prove important not only in the development of new diagnostic modalities but also in understanding how the emergence of tumor cell clones harboring different sets of mutations predispose patients to relapse or disease progression.
Collapse
|
22
|
Facompre N, Nakagawa H, Herlyn M, Basu D. Stem-like cells and therapy resistance in squamous cell carcinomas. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:235-65. [PMID: 22959028 DOI: 10.1016/b978-0-12-397927-8.00008-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs) within squamous cell carcinomas (SCCs) are hypothesized to contribute to chemotherapy and radiation resistance and represent potentially useful pharmacologic targets. Hallmarks of the stem cell phenotype that may contribute to therapy resistance of CSCs include quiescence, evasion of apoptosis, resistance to DNA damage, and expression of drug transporter pumps. A variety of CSC populations within SCCs of the head and neck and esophagus have been defined tentatively, based on diverse surface markers and functional assays. Stem-like self-renewal and differentiation capacities of these SCC subpopulations are supported by sphere formation and clonogenicity assays in vitro as well as limiting dilution studies in xenograft models. Early evidence supports a role for SCC CSCs in intrinsic therapy resistance, while detailed mechanisms by which these subpopulations evade treatment remain to be defined. Development of novel SCC therapies will be aided by pursuing such mechanisms as well as refining current definitions for CSCs and clarifying their relevance to hierarchical versus dynamic models of stemness.
Collapse
Affiliation(s)
- Nicole Facompre
- Department of Otorhinolaryngology--Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA; The Wistar Institute, Philadelphia, PA, USA
| | | | | | | |
Collapse
|