1
|
Perez JC, Poulen G, Cardoso M, Boukhaddaoui H, Gazard CM, Courtand G, Bertrand SS, Gerber YN, Perrin FE. CSF1R inhibition at chronic stage after spinal cord injury modulates microglia proliferation. Glia 2023; 71:2782-2798. [PMID: 37539655 DOI: 10.1002/glia.24451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Traumatic spinal cord injury (SCI) induces irreversible autonomic and sensory-motor impairments. A large number of patients exhibit chronic SCI and no curative treatment is currently available. Microglia are predominant immune players after SCI, they undergo highly dynamic processes, including proliferation and morphological modification. In a translational aim, we investigated whether microglia proliferation persists at chronic stage after spinal cord hemisection and whether a brief pharmacological treatment could modulate microglial responses. We first carried out a time course analysis of SCI-induced microglia proliferation associated with morphological analysis up to 84 days post-injury (dpi). Second, we analyzed outcomes on microglia of an oral administration of GW2580, a colony stimulating factor-1 receptor tyrosine kinase inhibitor reducing selectively microglia proliferation. After SCI, microglia proliferation remains elevated at 84 dpi. The percentage of proliferative microglia relative to proliferative cells increases over time reaching almost 50% at 84 dpi. Morphological modifications of microglia processes are observed up to 84 dpi and microglia cell body area is transiently increased up to 42 dpi. A transient post-injury GW2580-delivery at two chronic stages after SCI (42 and 84 dpi) reduces microglia proliferation and modifies microglial morphology evoking an overall limitation of secondary inflammation. Finally, transient GW2580-delivery at chronic stage after SCI modulates myelination processes. Together our study shows that there is a persistent microglia proliferation induced by SCI and that a pharmacological treatment at chronic stage after SCI modulates microglial responses. Thus, a transient oral GW2580-delivery at chronic stage after injury may provide a promising therapeutic strategy for chronic SCI patients.
Collapse
Affiliation(s)
| | - Gaetan Poulen
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
| | - Maida Cardoso
- UMR 5221, Univ. Montpellier, CNRS, Montpellier, France
| | | | | | | | | | | | - Florence Evelyne Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Gao X, Sun X, Cheng H, Ruzbarsky JJ, Mullen M, Huard M, Huard J. MRL/MpJ Mice Resist to Age-Related and Long-Term Ovariectomy-Induced Bone Loss: Implications for Bone Regeneration and Repair. Int J Mol Sci 2023; 24:ijms24032396. [PMID: 36768718 PMCID: PMC9916619 DOI: 10.3390/ijms24032396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Osteoporosis and age-related bone loss increase bone fracture risk and impair bone healing. The need for identifying new factors to prevent or treat bone loss is critical. Previously, we reported that young MRL/MpJ mice have superior bone microarchitecture and biomechanical properties as compared to wild-type (WT) mice. In this study, MRL/MpJ mice were tested for resistance to age-related and long-term ovariectomy-induced bone loss to uncover potential beneficial factors for bone regeneration and repair. Bone tissues collected from 14-month-old MRL/MpJ and C57BL/6J (WT) mice were analyzed using micro-CT, histology, and immunohistochemistry, and serum protein markers were characterized using ELISAs or multiplex assays. Furthermore, 4-month-old MRL/MpJ and WT mice were subjected to ovariectomy (OV) or sham surgery and bone loss was monitored continuously using micro-CT at 1, 2, 4, and 6 months (M) after surgery with histology and immunohistochemistry performed at 6 M post-surgery. Sera were collected for biomarker detection using ELISA and multiplex assays at 6 M after surgery. Our results indicated that MRL/MpJ mice maintained better bone microarchitecture and higher bone mass than WT mice during aging and long-term ovariectomy. This resistance of bone loss observed in MRL/MpJ mice correlated with the maintenance of higher OSX+ osteoprogenitor cell pools, higher activation of the pSMAD5 signaling pathway, more PCNA+ cells, and a lower number of osteoclasts. Systemically, lower serum RANKL and DKK1 with higher serum IGF1 and OPG in MRL/MpJ mice relative to WT mice may also contribute to the maintenance of higher bone microarchitecture during aging and less severe bone loss after long-term ovariectomy. These findings may be used to develop therapeutic approaches to maintain bone mass and improve bone regeneration and repair due to injury, disease, and aging.
