1
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
2
|
Rawlins LE, Almousa H, Khan S, Collins SC, Milev MP, Leslie J, Saint-Dic D, Khan V, Hincapie AM, Day JO, McGavin L, Rowley C, Harlalka GV, Vancollie VE, Ahmad W, Lelliott CJ, Gul A, Yalcin B, Crosby AH, Sacher M, Baple EL. Biallelic variants in TRAPPC10 cause a microcephalic TRAPPopathy disorder in humans and mice. PLoS Genet 2022; 18:e1010114. [PMID: 35298461 PMCID: PMC8963566 DOI: 10.1371/journal.pgen.1010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/29/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
The highly evolutionarily conserved transport protein particle (TRAPP) complexes (TRAPP II and III) perform fundamental roles in subcellular trafficking pathways. Here we identified biallelic variants in TRAPPC10, a component of the TRAPP II complex, in individuals with a severe microcephalic neurodevelopmental disorder. Molecular studies revealed a weakened interaction between mutant TRAPPC10 and its putative adaptor protein TRAPPC2L. Studies of patient lymphoblastoid cells revealed an absence of TRAPPC10 alongside a concomitant absence of TRAPPC9, another key TRAPP II complex component associated with a clinically overlapping neurodevelopmental disorder. The TRAPPC9/10 reduction phenotype was recapitulated in TRAPPC10-/- knockout cells, which also displayed a membrane trafficking defect. Notably, both the reduction in TRAPPC9 levels and the trafficking defect in these cells could be rescued by wild type but not mutant TRAPPC10 gene constructs. Moreover, studies of Trappc10-/- knockout mice revealed neuroanatomical brain defects and microcephaly, paralleling findings seen in the human condition as well as in a Trappc9-/- mouse model. Together these studies confirm autosomal recessive TRAPPC10 variants as a cause of human disease and define TRAPP-mediated pathomolecular outcomes of importance to TRAPPC9 and TRAPPC10 mediated neurodevelopmental disorders in humans and mice. Microcephalic neurodevelopmental disorders are a group of conditions that are often inherited in families, involving small head size and abnormal brain development and function. This often results in delayed development of an affected child, affecting their movement, language and/or non-verbal communication and learning, as well as seizures and neuropsychiatric problems. A group of proteins called the transport protein particles (TRAPPs) are important for the transport of cargos inside cells. Alterations within a number of the TRAPP proteins have previously been associated with human inherited diseases called the ‘TRAPPopathies’, which involve neurodevelopmental and skeletal abnormalities. Here we show that TRAPPC10 gene alterations cause a new TRAPPopathy microcephalic neurodevelopmental disorder, and we provide a detailed clinical description of the condition termed ‘TRAPPC10-related disorder’. Our studies in mice lacking the TRAPPC10 gene identified similar features to those of affected humans, including small brain size and skeletal abnormalities. Our molecular studies showed that an affected individual with an alteration in the TRAPPC10 gene has no functional TRAPPC10 protein in their cells, which in turn causes a reduction in levels of another important TRAPP molecule, TRAPPC9. Cells lacking TRAPPC10 also display abnormalities in cellular transport processes. Together our data confirm alterations in TRAPPC10 as a cause of a microcephalic neurodevelopmental disorder in both humans and mice.
Collapse
Affiliation(s)
- Lettie E. Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
| | - Hashem Almousa
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Shazia Khan
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Stephan C. Collins
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Miroslav P. Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Joseph Leslie
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Djenann Saint-Dic
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Valeed Khan
- Department of Molecular Diagnostics, Rehman Medical Institute, Peshawar, Pakistan
| | | | - Jacob O. Day
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Lucy McGavin
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | | | - Gaurav V. Harlalka
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Department of Pharmacology, Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | | | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Binnaz Yalcin
- Institute of Genetics and Molecular and Cellular Biology, Inserm, Illkirch, France
- Inserm, University of Bourgogne Franche-Comté, Dijon, France
| | - Andrew H. Crosby
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Emma L. Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Biallelic loss of TRAPPC9 function links vesicle trafficking pathway to autosomal recessive intellectual disability. J Hum Genet 2022; 67:279-284. [PMID: 34983975 DOI: 10.1038/s10038-021-01007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The trafficking protein particle (TRAPP) complex subunit 9 (C9) protein is a member of TRAPP-II complexes and regulates vesicle trafficking. Biallelic mutations in the TRAPPC9 gene are responsible for intellectual disability with expanded developmental delay, epilepsy, microcephaly, and brain atrophy. TRAPPC9-related disease list is still expanding, however, the functional effects of only a limited fraction of these have been studied. METHODS In a patient with a pathological variant in TRAPPC9, clinical examination and cranial imaging findings were evaluated. Whole-exome sequencing, followed by Sanger sequencing was performed to detect and verify the variant. To confirm the functional effect of the mutation; variant mRNA and protein expression levels were evaluated by qRT-PCR and Western blotting. Immunostaining for TRAPPC9 and lipid droplet accumulation were examined. RESULTS We have identified a novel homozygous c.696C>G (p.Phe232Leu) pathogenic variant in TRAPPC9 (NM_031466.6) gene as a cause of severe developmental delay. Functional characterization of the TRAPPC9 variant resulted in decreased mRNA and protein expression. The intracellular findings showed that TRAPPC9 protein build-up around the nucleus in mutant type while there was no specific accumulation in the control cell line. This disrupted protein pattern affected the amount of neutral lipid-carrying vesicles and their homogenous distribution at a decreasing level. CONCLUSION Biallelic variants in the TRAPPC9 gene have been reported as the underlying cause of intellectual disability. This study provides functional evidence of the novel variant in TRAPPC9 We demonstrated that the loss of function variant exclusively targeting TRAPPC9 may explicate the neurological findings through vesicle trafficking.
