1
|
Pulcrano S, De Gregorio R, De Sanctis C, Volpicelli F, Piscitelli RM, Speranza L, Perrone-Capano C, di Porzio U, Caiazzo M, Martini A, Giacomet C, Medina D, Awatramani R, Viggiano D, Federici M, Mercuri NB, Guatteo E, Bellenchi GC. miR-218 Promotes Dopaminergic Differentiation and Controls Neuron Excitability and Neurotransmitter Release through the Regulation of a Synaptic-Related Genes Network. J Neurosci 2023; 43:8104-8125. [PMID: 37816598 PMCID: PMC10697421 DOI: 10.1523/jneurosci.0431-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/12/2023] Open
Abstract
In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and New York Presbyterian, New York, New York 10021
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Neuropathology Brain Bank at Mount Sinai, New York, New York 10029
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, 80131, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Alessandro Martini
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Cecilia Giacomet
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Diego Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078, Italy
- Department of Medical and Translational Science, Federico II University, Naples, 80131, Italy
| | | | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli," Naples, 80131, Italy
| | - Mauro Federici
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| | - Nicola B Mercuri
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- University of Tor Vergata, Department of Systems Medicine, Rome, 00133, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
- Department of Motor Science and Wellness, Parthenope University, Naples, 80133, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples, 80131, Italy
- Fondazione Santa Lucia Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, 00143, Italy
| |
Collapse
|
2
|
Fornes O, Av-Shalom TV, Korecki AJ, Farkas R, Arenillas D, Mathelier A, Simpson E, Wasserman W. OnTarget: in silico design of MiniPromoters for targeted delivery of expression. Nucleic Acids Res 2023; 51:W379-W386. [PMID: 37166953 PMCID: PMC10320062 DOI: 10.1093/nar/gkad375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
MiniPromoters, or compact promoters, are short DNA sequences that can drive expression in specific cells and tissues. While broadly useful, they are of high relevance to gene therapy due to their role in enabling precise control of where a therapeutic gene will be expressed. Here, we present OnTarget (http://ontarget.cmmt.ubc.ca), a webserver that streamlines the MiniPromoter design process. Users only need to specify a gene of interest or custom genomic coordinates on which to focus the identification of promoters and enhancers, and can also provide relevant cell-type-specific genomic evidence (e.g. accessible chromatin regions, histone modifications, etc.). OnTarget combines the provided data with internal data to identify candidate promoters and enhancers and design MiniPromoters. To illustrate the utility of OnTarget, we designed and characterized two MiniPromoters targeting different cell populations relevant to Parkinson Disease.
Collapse
Affiliation(s)
- Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Tamar V Av-Shalom
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Rachelle A Farkas
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
The Influence of Prenatal Exposure to Methamphetamine on the Development of Dopaminergic Neurons in the Ventral Midbrain. Int J Mol Sci 2023; 24:ijms24065668. [PMID: 36982742 PMCID: PMC10056332 DOI: 10.3390/ijms24065668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Methamphetamine, a highly addictive central nervous system (CNS) stimulant, is used worldwide as an anorexiant and attention enhancer. Methamphetamine use during pregnancy, even at therapeutic doses, may harm fetal development. Here, we examined whether exposure to methamphetamine affects the morphogenesis and diversity of ventral midbrain dopaminergic neurons (VMDNs). The effects of methamphetamine on morphogenesis, viability, the release of mediator chemicals (such as ATP), and the expression of genes involved in neurogenesis were evaluated using VMDNs isolated from the embryos of timed-mated mice on embryonic day 12.5. We demonstrated that methamphetamine (10 µM; equivalent to its therapeutic dose) did not affect the viability and morphogenesis of VMDNs, but it reduced the ATP release negligibly. It significantly downregulated Lmx1a, En1, Pitx3, Th, Chl1, Dat, and Drd1 but did not affect Nurr1 or Bdnf expression. Our results illustrate that methamphetamine could impair VMDN differentiation by altering the expression of important neurogenesis-related genes. Overall, this study suggests that methamphetamine use may impair VMDNs in the fetus if taken during pregnancy. Therefore, it is essential to exercise strict caution for its use in expectant mothers.
Collapse
|
4
|
Sibuea S, Ho JK, Pouton CW, Haynes JM. TGFβ3, dibutyryl cAMP and a notch inhibitor modulate phenotype late in stem cell-derived dopaminergic neuron maturation. Front Cell Dev Biol 2023; 11:1111705. [PMID: 36819101 PMCID: PMC9928866 DOI: 10.3389/fcell.2023.1111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of β-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor β3 (TGFβ3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFβ3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFβ3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.