Collapse
Affiliation(s)
- Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Correspondence: (X.G.); (J.H.)
| | - Xuying Sun
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Haizi Cheng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Joseph J. Ruzbarsky
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
- The Steadman Clinic, Vail, CO 81657, USA
| | - Michael Mullen
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Matthieu Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Correspondence: (X.G.); (J.H.)
| |
Collapse
|
3
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
4
|
Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, Sousa SC, Luz LL, Sintra MA, Oliveira R, Monteiro AC, Pinheiro GG, Vitorino M, Silva JA, Simão S, Fernandes VE, Provazník J, Benes V, Cruz CD, Safronov BV, Magalhães A, Reis CA, Vieira J, Vieira CP, Tiscórnia G, Araújo IM, Sousa MM. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev Cell 2021; 57:440-450.e7. [PMID: 34986324 DOI: 10.1016/j.devcel.2021.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Regeneration of adult mammalian central nervous system (CNS) axons is abortive, resulting in inability to recover function after CNS lesion, including spinal cord injury (SCI). Here, we show that the spiny mouse (Acomys) is an exception to other mammals, being capable of spontaneous and fast restoration of function after severe SCI, re-establishing hind limb coordination. Remarkably, Acomys assembles a scarless pro-regenerative tissue at the injury site, providing a unique structural continuity of the initial spinal cord geometry. The Acomys SCI site shows robust axon regeneration of multiple tracts, synapse formation, and electrophysiological signal propagation. Transcriptomic analysis of the spinal cord following transcriptome reconstruction revealed that Acomys rewires glycosylation biosynthetic pathways, culminating in a specific pro-regenerative proteoglycan signature at SCI site. Our work uncovers that a glycosylation switch is critical for axon regeneration after SCI and identifies β3gnt7, a crucial enzyme of keratan sulfate biosynthesis, as an enhancer of axon growth.
Collapse
Affiliation(s)
- Joana Nogueira-Rodrigues
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Sérgio C Leite
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Sara C Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Liliana L Luz
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Maria A Sintra
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Raquel Oliveira
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal; Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London WC2R 2LS, London, UK
| | - Ana C Monteiro
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gonçalo G Pinheiro
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Marta Vitorino
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joana A Silva
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Sónia Simão
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Vitor E Fernandes
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal
| | - Jan Provazník
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Célia D Cruz
- Translational NeuroUrology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Boris V Safronov
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Ana Magalhães
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Celso A Reis
- Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology, IPATIMUP), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; Department of Pathology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Jorge Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Cristina P Vieira
- Phenotypic Evolution Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Gustavo Tiscórnia
- Molecular & Regenerative Medicine Laboratory, Centro de Ciências do Mar (CCMAR), University of Algarve, 8005-139 Faro, Portugal; Clinica Eugin, Research and Development, 08006 Barcelona, Spain
| | - Inês M Araújo
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal; Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
5
|
Perez JC, Gerber YN, Perrin FE. Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Front Aging Neurosci 2021; 13:769548. [PMID: 34899275 PMCID: PMC8662749 DOI: 10.3389/fnagi.2021.769548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The glial scar that forms after traumatic spinal cord injury (SCI) is mostly composed of microglia, NG2 glia, and astrocytes and plays dual roles in pathophysiological processes induced by the injury. On one hand, the glial scar acts as a chemical and physical obstacle to spontaneous axonal regeneration, thus preventing functional recovery, and, on the other hand, it partly limits lesion extension. The complex activation pattern of glial cells is associated with cellular and molecular crosstalk and interactions with immune cells. Interestingly, response to SCI is diverse among species: from amphibians and fishes that display rather limited (if any) glial scarring to mammals that exhibit a well-identifiable scar. Additionally, kinetics of glial activation varies among species. In rodents, microglia become activated before astrocytes, and both glial cell populations undergo activation processes reflected amongst others by proliferation and migration toward the injury site. In primates, glial cell activation is delayed as compared to rodents. Here, we compare the spatial and temporal diversity of the glial response, following SCI amongst species. A better understanding of mechanisms underlying glial activation and scar formation is a prerequisite to develop timely glial cell-specific therapeutic strategies that aim to increase functional recovery.