Collapse
|
4
|
Pérez-Rodriguez S, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA. Compartmentalized Proteomic Profiling Outlines the Crucial Role of the Classical Secretory Pathway during Recombinant Protein Production in Chinese Hamster Ovary Cells. ACS OMEGA 2021; 6:12439-12458. [PMID: 34056395 PMCID: PMC8154153 DOI: 10.1021/acsomega.0c06030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 05/11/2023]
Abstract
Different cellular processes that contribute to protein production in Chinese hamster ovary (CHO) cells have been previously investigated by proteomics. However, although the classical secretory pathway (CSP) has been well documented as a bottleneck during recombinant protein (RP) production, it has not been well represented in previous proteomic studies. Hence, the significance of this pathway for production of RP was assessed by identifying its own proteins that were associated to changes in RP production, through subcellular fractionation coupled to shot-gun proteomics. Two CHO cell lines producing a monoclonal antibody with different specific productivities were used as cellular models, from which 4952 protein groups were identified, which represent a coverage of 59% of the Chinese hamster proteome. Data are available via ProteomeXchange with identifier PXD021014. By using SAM and ROTS algorithms, 493 proteins were classified as differentially expressed, of which about 80% was proposed as novel targets and one-third were assigned to the CSP. Endoplasmic reticulum (ER) stress, unfolded protein response, calcium homeostasis, vesicle traffic, glycosylation, autophagy, proteasomal activity, protein synthesis and translocation into ER lumen, and secretion of extracellular matrix components were some of the affected processes that occurred in the secretory pathway. Processes from other cellular compartments, such as DNA replication, transcription, cytoskeleton organization, signaling, and metabolism, were also modified. This study gives new insights into the molecular traits of higher producer cells and provides novel targets for development of new sub-lines with improved phenotypes for RP production.
Collapse
Affiliation(s)
- Saumel Pérez-Rodriguez
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Tune Wulff
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Bjørn G. Voldborg
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Claudia Altamirano
- Laboratorio
de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085 Valparaíso, Chile
| | - Mauricio A. Trujillo-Roldán
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| | - Norma A. Valdez-Cruz
- Programa
de Investigación de Producción de Biomoléculas,
Departamento de Biología Molecular y Biotecnología,
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 Ciudad de
México, México
| |
Collapse
|
5
|
Shomron O, Hirschberg K, Burakov A, Kamentseva R, Kornilova E, Nadezhdina E, Brodsky I. Positioning of endoplasmic reticulum exit sites around the Golgi depends on BicaudalD2 and Rab6 activity. Traffic 2020; 22:64-77. [PMID: 33314495 DOI: 10.1111/tra.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is involved in biogenesis, modification and transport of secreted and membrane proteins. The ER membranes are spread throughout the cell cytoplasm as well as the export domains known as ER exit sites (ERES). A subpopulation of ERES is centrally localized proximal to the Golgi apparatus. The significance of this subpopulation on ER-to-Golgi transport remains unclear. Transport carriers (TCs) form at the ERES via a COPII-dependent mechanism and move to Golgi on microtubule (MT) tracks. It was shown previously that ERES are distributed along MTs and undergo chaotic short-range movements and sporadic rapid long-range movements. The long-range movements of ERES are impaired by either depolymerization of MTs or inhibition of dynein, suggesting that ERES central concentration is mediated by dynein activity. We demonstrate that the processive movements of ERES are frequently coupled with the TC departure. Using the Sar1a[H79G]-induced ERES clustering at the perinuclear region, we identified BicaudalD2 (BicD2) and Rab6 as components of the dynein adaptor complex which drives perinuclear ERES concentration at the cell center. BicD2 partially colocalized with ERES and with TC. Peri-Golgi ERES localization was significantly affected by inhibition of BicD2 function with its N-terminal fragment or inhibition of Rab6 function with its dominant-negative mutant. Golgi accumulation of secretory protein was delayed by inhibition of Rab6 and BicD2. Thus, we conclude that a BicD2/Rab6 dynein adaptor is required for maintenance of Golgi-associated ERES. We propose that Golgi-associated ERES may enhance the efficiency of the ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Koret Hirschberg
- Tel-Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Anton Burakov
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| | - Rimma Kamentseva
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Kornilova
- Division of Intracellular Signaling and Transport, Institute of Cytology of Russian Academy of Science, St.Petersburg, Russian Federation
| | - Elena Nadezhdina
- Division of Cell Biology, Institute of Protein Research of Russian Academy of Science, Moscow, Russian Federation
| | - Ilya Brodsky
- Lomonosov Moscow State University, A. N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russian Federation
| |
Collapse
|
6
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Zhang C, Li C, Siu GKY, Luo X, Yu S. Distinct Roles of TRAPPC8 and TRAPPC12 in Ciliogenesis via Their Interactions With OFD1. Front Cell Dev Biol 2020; 8:148. [PMID: 32258032 PMCID: PMC7090148 DOI: 10.3389/fcell.2020.00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023] Open
Abstract
The transport protein particle (TRAPP) complex was initially identified as a tethering factor for COPII vesicle. Subsequently, three forms (TRAPPI, II, and III) have been found and TRAPPIII has been reported to serve as a regulator in autophagy. This study investigates a new role of mammalian TRAPPIII in ciliogenesis. We found a ciliopathy protein, oral-facial-digital syndrome 1 (OFD1), interacting with the TRAPPIII-specific subunits TRAPPC8 and TRAPPC12. TRAPPC8 is necessary for the association of OFD1 with pericentriolar material 1 (PCM1). Its depletion reduces the extent of colocalized signals between OFD1 and PCM1, but does not compromise the structural integrity of centriolar satellites. The interaction between TRAPPC8 and OFD1 inhibits that between OFD1 and TRAPPC12, suggesting different roles of TRAPPIII-specific subunits in ciliogenesis and explaining the differences in cilium lengths in TRAPPC8-depleted and TRAPPC12-depleted hTERT-RPE1 cells. On the other hand, TRAPPC12 depletion causes increased ciliary length because TRAPPC12 is required for the disassembly of primary cilia. Overall, this study has revealed different roles of TRAPPC8 and TRAPPC12 in the assembly of centriolar satellites and demonstrated a possible tethering role of TRAPPIII during ciliogenesis.