Collapse
Affiliation(s)
- Shanti Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,*Correspondence: John M. Haynes,
| |
Collapse
|
5
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Alosimi EA, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Alamri A, Raafat BM, Alswat KA, Althobaiti YS, Asiri YA. The Influence of Prenatal Exposure to Quetiapine Fumarate on the Development of Dopaminergic Neurons in the Ventral Midbrain of Mouse Embryos. Int J Mol Sci 2022; 23:ijms232012352. [PMID: 36293205 PMCID: PMC9603924 DOI: 10.3390/ijms232012352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The effects of second-generation antipsychotics on prenatal neurodevelopment, apoptotic neurodegeneration, and postnatal developmental delays have been poorly investigated. Even at standard doses, the use of quetiapine fumarate (QEPF) in pregnant women might be detrimental to fetal development. We used primary mouse embryonic neurons to evaluate the disruption of morphogenesis and differentiation of ventral midbrain (VM) neurons after exposure to QEPF. The dopaminergic VM neurons were deliberately targeted due to their roles in cognition, motor activity, and behavior. The results revealed that exposure to QEPF during early brain development decreased the effects of the dopaminergic lineage-related genes Tyrosine hydroxylase(Th), Dopamine receptor D1 (Drd1), Dopamine transporter (Dat), LIM homeobox transcription factor 1 alfa (Lmx1a), and Cell adhesion molecule L1 (Chl1), and the senescent dopaminergic gene Pituitary homeobox 3 (Pitx3). In contrast, Brain derived neurotrophic factor (Bdnf) and Nuclear receptor-related 1 (Nurr1) expressions were significantly upregulated. Interestingly, QEPF had variable effects on the development of non-dopaminergic neurons in VM. An optimal dose of QEPF (10 µM) was found to insignificantly affect the viability of neurons isolated from the VM. It also instigated a non-significant reduction in adenosine triphosphate formation in these neuronal populations. Exposure to QEPF during the early stages of brain development could also hinder the formation of VM and their structural phenotypes. These findings could aid therapeutic decision-making when prescribing 2nd generation antipsychotics in pregnant populations.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ebtisam Abdulah Alosimi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Nanomedicine Unit, Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
6
|
Alsanie WF, Abdelrahman S, Alhomrani M, Gaber A, Habeeballah H, Alkhatabi HA, Felimban RI, Hauser CAE, Tayeb HH, Alamri AS, Raafat BM, Anwar S, Alswat KA, Althobaiti YS, Asiri YA. Prenatal Exposure to Gabapentin Alters the Development of Ventral Midbrain Dopaminergic Neurons. Front Pharmacol 2022; 13:923113. [PMID: 35942222 PMCID: PMC9356305 DOI: 10.3389/fphar.2022.923113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Gabapentin is widely prescribed as an off-label drug for the treatment of various diseases, including drug and alcohol addiction. Approximately 83–95% of the usage of gabapentin is off-label, accounting for more than 90% of its sales in the market, which indicates an alarming situation of drug abuse. Such misuse of gabapentin has serious negative consequences. The safety of the use of gabapentin in pregnant women has always been a serious issue, as gabapentin can cross placental barriers. The impact of gabapentin on brain development in the fetus is not sufficiently investigated, which poses difficulties in clinical decisions regarding prescriptions.Methods: The consequences effect of prenatal gabapentin exposure on the development of ventral midbrain dopaminergic neurons were investigated using three-dimensional neuronal cell cultures. Time-mated Swiss mice were used to isolate embryos. The ventral third of the midbrain was removed and used to enrich the dopaminergic population in 3D cell cultures that were subsequently exposed to gabapentin. The effects of gabapentin on the viability, ATP release, morphogenesis and genes expression of ventral midbrain dopaminergic neurons were investigated.Results: Gabapentin treatment at the therapeutic level interfered with the neurogenesis and morphogenesis of vmDA neurons in the fetal brain by causing changes in morphology and alterations in the expression of key developmental genes, such as Nurr1, Chl1, En1, Bdnf, Drd2, and Pitx3. The TH + total neurite length and dominant neurite length were significantly altered. We also found that gabapentin could halt the metabolic state of these neuronal cells by blocking the generation of ATP.Conclusion: Our findings clearly indicate that gabapentin hampers the morphogenesis and development of dopaminergic neurons. This implies that the use of gabapentin could lead to serious complications in child-bearing women. Therefore, caution must be exercised in clinical decisions regarding the prescription of gabapentin in pregnant women.
Collapse
Affiliation(s)
- Walaa F. Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- *Correspondence: Walaa F. Alsanie,
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Ahmed Gaber
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hamza Habeeballah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Centre, Hematology Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed I. Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University (KAUST), Jeddah, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, (KAUST), Jeddah, Saudi Arabia
| | - Hossam H. Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Bassem M. Raafat
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Khaled A. Alswat
- Department of Internal Medicine, School of Medicine, Taif University, Taif, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif, Saudi Arabia
| | - Yousif A. Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Pulcrano S, De Gregorio R, De Sanctis C, Lahti L, Perrone-Capano C, Ponti D, di Porzio U, Perlmann T, Caiazzo M, Volpicelli F, Bellenchi GC. Lmx1a-Dependent Activation of miR-204/211 Controls the Timing of Nurr1-Mediated Dopaminergic Differentiation. Int J Mol Sci 2022; 23:6961. [PMID: 35805964 PMCID: PMC9266978 DOI: 10.3390/ijms23136961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.
Collapse
Affiliation(s)
- Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Roberto De Gregorio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Laura Lahti
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, 040100 Latina, Italy;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
| | - Thomas Perlmann
- The Ludwig Institute, Department of Cell and Molecular Biology, Karolinska Institute, 17177 Stockholm, Sweden; (L.L.); (T.P.)
| | - Massimiliano Caiazzo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (C.N.R.), 80131 Naples, Italy; (S.P.); (R.D.G.); (C.D.S.); (U.d.P.); (M.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
8
|
Abdollahi M, Fahnestock M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. Int J Mol Sci 2022; 23:6853. [PMID: 35743300 PMCID: PMC9224520 DOI: 10.3390/ijms23126853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons.
Collapse
Affiliation(s)
- Mona Abdollahi
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
9
|
The Effects of Prenatal Exposure to Pregabalin on the Development of Ventral Midbrain Dopaminergic Neurons. Cells 2022; 11:cells11050852. [PMID: 35269474 PMCID: PMC8909856 DOI: 10.3390/cells11050852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Pregabalin is widely used as a treatment for multiple neurological disorders; however, it has been reported to have the potential for misuse. Due to a lack of safety studies in pregnancy, pregabalin is considered the last treatment option for various neurological diseases, such as neuropathic pain. Therefore, pregabalin abuse in pregnant women, even at therapeutic doses, may impair fetal development. We used primary mouse embryonic neurons to investigate whether exposure to pregabalin can impair the morphogenesis and differentiation of ventral midbrain neurons. This study focused on ventral midbrain dopaminergic neurons, as they are responsible for cognition, movement, and behavior. The results showed that pregabalin exposure during early brain development induced upregulation of the dopaminergic progenitor genes Lmx1a and Nurr1 and the mature dopaminergic gene Pitx3. Interestingly, pregabalin had different effects on the morphogenesis of non-dopaminergic ventral midbrain neurons. Importantly, our findings illustrated that a therapeutic dose of pregabalin (10 μM) did not affect the viability of neurons. However, it caused a decrease in ATP release in ventral midbrain neurons. We demonstrated that exposure to pregabalin during early brain development could interfere with the neurogenesis and morphogenesis of ventral midbrain dopaminergic neurons. These findings are crucial for clinical consideration of the use of pregabalin during pregnancy.