Collapse
Affiliation(s)
| | - Yannick N Gerber
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France
| | - Florence E Perrin
- MMDN, Université de Montpellier, EPHE, INSERM, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
6
|
Tsujioka H, Yamashita T. Neural circuit repair after central nervous system injury. Int Immunol 2020; 33:301-309. [PMID: 33270108 DOI: 10.1093/intimm/dxaa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Central nervous system injury often causes lifelong impairment of neural function, because the regenerative ability of axons is limited, making a sharp contrast to the successful regeneration that is seen in the peripheral nervous system. Nevertheless, partial functional recovery is observed, because axonal branches of damaged or undamaged neurons sprout and form novel relaying circuits. Using a lot of animal models such as the spinal cord injury model or the optic nerve injury model, previous studies have identified many factors that promote or inhibit axonal regeneration or sprouting. Molecules in the myelin such as myelin-associated glycoprotein, Nogo-A or oligodendrocyte-myelin glycoprotein, or molecules found in the glial scar such as chondroitin sulfate proteoglycans, activate Ras homolog A (RhoA) signaling, which leads to the collapse of the growth cone and inhibit axonal regeneration. By contrast, axonal regeneration programs can be activated by many molecules such as regeneration-associated transcription factors, cyclic AMP, neurotrophic factors, growth factors, mechanistic target of rapamycin or immune-related molecules. Axonal sprouting and axonal regeneration largely share these mechanisms. For functional recovery, appropriate pruning or suppressing of aberrant sprouting are also important. In contrast to adults, neonates show much higher sprouting ability. Specific cell types, various mouse strains and different species show higher regenerative ability. Studies focusing on these models also identified a lot of molecules that affect the regenerative ability. A deeper understanding of the mechanisms of neural circuit repair will lead to the development of better therapeutic approaches for central nervous system injury.
Collapse
Affiliation(s)
- Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,WPI Immunology Frontier Research Center, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Bioscience, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
König C, Plank AC, Kapp A, Timotius IK, von Hörsten S, Zimmermann K. Thirty Mouse Strain Survey of Voluntary Physical Activity and Energy Expenditure: Influence of Strain, Sex and Day-Night Variation. Front Neurosci 2020; 14:531. [PMID: 32733181 PMCID: PMC7358574 DOI: 10.3389/fnins.2020.00531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
We measured indirect calorimetry and activity parameters, VO2 and VCO2 to extract respiratory exchange ratio (RER) and energy expenditure in both sexes of 30 inbred mouse strains of 6 genetic families at 9–13 weeks during one photophase and the subsequent scotophase. We observed a continuous distribution of all traits. While males had higher body weights than females, we observed no sex difference for food and water intake. All strains drank and fed more during the night even if they displayed no day–night difference in activity traits. Several strains showed absent or weak day–night variation in one or more activity traits and these included FVB and 129X1, males of 129S1, SWR, NZW, and SM, and females of SJL. In general females showed higher rearing and ambulatory activity with 6 and 9 strains, respectively, showing a sex difference. Fine motor movements, like grooming, showed less sex differences. RER underlied a strong day–night difference and no sex effect. Only FVB females and males of the RIIIS and SM strain had no day–night variation. Energy expenditure underlies a large day–night variation which was absent in SWR and in FVB females and RIIIS males. In general, female bodies had a tendency to higher energy expenditure values, which became a significant difference in C3H, MAMy, SM, DBA1, and BUB. Our data illustrate the diversity of these traits in male and female inbred mice and provide a resource in the selection of strains for future studies.