Collapse
Affiliation(s)
- Caiyun Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Gavin Ka Yu Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Xiaomin Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, China
| |
Collapse
|
8
|
Wilton KM, Gunderson LB, Hasadsri L, Wood CP, Schimmenti LA. Profound intellectual disability caused by homozygous TRAPPC9 pathogenic variant in a man from Malta. Mol Genet Genomic Med 2020; 8:e1211. [PMID: 32162493 PMCID: PMC7216808 DOI: 10.1002/mgg3.1211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
Background Intellectual disability is a complex multi‐faceted condition with diverse underlying etiologies. One rare form of intellectual disability is secondary to the loss of TRAPPC9, an activator of NF‐κB and a mediator of intracellular protein processing and trafficking. TRAPPC9 deficiency has been described in 48 patients with more than 15 pathologic variants. Method Clinical evaluation, magnetic resonance imaging, and whole‐exome sequencing were used to characterize the underlying cause of absent speech, restricted/repetitive behaviors, and worsening behavioral outbursts in 27‐year‐old man from Malta. Results Magnetic Resonance Imaging showed morphologic abnormalities, including global cerebral and cerebellar hypoplasia. Genetic analysis through Whole Exome Sequencing identified a homozygous deletion (c.568_574del) in TRAPPC9 resulting in a frameshift, premature stop codon, and ultimately a truncated protein (p.Trp190Argfs*95). In this case, the pathogenic variant was homozygous, identified in both of the parents without known consanguinity. Conclusion Given the phenotype and genotype consistent with a deficiency in TRAPPC9, it is likely that this patient represents a novel case of this rare genetic syndrome. Specifically, this case, in the context of 48 total reported patients, raises questions as to the geographic origin of the pathologic variant and optimal detection and therapeutic intervention for this condition.
Collapse
Affiliation(s)
- Katelynn M Wilton
- Mayo Clinic Alix School of Medicine Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Lisa A Schimmenti
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Hussein NJ, Mbimba T, Al-Adlaan AA, Ansari MY, Jaber FA, McDermott S, Kasumov T, Safadi FF. A novel regulatory role of TRAPPC9 in L-plastin-mediated osteoclast actin ring formation. J Cell Biochem 2019; 121:284-298. [PMID: 31453638 DOI: 10.1002/jcb.29168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.
Collapse
Affiliation(s)
- Nazar J Hussein
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Thomas Mbimba
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Asaad A Al-Adlaan
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Fatima A Jaber
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Biology, King Abdulaziz University, Jeddah, KSA.,Department of Biology, University of Jeddah, Jeddah, KSA
| | - Scott McDermott
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Takhar Kasumov
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Fayez F Safadi
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.,Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, Ohio
| |
Collapse
|
10
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
11
|
Hsu CL, Chou CH, Huang SC, Lin CY, Lin MY, Tung CC, Lin CY, Lai IP, Zou YF, Youngson NA, Lin SP, Yang CH, Chen SK, Gau SSF, Huang HS. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics. Hum Mol Genet 2019; 27:1039-1054. [PMID: 29346572 DOI: 10.1093/hmg/ddy023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022] Open
Abstract
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Collapse
Affiliation(s)
- Chi-Lin Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Hsuan Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Chuan Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Meng-Ying Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Che Tung
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Yen Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Pediatrics, Yong-He Cardinal Tien Hospital, Taipei 234, Taiwan
| | - Ivan Pochou Lai
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yan-Fang Zou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources & Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan.,Neurodevelopment Club in Taiwan, Taipei 10051, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Neurodevelopment Club in Taiwan, Taipei 10051, Taiwan
| |
Collapse
|
12
|
Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2018; 20:5-26. [PMID: 30152084 DOI: 10.1111/tra.12615] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nassim Shahrzad
- Department of Medicine, University of California, San Francisco, California
| | - Hiba Kamel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Mbimba T, Hussein NJ, Najeed A, Safadi FF. TRAPPC9: Novel insights into its trafficking and signaling pathways in health and disease (Review). Int J Mol Med 2018; 42:2991-2997. [PMID: 30272317 DOI: 10.3892/ijmm.2018.3889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Trafficking protein particle complex 9 (TRAPPC9) is a protein subunit of the transport protein particle II (TRAPPII), which has been reported to be important in the trafficking of cargo from the endoplasmic reticulum (ER) to the Golgi, and in intra‑Golgi and endosome‑to‑Golgi transport in yeast cells. In mammalian cells, TRAPPII has been shown to be important in Golgi vesicle tethering and intra‑Golgi transport. TRAPPC9 is considered to be a novel molecule capable of modulating the activation of nuclear factor‑κB (NF‑κB). Mutations in TRAPPC9 have been linked to a rare consanguineous hereditary form of mental retardation, as part of the NF‑κB pathways. In addition, TRAPPC9 has been reported to be involved in breast and colon cancer and liver diseases. The present review highlights the most recent publications on the structure, expression and function of TRAPPC9, and its association with various human diseases.