Collapse
|
10
|
Speranza L, di Porzio U, Viggiano D, de Donato A, Volpicelli F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021; 10:735. [PMID: 33810328 PMCID: PMC8066851 DOI: 10.3390/cells10040735] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter involved in multiple physiological functions including motor control, modulation of affective and emotional states, reward mechanisms, reinforcement of behavior, and selected higher cognitive functions. Dysfunction in dopaminergic transmission is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson's disease (PD), schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we will discuss the current insights on the role of DA in motor control and reward learning mechanisms and its involvement in the modulation of synaptic dynamics through different pathways. In particular, we will consider the role of DA as neuromodulator of two forms of synaptic plasticity, known as long-term potentiation (LTP) and long-term depression (LTD) in several cortical and subcortical areas. Finally, we will delineate how the effect of DA on dendritic spines places this molecule at the interface between the motor and the cognitive systems. Specifically, we will be focusing on PD, vascular dementia, and schizophrenia.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Umberto di Porzio
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Antonio de Donato
- Department of Translational Medical Sciences, Genetic Research Institute “Gaetano Salvatore”, University of Campania “L. Vanvitelli”, IT and Biogem S.c.a.r.l., 83031 Ariano Irpino, Italy; (D.V.); (A.d.D.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
11
|
Zhang C, Chen X, Chen Y, Cao M, Tang J, Zhong B, He M. The PITX gene family as potential biomarkers and therapeutic targets in lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e23936. [PMID: 33530195 PMCID: PMC7850728 DOI: 10.1097/md.0000000000023936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/06/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The PITX gene family of transcription factors have been reported to regulate the development of multiple organs. This study was designed to investigate the role of PITXs in lung adenocarcinoma (LUAD).In this study, the transcriptional levels of the 3 identified PITXs in patients with LUAD were examined using the gene expression profiling interactive analysis interactive web server. Meanwhile, the immunohistochemical data of the 3 PITXs were obtained in the Human Protein Atlas website, and western blotting was additionally conducted for further verification. Moreover, the association between the levels of PITXs and the stage plot as well as overall survival of patients with LUAD was analyzed.We found that the mRNA and protein levels of PITX1 and PITX2 were higher in LUAD tissues than those in normal lung tissues, while those of PITX3 displayed no significant differences. Additionally, PITX1 and PITX3 were found to be significantly associated with the stage of LUAD. The Kaplan-Meier Plot showed that the high level of PITX1 conferred a better overall survival of patients with LUAD while the high level of PITX3 was associated with poor prognosis.Our study implied that PITX1 and PITX3 are potential targets of precision therapy for patients with LUAD while PITX1 and PITX2 are regarded as novel biomarkers for the diagnosis of LUAD.
Collapse
|
12
|
Gaggi G, Di Credico A, Izzicupo P, Alviano F, Di Mauro M, Di Baldassarre A, Ghinassi B. Human Mesenchymal Stromal Cells Unveil an Unexpected Differentiation Potential toward the Dopaminergic Neuronal Lineage. Int J Mol Sci 2020; 21:ijms21186589. [PMID: 32916865 PMCID: PMC7555006 DOI: 10.3390/ijms21186589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Andrea Di Credico
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Pascal Izzicupo
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Francesco Alviano
- Department of Experimental Diagnostic and Speciality Medicine, Unit of Histology, Embriology and Applied Biology, University of Bologna, 40126 Bologna, Italy;
| | - Michele Di Mauro
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), 6202 Maastricht, The Netherlands;
| | - Angela Di Baldassarre
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
- Correspondence:
| | - Barbara Ghinassi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| |
Collapse
|
13
|
Tejchman A, Znój A, Chlebanowska P, Frączek-Szczypta A, Majka M. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development. Int J Mol Sci 2020; 21:E5959. [PMID: 32825046 PMCID: PMC7504539 DOI: 10.3390/ijms21175959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons, also found in the human midbrain. However, long-lasting organoid cultures often cause necrosis within organoids. In this work, we present carbon fibers (CFs) for medical use as a new type of scaffold for organoid culture, comparing them to a previously tested copolymer poly-(lactic-co-glycolic acid) (PLGA) scaffold. We verified the physicochemical properties of CF scaffolds compared to PLGA in improving the efficiency of iPSC differentiation within organoids. The physicochemical properties of carbon scaffolds such as porosity, microstructure, or stability in the cellular environment make them a convenient material for creating in vitro organoid models. Through screening several genes expressed during the differentiation of organoids at crucial brain stages of development, we found that there is a correlation between PITX3, one of the key regulators of terminal differentiation, and the survival of midbrain dopaminergic (mDA) neurons and tyrosine hydroxylase (TH) gene expression. This makes organoids formed on carbon scaffolds an improved model containing mDA neurons convenient for studying midbrain-associated neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Anna Tejchman
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland; (A.T.); (P.C.)
| | - Agnieszka Znój
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (A.Z.); (A.F.-S.)
| | - Paula Chlebanowska
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland; (A.T.); (P.C.)
| | - Aneta Frączek-Szczypta
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (A.Z.); (A.F.-S.)
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland; (A.T.); (P.C.)
| |
Collapse
|
14
|
Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113995. [PMID: 32503161 PMCID: PMC7312927 DOI: 10.3390/ijms21113995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.
Collapse
|
15
|
Volpicelli F, De Gregorio R, Pulcrano S, Perrone-Capano C, di Porzio U, Bellenchi GC. Correction: Direct Regulation of Pitx3 Expression by Nurr1 in Culture and in Developing Mouse Midbrain. PLoS One 2020; 15:e0233918. [PMID: 32442206 PMCID: PMC7244126 DOI: 10.1371/journal.pone.0233918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0030661.].