Collapse
Affiliation(s)
- Christine König
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne-Christine Plank
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Kapp
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ivanna K Timotius
- Machine Learning & Data Analytics Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Electronics Engineering, Satya Wacana Christian University, Salatiga, Indonesia
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Sun X, Gao X, Deng Z, Zhang L, McGilvray K, Gadomski BC, Amra S, Bao G, Huard J. High bone microarchitecture, strength, and resistance to bone loss in MRL/MpJ mice correlates with activation of different signaling pathways and systemic factors. FASEB J 2019; 34:789-806. [PMID: 31914651 DOI: 10.1096/fj.201901229rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/27/2022]
Abstract
The MRL/MpJ mice have demonstrated an enhanced tissue regeneration capacity for various tissues. In the present study, we systematically characterized bone microarchitecture and found that MRL/MpJ mice exhibit higher bone microarchitecture and strength compared to both C57BL/10J and C57BL/6J WT mice at 2, 4, and 10 months of age. The higher bone mass in MRL/MpJ mice was correlated to increased osteoblasts, decreased osteoclasts, higher cell proliferation, and bone formation, and enhanced pSMAD5 signaling earlier during postnatal development (2-month old) in the spine trabecular bone, and lower bone resorption rate at later age. Furthermore, these mice exhibit accelerated fracture healing via enhanced pSMAD5, pAKT and p-P38MAPK pathways compared to control groups. Moreover, MRL/MpJ mice demonstrated resistance to ovariectomy-induced bone loss as evidenced by maintaining higher bone volume/tissue volume (BV/TV) and lower percentage of bone loss later after ovariectomy. The consistently higher serum IGF1 level and lower RANKL level in MRL/MpJ mice may contribute to the maintenance of high bone mass in uninjured and injured bone. In conclusion, our results indicate that enhanced pSMAD5, pAKT, and p-P38MAPK signaling, higher serum IGF-1, and lower RANKL level contribute to the higher bone microarchitecture and strength, accelerated healing, and resistance to osteoporosis in MRL/MpJ mice.
Collapse
Affiliation(s)
- Xuying Sun
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xueqin Gao
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Linlin Zhang
- Department of Biomedical Engineering, Rice University, Houston, Texas
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Benjamin C Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Sarah Amra
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Gang Bao
- Department of Biomedical Engineering, Rice University, Houston, Texas
| | - Johnny Huard
- Department of Orthopaedic Surgery, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| |
Collapse
|
9
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
10
|
Tseng C, Sinha K, Pan H, Cui Y, Guo P, Lin CY, Yang F, Deng Z, Eltzschig HK, Lu A, Huard J. Markers of Accelerated Skeletal Muscle Regenerative Response in Murphy Roths Large Mice: Characteristics of Muscle Progenitor Cells and Circulating Factors. Stem Cells 2019; 37:357-367. [PMID: 30537304 DOI: 10.1002/stem.2957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
The "super-healing" Murphy Roths Large (MRL/MpJ) mouse possesses a superior regenerative capacity for repair of many tissues, which makes it an excellent animal model for studying molecular and cellular mechanisms during tissue regeneration. As the role of muscle progenitor cells (MPCs) in muscle-healing capacity of MRL/MpJ mice has not been previously studied, we investigated the muscle regenerative capacity of MRL/MpJ mice following muscle injury, and the results were compared to results from C57BL/6J (B6) age-matched control mice. Our results show that muscle healing upon cardiotoxin injury was accelerated in MRL/MpJ mice and characterized by reduced necrotic muscle area, reduced macrophage infiltration, and more regenerated myofibers (embryonic myosin heavy chain+/centronucleated fibers) at 3, 5, and 12 days postinjury, when compared to B6 age-matched control mice. These observations were associated with enhanced function of MPCs, including improved cell proliferation, differentiation, and resistance to stress, as well as increased muscle regenerative potential when compared to B6 MPCs. Mass spectrometry of serum proteins revealed higher levels of circulating antioxidants in MRL/MpJ mice when compared to B6 mice. Indeed, we found relatively higher gene expression of superoxide dismutase 1 (Sod1) and catalase (Cat) in MRL/MpJ MPCs. Depletion of Sod1 or Cat by small interfering RNA impaired myogenic potential of MRL/MpJ MPCs, indicating a role for these antioxidants in muscle repair. Taken together, these findings provide evidence that improved function of MPCs and higher levels of circulating antioxidants play important roles in accelerating muscle-healing capacity of MRL/MpJ mice. Stem Cells 2019;37:357-367.