Collapse
Affiliation(s)
- Thomas Mbimba
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Nazar J Hussein
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ayesha Najeed
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
14
|
Duerinckx S, Meuwissen M, Perazzolo C, Desmyter L, Pirson I, Abramowicz M. Phenotypes in siblings with homozygous mutations of TRAPPC9 and/or MCPH1 support a bifunctional model of MCPH1. Mol Genet Genomic Med 2018; 6:660-665. [PMID: 29693325 PMCID: PMC6081227 DOI: 10.1002/mgg3.400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Autosomal recessive intellectual disability (ARID) is vastly heterogeneous. Truncating mutations of TRAPPC9 were reported in 8 ARID families. Autosomal recessive primary microcephaly (MCPH) represents another subgroup of ARID, itself very heterogeneous, where the size of the brain is very small since birth. MCPH1 plays a role at the centrosome via a BRCT1 domain, and in DNA Damage Repair (DDR) via BRCT2 and BRCT3, and it is not clear which of these two mechanisms causes MCPH in man. METHODS We studied the phenotype and sequenced the exome in two siblings with MCPH and their unaffected sister. RESULTS Homozygous mutations of TRAPPC9 (p.Leu178Pro) and of MCPH1 (p.Arg741X) were found in both affected siblings. Brain MRI showed anomalies previously associated with TRAPPC9 defects, supporting the implication of TRAPPC9 in the phenotype. Importantly, the asymptomatic sister with normal head size was homozygous for the MCPH1 truncating mutation and heterozygous for the TRAPPC9 mutation. CONCLUSION The affected siblings represent the first ARID cases with a TRAPPC9 missense mutation and with microcephaly of prenatal onset of. Furthermore, their unaffected sister represents strong evidence that the lack of MCPH1 BRCT3 domain does not cause MCPH in man, supporting a bifunctional model of MCPH1 where the centrosomal function is involved in brain volumic development and not the DDR function.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Department of Medical GeneticsHôpital Erasme and IRIBHMUniversité Libre de BruxellesBrusselsBelgium
| | - Marije Meuwissen
- Department of Medical GeneticsAntwerp University HospitalAntwerpBelgium
| | - Camille Perazzolo
- Department of Medical GeneticsHôpital Erasme and IRIBHMUniversité Libre de BruxellesBrusselsBelgium
| | - Laurence Desmyter
- Department of Medical GeneticsHôpital Erasme and IRIBHMUniversité Libre de BruxellesBrusselsBelgium
| | - Isabelle Pirson
- Department of Medical GeneticsHôpital Erasme and IRIBHMUniversité Libre de BruxellesBrusselsBelgium
| | - Marc Abramowicz
- Department of Medical GeneticsHôpital Erasme and IRIBHMUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
15
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
16
|
Gan W, Zhang C, Siu KY, Satoh A, Tanner JA, Yu S. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol 2017; 18:22. [PMID: 28486929 PMCID: PMC5424413 DOI: 10.1186/s12860-017-0138-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/20/2017] [Indexed: 02/04/2023] Open
Abstract
Background Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed. Results In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation. Conclusion These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjia Gan
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China.,Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Caiyun Zhang
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China
| | - Ka Yu Siu
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Tsushima naka 3-1-1, Okayama, 7008530, Japan
| | - Julian A Tanner
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong, Special Administrative Region of China
| | - Sidney Yu
- School of Biomedical Sciences, Shatin, N.T., Hong Kong, Special Administrative Region of China. .,Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, Special Administrative Region of China.