Collapse
|
16
|
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019; 14:35. [PMID: 31488222 PMCID: PMC6728988 DOI: 10.1186/s13024-019-0332-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, αSynuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers αSynuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Eskandarian Boroujeni M, Aliaghaei A, Maghsoudi N, Gardaneh M. Complementation of dopaminergic signaling by Pitx3-GDNF synergy induces dopamine secretion by multipotent Ntera2 cells. J Cell Biochem 2019; 121:200-212. [PMID: 31310388 DOI: 10.1002/jcb.29109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Human teratocarcinoma cell line Ntera2 (NT2) expresses dopamine signals and has shown its safe profile for clinical applications. Attempts to restore complete dopaminergic (DAergic) phenotype enabling these cells to secrete dopamine have not been fully successful so far. We applied a blend of gene transfer techniques and a defined medium to convert NT2 cells to fully DAergic. The cells were primarily engineered to overexpress the Pitx3 gene product and then cultured in a growth medium supplemented with knockout serum and retinoic acid to form embroid bodies (EBs). Trypsinization of EB colonies produced single cells ready for differentiation. Neuronal/DAergic induction was promoted by applying conditioned medium taken from engineered human astrocytomas over-secreting glial cell-derived neurotrophic factor (GDNF). Immunocytochemistry, reverse-transcription and real-time polymerase chain reaction analyses confirmed significantly induced expression of molecules involved in dopamine signaling and metabolism including tyrosine hydroxylase, Nurr1, dopamine transporter, and aromatic acid decarboxylase. High-performance liquid chromatography analysis indicated release of dopamine only from a class of fully differentiated cells expressing Pitx3 and exposed to GDNF. In addition, Pitx3 and GDNF additively promoted in vitro neuroprotection against Parkinsonian toxin. One month after transplantation to the striatum of 6-OHDA-leasioned rats, differentiated NT2 cells survived and induced significant increase in striatal volume. Besides, cell implantation improved motor coordination in Parkinson's disease (PD) rat models. Our findings highlight the importance of Pitx3-GDNF interplay in dopamine signaling and indicate that our strategy might be useful for the restoration of DAergic fate of NT2 cells to make them clinically applicable toward cell replacement therapy of PD.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Cell Biology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mossa Gardaneh
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
18
|
Giordano N, Iemolo A, Mancini M, Cacace F, De Risi M, Latagliata EC, Ghiglieri V, Bellenchi GC, Puglisi-Allegra S, Calabresi P, Picconi B, De Leonibus E. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson's disease. Brain 2019; 141:505-520. [PMID: 29281030 DOI: 10.1093/brain/awx351] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
Nigro-striatal dopamine transmission is central to a wide range of neuronal functions, including skill learning, which is disrupted in several pathologies such as Parkinson's disease. The synaptic plasticity mechanisms, by which initial motor learning is stored for long time periods in striatal neurons, to then be gradually optimized upon subsequent training, remain unexplored. Addressing this issue is crucial to identify the synaptic and molecular mechanisms involved in striatal-dependent learning impairment in Parkinson's disease. In this study, we took advantage of interindividual differences between outbred rodents in reaching plateau performance in the rotarod incremental motor learning protocol, to study striatal synaptic plasticity ex vivo. We then assessed how this process is modulated by dopamine receptors and the dopamine active transporter, and whether it is impaired by overexpression of human α-synuclein in the mesencephalon; the latter is a progressive animal model of Parkinson's disease. We found that the initial acquisition of motor learning induced a dopamine active transporter and D1 receptors mediated long-term potentiation, under a protocol of long-term depression in striatal medium spiny neurons. This effect disappeared in animals reaching performance plateau. Overexpression of human α-synuclein reduced striatal dopamine active transporter levels, impaired motor learning, and prevented the learning-induced long-term potentiation, before the appearance of dopamine neuronal loss. Our findings provide evidence of a reorganization of cellular plasticity within the dorsolateral striatum that is mediated by dopamine receptors and dopamine active transporter during the acquisition of a skill. This newly identified mechanism of cellular memory is a form of metaplasticity that is disrupted in the early stage of synucleinopathies, such as Parkinson's disease, and that might be relevant for other striatal pathologies, such as drug abuse.
Collapse
Affiliation(s)
- Nadia Giordano
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Attilio Iemolo
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Maria Mancini
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Fabrizio Cacace
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Maria De Risi
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| | - Emanuele Claudio Latagliata
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Psychology, University of Rome La Sapienza, Rome, Italy
| | - Veronica Ghiglieri
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Philosophy, Human, Social and Educational Sciences, University of Perugia, Perugia, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Stefano Puglisi-Allegra
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Psychology, University of Rome La Sapienza, Rome, Italy
| | - Paolo Calabresi
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Medicine, Neurology Unit, University of Perugia, S. Andrea delle Fratte, Perugia, Italy
| | - Barbara Picconi
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli, Italy
| |
Collapse
|
19
|
Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, Guo S, Holton JM, Fletterick RJ, Jacobson MP, England PM. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol 2019; 26:674-685.e6. [PMID: 30853418 PMCID: PMC7185887 DOI: 10.1016/j.chembiol.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/06/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Nurr1, a nuclear receptor essential for the development, maintenance, and survival of midbrain dopaminergic neurons, is a potential therapeutic target for Parkinson's disease, a neurological disorder characterized by the degeneration of these same neurons. Efforts to identify Nurr1 agonists have been hampered by the recognition that it lacks several classic regulatory elements of nuclear receptor function, including the canonical ligand-binding pocket. Here we report that the dopamine metabolite 5,6-dihydroxyindole (DHI) binds directly to and modulates the activity of Nurr1. Using biophysical assays and X-ray crystallography, we show that DHI binds to the ligand-binding domain within a non-canonical pocket, forming a covalent adduct with Cys566. In cultured cells and zebrafish, DHI stimulates Nurr1 activity, including the transcription of target genes underlying dopamine homeostasis. These findings suggest avenues for developing synthetic Nurr1 ligands to ameliorate the symptoms and progression of Parkinson's disease.