Collapse
Affiliation(s)
- Chieh Tseng
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Krishna Sinha
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Guo
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Chih Yi Lin
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital, Shenzhen, Guangzhou, People's Republic of China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
11
|
Kim S, Zhang X, O'Buckley SC, Cooter M, Park JJ, Nackley AG. Acupuncture Resolves Persistent Pain and Neuroinflammation in a Mouse Model of Chronic Overlapping Pain Conditions. THE JOURNAL OF PAIN 2018; 19:1384.e1-1384.e14. [PMID: 29981376 PMCID: PMC6289709 DOI: 10.1016/j.jpain.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
Patients with chronic overlapping pain conditions have decreased levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. Consistent with clinical syndromes, we previously demonstrated that COMT inhibition in rodents produces persistent pain and heightened immune responses. Here, we sought to determine the efficacy of manual acupuncture in resolving persistent pain and neuroinflammation in the classic inbred C57BL/6 strain and the rapid-wound healing MRL/MpJ strain. Mice received subcutaneous osmotic minipumps to deliver the COMT inhibitor OR486 or vehicle for 13 days. On day 7 after pump implantation, acupuncture was performed at the Zusanli (ST36) point or a non-acupoint for 6 consecutive days. Behavioral responses to mechanical stimuli were measured throughout the experiment. Immunohistochemical analysis of spinal phosphorylated p38 mitogen-activated protein kinase, a marker of inflammation, and glial fibrillary acidic protein, a marker of astrogliosis, was performed on day 13. Results demonstrated that ST36, but not sham, acupuncture resolved mechanical hypersensitivity and reduced OR486-dependent increases in phosphorylated p38 and glial fibrillary acidic protein in both strains. The magnitude of the analgesic response was greater in MRL/MpJ mice. These findings indicate acupuncture as an effective treatment for persistent pain linked to abnormalities in catecholamine signaling and, furthermore, that analgesic efficacy may be influenced by genetic differences. PERSPECTIVE: Chronic overlapping pain conditions remain ineffectively managed by conventional pharmacotherapies. Here, we demonstrate that acupuncture alleviates persistent pain and neuroinflammation linked to heightened catecholaminergic tone. Mice with superior healing capacity exhibit greater analgesic efficacy. Findings indicate acupuncture as an effective treatment for chronic overlapping pain conditions and provide insight into treatment response variability.
Collapse
Affiliation(s)
- Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Jongbae J Park
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
12
|
Noristani HN, They L, Perrin FE. C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury. Front Cell Neurosci 2018; 12:173. [PMID: 29977191 PMCID: PMC6021489 DOI: 10.3389/fncel.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.
Collapse
Affiliation(s)
- Harun Najib Noristani
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| | | | - Florence Evelyne Perrin
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| |
Collapse
|
13
|
Bombardo M, Malagola E, Chen R, Carta A, Seleznik GM, Hills AP, Graf R, Sonda S. Enhanced proliferation of pancreatic acinar cells in MRL/MpJ mice is driven by severe acinar injury but independent of inflammation. Sci Rep 2018; 8:9391. [PMID: 29925922 PMCID: PMC6010442 DOI: 10.1038/s41598-018-27422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
Adult pancreatic acinar cells have the ability to re-enter the cell cycle and proliferate upon injury or tissue loss. Despite this mitotic ability, the extent of acinar proliferation is often limited and unable to completely regenerate the injured tissue or restore the initial volume of the organ, thus leading to pancreatic dysfunction. Identifying molecular determinants of enhanced proliferation is critical to overcome this issue. In this study, we discovered that Murphy Roths Large (MRL/MpJ) mice can be exploited to identify molecular effectors promoting acinar proliferation upon injury, with the ultimate goal to develop therapeutic regimens to boost pancreatic regeneration. Our results show that, upon cerulein-induced acinar injury, cell proliferation was enhanced and cell cycle components up-regulated in the pancreas of MRL/MpJ mice compared to the control strain C57BL/6. Initial damage of acinar cells was exacerbated in these mice, manifested by increased serum levels of pancreatic enzymes, intra-pancreatic trypsinogen activation and acinar cell apoptosis. In addition, MRL/MpJ pancreata presented enhanced inflammation, de-differentiation of acinar cells and acinar-to-ductal metaplasia. Manipulation of inflammatory levels and mitogenic stimulation with the thyroid hormone 5,3-L-tri-iodothyronine revealed that factors derived from initial acinar injury rather than inflammatory injury promote the replicative advantage in MRL/MpJ mice.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Arcangelo Carta
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Andrew P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland. .,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland. .,School of Health Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
14
|
Heber-Katz E, Messersmith P. Drug delivery and epimorphic salamander-type mouse regeneration: A full parts and labor plan. Adv Drug Deliv Rev 2018. [PMID: 29524586 DOI: 10.1016/j.addr.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capacity to regenerate entire body parts, tissues, and organs had generally been thought to be lost in evolution with very few exceptions (e.g. the liver) surviving in mammals. The discovery of the MRL mouse and the elucidation of the underlying molecular pathway centering around hypoxia inducible factor, HIF-1α, has allowed a drug and materials approach to regeneration in mice and hopefully humans. The HIF-1α pathway is ancient and permitted the transition from unicellular to multicellular organisms. Furthermore, HIF-1α and its regulation by PHDs, important oxygen sensors in the cell, provides a perfect drug target. We review the historical background of regeneration biology, the discovery of the MRL mouse, and its underlying biology, and novel approaches to drugs, targets, and delivery systems (see Fig. 1).