| |
Collapse
|
17
|
Zhao S, Li CM, Luo XM, Siu GKY, Gan WJ, Zhang L, Wu WKK, Chan HC, Yu S. Mammalian TRAPPIII Complex positively modulates the recruitment of Sec13/31 onto COPII vesicles. Sci Rep 2017; 7:43207. [PMID: 28240221 PMCID: PMC5327430 DOI: 10.1038/srep43207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/23/2017] [Indexed: 11/09/2022] Open
Abstract
The Transport protein particle (TRAPP) complex is a tethering factor for COPII vesicle. Of three forms of TRAPP (TRAPPI, II and III) complexes identified so far, TRAPPIII has been largely considered to play a role in autophagy. While depletion of TRAPPIII specific subunits caused defects in the early secretory pathway and TRAPPIII might interact with components of the COPII vesicle coat, its exact role remains to be determined. In this study, we studied the function of TRAPPIII in early secretory pathway using a TRAPPIII-specific subunit, TRAPPC12, as starting point. We found that TRAPPC12 was localized to the ER exit sites and ERGIC. In cells deleted with TRAPPC12, ERGIC and to a lesser extent, the Golgi became dispersed. ER-to-Golgi transport was also delayed. TRAPPC12, but not TRAPPC8, bound to Sec13/Sec31A tetramer but each Sec protein alone could not interact with TRAPPC12. TRAPPIII positively modulated the assembly of COPII outer layer during COPII vesicle formation. These results identified a novel function of TRAPPIII as a positive modulator of the outer layer of the COPII coat.
Collapse
Affiliation(s)
- Shan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Chun Man Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Xiao Min Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Gavin Ka Yu Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Wen Jia Gan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China.,Department of anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - William K K Wu
- Department of anesthesia, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Hsiao Chang Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| | - Sidney Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
18
|
Qin M, Zhang J, Xu C, Peng P, Tan L, Liu S, Huang J. Knockdown of NIK and IKKβ-Binding Protein (NIBP) Reduces Colorectal Cancer Metastasis through Down-Regulation of the Canonical NF-κΒ Signaling Pathway and Suppression of MAPK Signaling Mediated through ERK and JNK. PLoS One 2017; 12:e0170595. [PMID: 28125661 PMCID: PMC5268490 DOI: 10.1371/journal.pone.0170595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Despite the identification of many signaling pathways involved in colorectal cancer (CRC) tumorigenesis, metastatic CRC still remains one of the major causes of cancer related death. NIK and IKKβ-binding protein (NIBP) is one of the key regulators of the NF-κB signaling pathway, which has been implicated in CRC metastasis. The aim of this study was to investigate the possible role of NIBP in CRC metastasis through its regulation of NF-κΒ and extracellular regulated kinase/c-Janus kinase (ERK/JNK) signaling pathways. METHODS In this study NIBP, phosphorylated (p)-p65, p-ERK1/2, and p-JNK1/2 expression was examined in 130 CRC, and 25 adenoma tissue samples were studied by immunohistochemistry. NIBP shRNA knockdown was performed in HCT116 cells, and NF-κB and ERK/JNK pathway activity was measured after TNF-α stimulation in vitro and in vivo. RESULTS We found that NIBP, p-p65, p-ERK1/2, and p-JNK1/2 expression was higher in late stages of CRC compared to early stages or adenomas. Expression of p-p65, p-IκBα, p-IκBβ, p-ERK1/2, and p-JNK1/2 was inhibited in TNF-α stimulated HCT116 cells following NIBP knockdown. Nevertheless, p-ERK1/2 expression in un-transfected and NIBP knockdown HCT116 cells remained the same in the absence of TNF-α stimulation. Furthermore, cell motility and invasion were reduced in HCT116 cells following NIBP knockdown even after TNF-α treatment. Finally, primary tumor weight and liver metastasis were reduced in nude mice with orthotopically transplanted NIBP knockdown of HCT116 cells. CONCLUSION In conclusion, we demonstrated that NIBP knockdown reduces colorectal cancer metastasis through down-regulation of canonical NF-κΒ signaling and suppression of ERK and JNK signaling.
Collapse
Affiliation(s)
- Mengbin Qin
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jinxiu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chunyan Xu
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peng Peng
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Tan
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shiquan Liu
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jiean Huang
- Department of Gastroenterology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
- * E-mail:
| |
Collapse
|
19
|
Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan HC, Satoh A, Yu SS. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 2016; 36:441-457. [PMID: 28003315 DOI: 10.15252/embj.201694866] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/09/2022] Open
Abstract
The transport protein particle (TRAPP) was initially identified as a vesicle tethering factor in yeast and as a guanine nucleotide exchange factor (GEF) for Ypt1/Rab1. In mammals, structures and functions of various TRAPP complexes are beginning to be understood. We found that mammalian TRAPPII was a GEF for both Rab18 and Rab1. Inactivation of TRAPPII-specific subunits by various methods including siRNA depletion and CRISPR-Cas9-mediated deletion reduced lipolysis and resulted in aberrantly large lipid droplets. Recruitment of Rab18 onto lipid droplet (LD) surface was defective in TRAPPII-deleted cells, but the localization of Rab1 on Golgi was not affected. COPI regulates LD homeostasis. We found that the previously documented interaction between TRAPPII and COPI was also required for the recruitment of Rab18 to the LD We hypothesize that the interaction between COPI and TRAPPII helps bring TRAPPII onto LD surface, and TRAPPII, in turn, activates Rab18 and recruits it on the LD surface to facilitate its functions in LD homeostasis.