Collapse
Affiliation(s)
- John M Bruning
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francesca Oltrabella
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Boxue Tian
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Svetlana A Kholodar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Harrison Liu
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paulomi Bhattacharya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - James M Holton
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Pamela M England
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Vester AI, Chen M, Marsit CJ, Caudle WM. A Neurodevelopmental Model of Combined Pyrethroid and Chronic Stress Exposure. TOXICS 2019; 7:toxics7020024. [PMID: 31052489 PMCID: PMC6630986 DOI: 10.3390/toxics7020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of childhood and previous studies indicate the dopamine system plays a major role in ADHD pathogenesis. Two environmental exposures independently associated with dopaminergic dysfunction and ADHD risk include exposure to deltamethrin, a pyrethroid insecticide, and chronic stress. We hypothesized that combined neurodevelopmental exposure to both deltamethrin and corticosterone (CORT), the major stress hormone in rodents, would result in additive changes within the dopamine system. To study this, we developed a novel dual exposure paradigm and exposed pregnant C57BL/6 dams to 3 mg/kg deltamethrin through gestation and weaning, and their offspring to 25 μg/mL CORT dissolved in the drinking water through adulthood. Midbrain RNA expression as well as striatal and cortical protein expression of key dopaminergic components were investigated, in addition to ADHD-like behavioral tasks and electrochemical dopamine dynamics via fast-scan cyclic voltammetry. Given the well-described sexual dimorphism of ADHD, males and females were assessed separately. Males exposed to deltamethrin had significantly decreased midbrain Pitx3 expression, decreased cortical tyrosine hydroxylase (TH) expression, increased activity in the Y maze, and increased dopamine uptake rate in the dorsal striatum. These effects did not occur in males exposed to CORT only, or in males exposed to both deltamethrin and CORT, suggesting that CORT may attenuate these effects. Additionally, deltamethrin- and CORT-exposed females did not display these dopaminergic features, which indicates these changes are sex-specific. Our results show dopaminergic changes from the RNA through the functional level. Moreover, these data illustrate the importance of testing multiple environmental exposures together to better understand how combined exposures that occur in certain vulnerable populations could affect similar neurodevelopmental systems, as well as the importance of studying sex differences of these alterations.
Collapse
Affiliation(s)
- Aimée I Vester
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Merry Chen
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - Carmen J Marsit
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
| | - W Michael Caudle
- Department of Environmental Health Sciences, Emory University Rollins School of Public Health, Atlanta, GA 30329, USA.
- Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Dysregulation of Dopaminergic Regulatory Factors TH, Nurr1, and Pitx3 in the Ventral Tegmental Area Associated with Neuronal Injury Induced by Chronic Morphine Dependence. Int J Mol Sci 2019; 20:ijms20020250. [PMID: 30634592 PMCID: PMC6358784 DOI: 10.3390/ijms20020250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/16/2022] Open
Abstract
The ventral tegmental area (VTA), a critical portion of the mesencephalic dopamine system, is thought to be involved in the development and maintenance of addiction. It has been proposed that the dopaminergic regulatory factors TH, Nurr1, and Pitx3 are crucial for determining the survival and maintenance of dopaminergic neurons. Thus, the present study investigated whether abnormalities in these dopaminergic regulatory factors in the VTA were associated with neuronal injury induced by chronic morphine dependence. Rat models with different durations of morphine dependence were established. Thionine staining was used to observe morphological changes in the VTA neurons. Immunohistochemistry and western blot were used to observe changes in the expression of the dopaminergic regulatory proteins TH, Nurr1, and Pitx3. Thionine staining revealed that prolonged morphine dependence resulted in dopaminergic neurons with edema, a lack of Nissl bodies, and pyknosis. Immunohistochemistry showed that the number of TH⁺, Nurr1⁺, and Pitx3⁺ cells, and the number of TH⁺ cells expressing Nurr1 or Pitx3, significantly decreased in the VTA after a long period of morphine dependence. Western blot results were consistent with the immunohistochemistry findings. Chronic morphine exposure resulted in abnormalities in dopaminergic regulatory factors and pathological changes in dopaminergic neurons in the VTA. These results suggest that dysregulation of dopaminergic regulatory factors in the VTA are associated with neuronal injury induced by chronic morphine dependence.
Collapse
|
22
|
Song JJ, Oh SM, Kwon OC, Wulansari N, Lee HS, Chang MY, Lee E, Sun W, Lee SE, Chang S, An H, Lee CJ, Lee SH. Cografting astrocytes improves cell therapeutic outcomes in a Parkinson's disease model. J Clin Invest 2017; 128:463-482. [PMID: 29227284 DOI: 10.1172/jci93924] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transplantation of neural progenitor cells (NPCs) is a potential therapy for treating neurodegenerative disorders, but this approach has faced many challenges and limited success, primarily because of inhospitable host brain environments that interfere with enriched neuron engraftment and function. Astrocytes play neurotrophic roles in the developing and adult brain, making them potential candidates for helping with modification of hostile brain environments. In this study, we examined whether astrocytic function could be utilized to overcome the current limitations of cell-based therapies in a murine model of Parkinson's disease (PD) that is characterized by dopamine (DA) neuron degeneration in the midbrain. We show here that cografting astrocytes, especially those derived from the midbrain, remarkably enhanced NPC-based cell therapeutic outcomes along with robust DA neuron engraftment in PD rats for at least 6 months after transplantation. We further show that engineering of donor astrocytes with Nurr1 and Foxa2, transcription factors that were recently reported to polarize harmful immunogenic glia into the neuroprotective form, further promoted the neurotrophic actions of grafted astrocytes in the cell therapeutic approach. Collectively, these findings suggest that cografting astrocytes could be a potential strategy for successful cell therapeutic outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jae-Jin Song
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sang-Min Oh
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Oh-Chan Kwon
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seob Lee
- Genomic Core Facility, Transdisciplinary Research and Collaboration Division, Translational Research Institute, and.,Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mi-Yoon Chang
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 PLUS Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Heeyoung An
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - C Justin Lee
- Center for Neuroscience and.,Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine.,Hanyang Biomedical Research Institute, and.,Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
23
|
Gu X, Liu L, Shen Q, Xing D. Photoactivation of ERK/CREB/VMAT2 pathway attenuates MPP + -induced neuronal injury in a cellular model of Parkinson's disease. Cell Signal 2017. [DOI: 10.1016/j.cellsig.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hooker LN, Smoczer C, Abbott S, Fakhereddin M, Hudson JW, Crawford MJ. Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. Dev Dyn 2017; 246:657-669. [PMID: 28598520 DOI: 10.1002/dvdy.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 05/25/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Pitx3 plays a well understood role in directing development of lens, muscle fiber, and dopaminergic neurons; however, in Xenopus laevis, it may also play a role in early gastrulation and somitogenesis. Potential downstream targets of pitx3 possess multiple binding motifs that would not be readily accessible by conventional promoter analysis. RESULTS We isolated and characterized pitx3 target genes lhx1 and xnr5 using a novel three-fluor flow cytometry tool that was designed to dissect promoters with multiple binding sites for the same transcription factor. This approach was calibrated using a known pitx3 target gene, Tyrosine hydroxylase. CONCLUSIONS We demonstrate how flow cytometry can be used to detect gene regulatory changes with exquisite precision on a cell-by-cell basis, and establish that in HEK293 cells, pitx3 directly activates lhx1 and represses xnr5. Developmental Dynamics 246:657-669, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Cristine Smoczer
- Biochemistry and Genetics, University of Detroit Mercy School of Dentistry, Detroit, Michigan
| | - Samuel Abbott
- Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - John W Hudson
- Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | |
Collapse
|
25
|
Optogenetic Inhibitor of the Transcription Factor CREB. ACTA ACUST UNITED AC 2016; 22:1531-1539. [PMID: 26590638 DOI: 10.1016/j.chembiol.2015.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/28/2023]
Abstract
Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.
Collapse
|
26
|
Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson's Disease. PLoS One 2016; 11:e0160847. [PMID: 27512998 PMCID: PMC4981411 DOI: 10.1371/journal.pone.0160847] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/26/2016] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons in the substantia nigra. To understand the molecular mechanisms of the disease, an in vitro model is important. In the 1990s, we used the SV40 large T antigen to immortalize dopaminergic neurons derived from Embryonic Day 14 rat mesencephalon. We selected a clone for its high expression of dopaminergic neuron markers such as tyrosine hydroxylase (TH), and we named it 1RB3AN27 (N27). Because the original N27 cell line has been passaged many times, the line has become a mixture of cell types with highly variable expression of TH. In the current study, we have performed multiple rounds of clonal cultures and have identified a dopaminergic cell clone expressing high levels of TH and the dopamine transporter (DAT). We have named this new clone N27-A. Nearly 100% of N27-A cells express TH, DAT and Tuj1. Western blots have confirmed that N27-A cells have three to four times the levels of TH and DAT compared to the previous mixed population in N27. Further analysis has shown that the new clone expresses the dopamine neuron transcription factors Nurr1, En1, FoxA2 and Pitx3. The N27-A cells express the vesicular monoamine transporter (VMAT2), but do not express dopamine-beta-hydroxylase (DβH), the enzyme responsible for converting dopamine to norepinephrine. Functional analysis has shown that N27-A cells are more sensitive than N27 cells to neurotoxins taken up by the dopamine transporter such as 6-hydroxydopamine and 1-methyl-4-phenylpyridine (MPP+). The DAT inhibitor nomifensine can block MPP+ induced toxicity. The non-selective toxic effects of hydrogen peroxide were similar in both cell lines. The N27-A cells show dopamine release under basal and depolarization conditions. We conclude that the new N27-A clone of the immortalized rat dopaminergic cell line N27 should provide an improved in vitro model for Parkinson's disease research.
Collapse
|
27
|
Salemi S, Baktash P, Rajaei B, Noori M, Amini H, Shamsara M, Massumi M. Efficient generation of dopaminergic-like neurons by overexpression of Nurr1 and Pitx3 in mouse induced Pluripotent Stem Cells. Neurosci Lett 2016; 626:126-34. [PMID: 27208834 DOI: 10.1016/j.neulet.2016.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, in which the nigro-striatal Dopaminergic (DAergic) neurons are selectively lost. Treatment of neurodegenerative diseases with Pluripotent Stem Cells (PSCs) is a big interest in cell therapy. Here, we used induced Pluripotent Stem Cells (iPSCs) expressing two master Dopaminergic (DAergic) transcription factors, i.e. Nurr1 and Pitx3, to generate functional in vitro DAergic-like neurons. After establishment and characterization of Doxycycline-inducible iPSCs from mouse fibroblasts, the cells were transduced by NURR1- and PITX3-harboring lentiviruses. The Nurr1/Pitx3 -iPSCs were differentiated through a five-stage protocol to generate DAergic-like neurons. The results confirmed the efficient expression of DAergic neuron markers in the end of protocol. Beside, the generated cells could exclusively synthesize and secrete Dopamine in response to secretagogues. In conclusion, overexpression of Nurr1 and Pitx3 in iPSCs could efficiently program iPSCs into functional DAergic-like neurons. This finding may have an impact on future stem cell therapy of PD.