Collapse
Affiliation(s)
- Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiaomin Luo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Gavin Ky Siu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yongheng Liang
- Key Laboratory of Agricultural Environmental Microbiology of MOA, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hsiao Chang Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ayano Satoh
- The Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Sidney Sb Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
20
|
Host Cellular Protein TRAPPC6AΔ Interacts with Influenza A Virus M2 Protein and Regulates Viral Propagation by Modulating M2 Trafficking. J Virol 2016; 91:JVI.01757-16. [PMID: 27795429 PMCID: PMC5165196 DOI: 10.1128/jvi.01757-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) plays multiple roles in the early and late phases of viral infection. Once synthesized, M2 is translocated to the endoplasmic reticulum (ER), travels to the Golgi apparatus, and is sorted at the trans-Golgi network (TGN) for transport to the apical plasma membrane, where it functions in virus budding. We hypothesized that M2 trafficking along with its secretory pathway must be finely regulated, and host factors could be involved in this process. However, no studies examining the role of host factors in M2 posttranslational transport have been reported. Here, we used a yeast two-hybrid (Y2H) system to screen for host proteins that interact with the M2 protein and identified transport protein particle complex 6A (TRAPPC6A) as a potential binding partner. We found that both TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6A delta (TRAPPC6AΔ), interact with M2. Truncation and mutation analyses showed that the highly conserved leucine residue at position 96 of M2 is critical for mediating this interaction. The role of TRAPPC6AΔ in the viral life cycle was investigated by the knockdown of endogenous TRAPPC6AΔ with small interfering RNA (siRNA) and by generating a recombinant virus that was unable to interact with TRAPPC6A/TRAPPC6AΔ. The results indicated that TRAPPC6AΔ, through its interaction with M2, slows M2 trafficking to the apical plasma membrane, favors viral replication in vitro, and positively modulates virus virulence in mice. IMPORTANCE The influenza A virus M2 protein regulates the trafficking of not only other proteins but also itself along the secretory pathway. However, the host factors involved in the regulation of the posttranslational transport of M2 are largely unknown. In this study, we identified TRAPPC6A and its N-terminal internal-deletion isoform, TRAPPC6AΔ, as interacting partners of M2. We found that the leucine (L) residue at position 96 of M2 is critical for mediating this interaction, which leads us to propose that the high level of conservation of 96L is a consequence of M2 adaptation to its interacting host factor TRAPPC6A/TRAPPC6AΔ. Importantly, we discovered that TRAPPC6AΔ can positively regulate viral replication in vitro by modulating M2 trafficking to the plasma membrane.
Collapse
|
21
|
Kim JJ, Lipatova Z, Segev N. TRAPP Complexes in Secretion and Autophagy. Front Cell Dev Biol 2016; 4:20. [PMID: 27066478 PMCID: PMC4811894 DOI: 10.3389/fcell.2016.00020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
TRAPP is a highly conserved modular multi-subunit protein complex. Originally identified as a “transport protein particle” with a role in endoplasmic reticulum-to-Golgi transport, its multiple subunits and their conservation from yeast to humans were characterized in the late 1990s. TRAPP attracted attention when it was shown to act as a Ypt/Rab GTPase nucleotide exchanger, GEF, in the 2000s. Currently, three TRAPP complexes are known in yeast, I, II, and III, and they regulate two different intracellular trafficking pathways: secretion and autophagy. Core TRAPP contains four small subunits that self assemble to a stable complex, which has a GEF activity on Ypt1. Another small subunit, Trs20/Sedlin, is an adaptor required for the association of core TRAPP with larger subunits to form TRAPP II and TRAPP III. Whereas the molecular structure of the core TRAPP complex is resolved, the architecture of the larger TRAPP complexes, including their existence as dimers and multimers, is less clear. In addition to its Ypt/Rab GEF activity, and thereby an indirect role in vesicle tethering through Ypt/Rabs, a direct role for TRAPP as a vesicle tether has been suggested. This idea is based on TRAPP interactions with vesicle coat components. While much of the basic information about TRAPP complexes comes from yeast, mutations in TRAPP subunits were connected to human disease. In this review we will summarize new information about TRAPP complexes, highlight new insights about their function and discuss current controversies and future perspectives.
Collapse
Affiliation(s)
- Jane J Kim
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago Chicago, IL, USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
22
|
Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation. Sci Rep 2016; 6:23464. [PMID: 27010100 PMCID: PMC4806301 DOI: 10.1038/srep23464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction.