Collapse
Affiliation(s)
- Salemeh Salemi
- National Center for Transgenic Mouse Research, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Parvaneh Baktash
- National Center for Transgenic Mouse Research, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Bahareh Rajaei
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehri Noori
- National Center for Transgenic Mouse Research, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Amini
- Department of Pharmacology, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Shamsara
- National Center for Transgenic Mouse Research, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Massumi
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
28
|
Rodríguez-Traver E, Solís O, Díaz-Guerra E, Ortiz Ó, Vergaño-Vera E, Méndez-Gómez HR, García-Sanz P, Moratalla R, Vicario-Abejón C. Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells. Neurotox Res 2015; 30:14-31. [PMID: 26678495 DOI: 10.1007/s12640-015-9586-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/06/2015] [Indexed: 12/23/2022]
Abstract
NURR1 is an essential transcription factor for the differentiation, maturation, and maintenance of midbrain dopaminergic neurons (DA neurons) as it has been demonstrated using knock-out mice. DA neurons of the substantia nigra pars compacta degenerate in Parkinson's disease (PD) and mutations in the Nurr1 gene have been associated with this human disease. Thus, the study of NURR1 actions in vivo is fundamental to understand the mechanisms of neuron generation and degeneration in the dopaminergic system. Here, we present and discuss findings indicating that NURR1 is a valuable molecular tool for the in vitro generation of DA neurons which could be used for modeling and studying PD in cell culture and in transplantation approaches. Transduction of Nurr1 alone or in combination with other transcription factors such as Foxa2, Ngn2, Ascl1, and Pitx3, induces the generation of DA neurons, which upon transplantation have the capacity to survive and restore motor behavior in animal models of PD. We show that the survival of transplanted neurons is increased when the Nurr1-transduced olfactory bulb stem cells are treated with GDNF. The use of these and other factors with the induced pluripotent stem cell (iPSC)-based technology or the direct reprogramming of astrocytes or fibroblasts into human DA neurons has produced encouraging results for the study of the cellular and molecular mechanisms of neurodegeneration in PD and for the search of new treatments for this disease.
Collapse
Affiliation(s)
- Eva Rodríguez-Traver
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Oscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Óscar Ortiz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | - Eva Vergaño-Vera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Héctor R Méndez-Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia García-Sanz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
29
|
ALCAR Exerts Neuroprotective and Pro-Neurogenic Effects by Inhibition of Glial Activation and Oxidative Stress via Activation of the Wnt/β-Catenin Signaling in Parkinsonian Rats. Mol Neurobiol 2015. [DOI: 10.1007/s12035-015-9361-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Abstract
ABSTRACT
Midbrain dopaminergic (mDA) neuron development has been an intense area of research during recent years. This is due in part to a growing interest in regenerative medicine and the hope that treatment for diseases affecting mDA neurons, such as Parkinson's disease (PD), might be facilitated by a better understanding of how these neurons are specified, differentiated and maintained in vivo. This knowledge might help to instruct efforts to generate mDA neurons in vitro, which holds promise not only for cell replacement therapy, but also for disease modeling and drug discovery. In this Primer, we will focus on recent developments in understanding the molecular mechanisms that regulate the development of mDA neurons in vivo, and how they have been used to generate human mDA neurons in vitro from pluripotent stem cells or from somatic cells via direct reprogramming. Current challenges and future avenues in the development of a regenerative medicine for PD will be identified and discussed.
Collapse
Affiliation(s)
- Ernest Arenas
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mark Denham
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus 8000, Denmark
| | - J. Carlos Villaescusa
- Laboratory of Molecular Neurobiology, Dept. Medical Biochemistry and Biophysics, Center of Developmental Biology for Regenerative Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| |
Collapse
|
31
|
Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells. Neurochem Res 2015; 40:1372-8. [PMID: 25963949 DOI: 10.1007/s11064-015-1601-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5-2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states.
Collapse
|
32
|
Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci 2015; 18:415-22. [PMID: 25643298 PMCID: PMC4340719 DOI: 10.1038/nn.3932] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating neural and behavioral plasticity to drugs of abuse. Here, we demonstrate a persistent down-regulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which is mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increases stalling of RNA polymerase II at these Bdnf promoters in VTA and alters permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we show that morphine suppresses binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which results from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributes to Bdnf repression and associated behavioral plasticity to morphine. These studies reveal novel epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.
Collapse
|
33
|
Blaess S, Ang SL. Genetic control of midbrain dopaminergic neuron development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:113-34. [PMID: 25565353 DOI: 10.1002/wdev.169] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/31/2014] [Accepted: 11/16/2014] [Indexed: 12/31/2022]
Abstract
UNLABELLED Midbrain dopaminergic neurons are involved in regulating motor control, reward behavior, and cognition. Degeneration or dysfunction of midbrain dopaminergic neurons is implicated in several neuropsychiatric disorders such as Parkinson's disease, substance use disorders, depression, and schizophrenia. Understanding the developmental processes that generate midbrain dopaminergic neurons will facilitate the generation of dopaminergic neurons from stem cells for cell replacement therapies to substitute degenerating cells in Parkinson's disease patients and will forward our understanding on how functional diversity of dopaminergic neurons in the adult brain is established. Midbrain dopaminergic neurons develop in a multistep process. Following the induction of the ventral midbrain, a distinct dopaminergic progenitor domain is specified and dopaminergic progenitors undergo proliferation, neurogenesis, and differentiation. Subsequently, midbrain dopaminergic neurons acquire a mature dopaminergic phenotype, migrate to their final position and establish projections and connections to their forebrain targets. This review will discuss insights gained on the signaling network of secreted molecules, cell surface receptors, and transcription factors that regulate specification and differentiation of midbrain dopaminergic progenitors and neurons, from the induction of the ventral midbrain to the migration of dopaminergic neurons. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Sandra Blaess
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
34
|
Vergaño-Vera E, Díaz-Guerra E, Rodríguez-Traver E, Méndez-Gómez HR, Solís Ó, Pignatelli J, Pickel J, Lee SH, Moratalla R, Vicario-Abejón C. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol 2014; 75:823-41. [PMID: 25447275 DOI: 10.1002/dneu.22251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/30/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
The transcription factor Nurr1 is expressed in the mouse olfactory bulb (OB), although it remains unknown whether it influences the generation of dopaminergic neurons (DA) (DA neurons) in cells isolated from this brain region. We found that expressing Nurr1 in proliferating olfactory bulb stem cells (OBSCs) produces a marked inhibition of cell proliferation and the generation of immature neurons immunoreactive for tyrosine hydroxylase (TH) concomitant with marked upregulations of Th, Dat, Gad, and Fgfr2 transcripts. In long-term cultures, these cells develop neurochemical and synaptic markers of mature-like mesencephalic DA neurons, expressing GIRK2, VMAT2, DAT, calretinin, calbindin, synapsin-I, and SV2. Concurring with the increase in both Th and Gad expression, a subpopulation of induced cells was both TH- and GAD-immunoreactive indicating that they are dopaminergic-GABAergic neurons. Indeed, these cells could mature to express VGAT, suggesting they can uptake and store GABA in vesicles. Remarkably, the dopamine D1 receptor agonist SKF-38393 induced c-Fos in TH(+) cells and dopamine release was detected in these cultures under basal and KCl-evoked conditions. By contrast, cotransducing the Neurogenin2 and Nurr1 transcription factors produced a significant decrease in the number of TH-positive neurons. Our results indicate that Nurr1 overexpression in OBSCs induces the formation of two populations of mature dopaminergic neurons with features of the ventral mesencephalon or of the OB, capable of responding to functional dopaminergic stimuli and of releasing dopamine. They also suggest that the accumulation of Fgfr2 by Nurr1 in OBSCs may be involved in the generation of DA neurons.
Collapse
Affiliation(s)
- Eva Vergaño-Vera
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Rodríguez-Traver
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Héctor R Méndez-Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Óscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - James Pickel
- Transgenic Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang university, Seoul, Korea
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
35
|
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev Rep 2014; 10:316-26. [PMID: 24399192 PMCID: PMC3969515 DOI: 10.1007/s12015-013-9493-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Here we provide a protocol for the directed differentiation of hEPI-NCSC into midbrain dopaminergic neurons, which degenerate in Parkinson's disease. hEPI-NCSC are neural crest-derived multipotent stem cells that persist into adulthood in the bulge of hair follicles. The experimental design is distinctly different from conventional protocols for embryonic stem cells and induced pluripotent stem (iPS) cells. It includes pre-differentiation of the multipotent hEPI-NCSC into neural stem cell-like cells, followed by ventralizing, patterning, continued exposure to the TGFβ receptor inhibitor, SB431542, and at later stages of differentiation the presence of the WNT inhibitor, IWP-4. All cells expressed A9 midbrain dopaminergic neuron progenitor markers with gene expression levels comparable to those in normal human substantia nigra. The current study shows for the first time that virtually homogeneous populations of dopaminergic neurons can be derived ex vivo from somatic stem cells without the need for purification, with useful timeliness and high efficacy. This novel development is an important first step towards the establishment of fully functional dopaminergic neurons from an ontologically relevant stem cell type, hEPI-NCSC.
Collapse
|
36
|
Veenvliet JV, Smidt MP. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell Mol Life Sci 2014; 71:4703-27. [PMID: 25064061 PMCID: PMC11113784 DOI: 10.1007/s00018-014-1681-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson's disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
37
|
Schlaudraff F, Gründemann J, Fauler M, Dragicevic E, Hardy J, Liss B. Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease. Neurobiol Aging 2014; 35:2302-15. [PMID: 24742361 PMCID: PMC4099518 DOI: 10.1016/j.neurobiolaging.2014.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 01/25/2023]
Abstract
Progressive loss of substantia nigra dopamine neurons (SN DA) is a hallmark of aging and of Parkinson's disease (PD). Mutations in PARK genes cause familial PD forms. Increased expression of alpha-synuclein (PARK4) is a disease-triggering event in familial PD and also observed in SN DA neurons in sporadic PD but related transcriptional changes are unknown. With optimized single-cell quantitative real-time polymerase chain reaction analysis, we compared messenger RNA and microRNA levels in SN DA neurons from sporadic PD patients and controls. Non-optimally matched donor ages and RNA integrities are common problems when analyzing human samples. We dissected the influence of distinct ages and RNA integrities of our samples by applying a specifically-optimized, linear-mixed-effects model to quantitative real-time polymerase chain reaction-data. We identified that elevated alpha-synuclein messenger RNA levels in SN DA neurons of human PD brains were positively correlated with corresponding elevated levels of mRNAs for functional compensation of progressive SN DA loss and for enhanced proteasomal (PARK5/UCHL1) and lysosomal (PARK9/ATPase13A2) function, possibly counteracting alpha-synuclein toxicity. In contrast, microRNA miR-133b levels, previously implicated in transcriptional dysregulation in PD, were not altered in SN DA neurons in PD.
Collapse
Affiliation(s)
- Falk Schlaudraff
- Department of Applied Physiology, Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Jan Gründemann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michael Fauler
- Department of Applied Physiology, Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - Elena Dragicevic
- Department of Applied Physiology, Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, London, UK
| | - Birgit Liss
- Department of Applied Physiology, Institute of Applied Physiology, University of Ulm, Ulm, Germany.
| |
Collapse
|
38
|
Neurochemical profiling of dopaminergic neurons in the forebrain of a cichlid fish, Astatotilapia burtoni. J Chem Neuroanat 2013; 47:106-15. [DOI: 10.1016/j.jchemneu.2012.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022]
|
39
|
Restriction of neural precursor ability to respond to Nurr1 by early regional specification. PLoS One 2012; 7:e51798. [PMID: 23240065 PMCID: PMC3519900 DOI: 10.1371/journal.pone.0051798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/08/2012] [Indexed: 11/19/2022] Open
Abstract
During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS) regionalization, generation of neural precursors (NPs) and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB) has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA) neurotransmission, e.g. tyrosine hydroxylase (TH) and the DA transporter (DAT), and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE) and MB, but not in NPs isolated from E13.5 cortex (CTX) and spinal cord (SC) or from the adult subventricular zone (SVZ). Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization.
Collapse
|
40
|
Jansen M, Wang W, Greco D, Bellenchi GC, Porzio U, Brown AJ, Ikonen E. What dictates the accumulation of desmosterol in the developing brain? FASEB J 2012; 27:865-70. [DOI: 10.1096/fj.12-211235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maurice Jansen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Wei Wang
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Dario Greco
- Research Unit of Molecular MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Bioscience and NutritionKarolinska InstituteStockholmSweden
| | | | | | - Andrew J. Brown
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Elina Ikonen
- Institute of Biomedicine, AnatomyUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|