Collapse
|
23
|
Zhang Y, Liu S, Wang H, Yang W, Li F, Yang F, Yu D, Ramsey FV, Tuszyski GP, Hu W. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NFκB signaling. Oncotarget 2016; 6:6160-78. [PMID: 25704885 PMCID: PMC4467429 DOI: 10.18632/oncotarget.3349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
Regulatory mechanisms underlying constitutive and inducible NFκB activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NFκB-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NFκB luciferase reporter, thus sensitizing the cells to TNFα-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNFα-dependent manner. NIBP knockdown transiently attenuated TNFα-stimulated phosphorylation of IKK2/p65 and degradation of IκBα. In contrast, NIBP overexpression enhanced TNFα-induced NFκB activation, thus inhibiting constitutive and TNFα-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NFκΒ signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shu Liu
- Department of Biotherapy, The Forth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wensheng Yang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fan Yang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Frederick V Ramsey
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - George P Tuszyski
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
NIK- and IKKβ-binding protein promotes colon cancer metastasis by activating the classical NF-κB pathway and MMPs. Tumour Biol 2015; 37:5979-90. [DOI: 10.1007/s13277-015-4433-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
|
25
|
Verissimo F, Halavatyi A, Pepperkok R, Weiss M. A microtubule-independent role of p150glued in secretory cargo concentration at endoplasmic reticulum exit sites. J Cell Sci 2015; 128:4160-70. [PMID: 26459637 DOI: 10.1242/jcs.172395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023] Open
Abstract
Newly synthesized proteins are sorted into COPII-coated transport carriers at the endoplasmic reticulum (ER). Assembly of the COPII coat complex, which occurs at ER exit sites (ERES), is initiated by membrane association and GTP loading of SAR1, followed by the recruitment of the SEC23-SEC24 and SEC13-SEC31 subcomplexes. Both of these two subcomplexes stimulate GTP hydrolysis and coat disassembly. This inherent disassembly capacity of COPII complexes needs to be regulated to allow sufficient time for cargo sorting and transport carrier formation. By performing fluorescence recovery after photobleaching (FRAP) and mathematical modeling, we show that p150(glued) (also known as DCTN1), a component of the dynactin complex, stabilizes the COPII pre-budding complex on ER membranes in a microtubule-independent manner. Concentration of the secretory marker ts-O45-G at ERES is reduced in the presence of a C-terminal p150(glued) fragment that prevents binding of endogenous p150(glued) to SEC23. A similar cargo reduction is observed upon p150(glued) knockdown. Taken together, our data suggest that cargo concentration at ERES is regulated by p150(glued) to coordinate protein sorting and transport carrier formation with the subsequent long-range transport towards the Golgi complex along microtubules.
Collapse
Affiliation(s)
- Fatima Verissimo
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Aliaksandr Halavatyi
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstraße 1, Heidelberg D-69117, Germany
| | - Matthias Weiss
- Experimental Physics I, Universitaetsstr. 30, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
26
|
Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES. Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. BIOCHEMISTRY (MOSCOW) 2014; 79:879-93. [DOI: 10.1134/s0006297914090053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Brunet S, Sacher M. In Sickness and in Health: The Role of TRAPP and Associated Proteins in Disease. Traffic 2014; 15:803-18. [PMID: 24917561 DOI: 10.1111/tra.12183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stephanie Brunet
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
| | - Michael Sacher
- Department of Biology; Concordia University; 7141 Sherbrooke Street West, SP-457.01 Montreal QC H4B 1R6 Canada
- Department of Anatomy and Cell Biology; McGill University; 845 Sherbrooke Street West Montreal QC H3A 0G4 Canada
| |
Collapse
|
28
|
Zhang Y, Bitner D, Pontes Filho AA, Li F, Liu S, Wang H, Yang F, Adhikari S, Gordon J, Srinivasan S, Hu W. Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil 2014; 26:77-97. [PMID: 24011459 PMCID: PMC3962790 DOI: 10.1111/nmo.12234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND NIK- and IKK2-binding protein (NIBP)/TRAPPC9 is expressed in brain neurons, and human NIBP mutations are associated with neurodevelopmental disorders. The cellular distribution and function of NIBP in the enteric nervous system (ENS) remain unknown. METHODS Western blot and reverse transcription-polymerase chain reaction analysis were used respectively to identify the protein and mRNA expression of NIBP and other neuronal markers. Multi-labeled immunofluorescent microscopy and confocal image analysis were used to examine the cellular distribution of NIBP-like immunoreactivity (IR) in whole mount intestine. Enteric neuronal cell line (ENC) was infected with lentivirus carrying NIBP or its shRNA expression vectors and treated with vehicle or tumor necrosis factor (TNF)α. KEY RESULTS NIBP is expressed at both mRNA and protein levels in different regions and layers of the mouse intestine. NIBP-like-IR was co-localized with various neuronal markers, but not with glial, smooth muscular, or interstitial cells of Cajal markers. A small population of NIBP-expressing cells and fibers in extra-ganglionic and intra-ganglionic area were negative for pan-neuronal markers HuD or Peripherin. Relatively high NIBP-like-IR was found in 35-44% of myenteric neurons and 9-10% of submucosal neurons. Approximately 98%, 87%, and 43% of these relatively high NIBP-expressing neurons were positive for choline acetyltransferase, neuronal nitric oxide synthase and Calretinin, respectively. NIBP shRNA knockdown in ENC inhibited TNFα-induced NFκB activation and neuronal differentiation, whereas NIBP overexpression promoted it. CONCLUSIONS & INFERENCES NIBP is extensively expressed in the ENS with relatively high level in a subpopulation of enteric neurons. Various NIBP expression levels in different neurons may represent dynamic trafficking or posttranslational modification of NIBP in some functionally active neurons and ultimately regulate ENS plasticity.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Daniel Bitner
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Adalto Alfredo Pontes Filho
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Shu Liu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fan Yang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Sam Adhikari
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Jennifer Gordon
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University, 615 Michael St., Atlanta, GA 30322 and Atlanta VAMC, Decatur, GA, 30331
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
29
|
Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One 2013; 8:e76278. [PMID: 24086721 PMCID: PMC3785458 DOI: 10.1371/journal.pone.0076278] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs), factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during, and possibly pre-dating, the move from free-living marine algae to deadly human parasites.
Collapse
|
30
|
Zhapparova ON, Fokin AI, Vorobyeva NE, Bryantseva SA, Nadezhdina ES. Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Mol Biol Cell 2013; 24:3205-14. [PMID: 23985322 PMCID: PMC3806656 DOI: 10.1091/mbc.e13-03-0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The protein kinase SLK (LOSK) phosphorylates the 1A isoform of the p150Glued subunit of dynactin and targets it to the centrosome, where it maintains microtubule radial organization. In addition, dynactin phosphorylation is involved in Golgi reorientation in polarized cells. The microtubule- and centrosome-associated Ste20-like kinase (SLK; long Ste20-like kinase [LOSK]) regulates cytoskeleton organization and cell polarization and spreading. Its inhibition causes microtubule disorganization and release of centrosomal dynactin. The major function of dynactin is minus end–directed transport along microtubules in a complex with dynein motor. In addition, dynactin is required for maintenance of the microtubule radial array in interphase cells, and depletion of its centrosomal pool entails microtubule disorganization. Here we demonstrate that SLK (LOSK) phosphorylates the p150Glued subunit of dynactin and thus targets it to the centrosome, where it maintains microtubule radial organization. We show that phosphorylation is required only for centrosomal localization of p150Glued and does not affect its microtubule-organizing properties: artificial targeting of nonphosphorylatable p150Glued to the centrosome restores microtubule radial array in cells with inhibited SLK (LOSK). The phosphorylation site is located in a microtubule-binding region that is variable for two isoforms (1A and 1B) of p150Glued expressed in cultured fibroblast-like cells (isoform 1B lacks 20 amino acids in the basic microtubule-binding domain). The fact that SLK (LOSK) phosphorylates only a minor isoform 1A of p150Glued suggests that transport and microtubule-organizing functions of dynactin are distinctly divided between the two isoforms. We also show that dynactin phosphorylation is involved in Golgi reorientation in polarized cells.
Collapse
Affiliation(s)
- Olga N Zhapparova
- A. N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia Institute of Protein Research, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | |
Collapse
|
31
|
Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:5/6/a013391. [PMID: 23732476 DOI: 10.1101/cshperspect.a013391] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins to be secreted are transported from the endoplasmic reticulum (ER) to the Golgi apparatus. The transport of these proteins requires the localization and activity of proteins that create ER exit sites, coat proteins to collect cargo and to reshape the membrane into a transport container, and address labels--SNARE proteins--to target the vesicles specifically to the Golgi apparatus. In addition some proteins may need export chaperones or export receptors to enable their exit into transport vesicles. ER export factors, SNAREs, and misfolded Golgi-resident proteins must all be retrieved from the Golgi to the ER again. This retrieval is also part of the organellar homeostasis pathway essential to maintaining the identity of the ER and of the Golgi apparatus. In this review, I will discuss the different processes in retrograde transport from the Golgi to the ER and highlight the mechanistic insights we have obtained in the last couple of years.
Collapse
Affiliation(s)
- Anne Spang
- University of Basel, Biozentrum, Growth & Development, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
32
|
Lord C, Ferro-Novick S, Miller EA. The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi. Cold Spring Harb Perspect Biol 2013; 5:5/2/a013367. [PMID: 23378591 DOI: 10.1101/cshperspect.a013367] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER-Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.
Collapse
Affiliation(s)
- Christopher Lord
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
33
|
Yu S, Liang Y. A trapper keeper for TRAPP, its structures and functions. Cell Mol Life Sci 2012; 69:3933-44. [PMID: 22669257 PMCID: PMC11114727 DOI: 10.1007/s00018-012-1024-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/20/2012] [Accepted: 05/02/2012] [Indexed: 12/22/2022]
Abstract
During biosynthesis many membrane and secreted proteins are transported from the endoplasmic reticulum, through the Golgi and on to the plasma membrane in small transport vesicles. These transport vesicles have to undergo budding, movement, tethering, docking, and fusion at each organelle of the biosynthetic pathway. The transport protein particle (TRAPP) complex was initially identified as the tethering factor for endoplasmic reticulum (ER)-derived COPII vesicles, but the functions of TRAPP may extend to other areas of biology. Three forms of TRAPP complexes have been discovered to date, and recent advances in research have provided new insights on the structures and functions of TRAPP. Here we provide a comprehensive review of the recent findings in TRAPP biology.
Collapse
Affiliation(s)
- Sidney Yu
- School of Biomedical Sciences and Epithelial Cell Biology Research Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People's Republic of China,
| | | |
Collapse
|
34
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
35
|
Spang A. The DSL1 complex: the smallest but not the least CATCHR. Traffic 2012; 13:908-13. [PMID: 22486903 DOI: 10.1111/j.1600-0854.2012.01362.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 01/04/2023]
Abstract
The DSL1 complex is a conserved tethering complex at the endoplasmic reticulum that recognizes Golgi-derived COPI vesicles and hands them over to the fusion machinery. The DSL1 complex is the simplest tethering complex of the complexes associated with tethering containing helical rods (CATCHR) family. CATCHR tethering complexes play a role at compartments along the exocytic and endocytic pathways. In this review, different functions of the DSL1 complex are discussed, some open questions with the seemingly straightforward picture are pointed out and alternative functions of the DSL1 complex members are mentioned.
Collapse
Affiliation(s)
- Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|