Collapse
|
15
|
Hu TT, Wang RR, Tang YY, Wu YX, Yu J, Hou WW, Lou GD, Zhou YD, Zhang SH, Chen Z. TLR4 deficiency abrogated widespread tactile allodynia, but not widespread thermal hyperalgesia and trigeminal neuropathic pain after partial infraorbital nerve transection. Pain 2017; 159:273-283. [DOI: 10.1097/j.pain.0000000000001100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Górnikiewicz B, Ronowicz A, Madanecki P, Sachadyn P. Genome-wide DNA methylation profiling of the regenerative MRL/MpJ mouse and two normal strains. Epigenomics 2017; 9:1105-1122. [DOI: 10.2217/epi-2017-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: We aimed to identify the pivotal differences in the DNA methylation profiles between the regeneration capable MRL/MpJ mouse and reference mouse strains. Materials & methods: Global DNA methylation profiling was performed in ear pinnae, bone marrow, spleen, liver and heart from uninjured adult females of the MRL/MpJ and C57BL/6J and BALB/c. Results & conclusion: A number of differentially methylated regions (DMRs) distinguishing between the MRL/MpJ mouse and both references were identified. In the ear pinnae, the DMRs were enriched in genes associated with development, inflammation and apoptosis, and in binding sites of transcriptional modulator Smad1. Several DMRs overlapped previously mapped quantitative trait loci of regenerative capability. The results suggest potential epigenetic determinants of regenerative phenomenon.
Collapse
Affiliation(s)
- Bartosz Górnikiewicz
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Madanecki
- Department of Biology & Pharmaceutical Botany of Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology & Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
17
|
Tedeschi A, Omura T, Costigan M. CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Exp Neurol 2017; 287:409-422. [PMID: 27163547 PMCID: PMC5097896 DOI: 10.1016/j.expneurol.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
The importance of genetic diversity in biological investigation has been recognized since the pioneering studies of Gregor Johann Mendel and Charles Darwin. Research in this area has been greatly informed recently by the publication of genomes from multiple species. Genes regulate and create every part and process in a living organism, react with the environment to create each living form and morph and mutate to determine the history and future of each species. The regenerative capacity of neurons differs profoundly between animal lineages and within the mammalian central and peripheral nervous systems. Here, we discuss research that suggests that genetic background contributes to the ability of injured axons to regenerate in the mammalian central nervous system (CNS), by controlling the regulation of specific signaling cascades. We detail the methods used to identify these pathways, which include among others Activin signaling and other TGF-β superfamily members. We discuss the potential of altering these pathways in patients with CNS damage and outline strategies to promote regeneration and repair by combinatorial manipulation of neuron-intrinsic and extrinsic determinants.
Collapse
Affiliation(s)
- Andrea Tedeschi
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Takao Omura
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Michael Costigan
- FM Kirby Neurobiology Center and Anesthesia Department, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Arble JR, Lalley AL, Dyment NA, Joshi P, Shin DG, Gooch C, Grawe B, Rowe D, Shearn JT. The LG/J murine strain exhibits near-normal tendon biomechanical properties following a full-length central patellar tendon defect. Connect Tissue Res 2016; 57:496-506. [PMID: 27552106 PMCID: PMC10552235 DOI: 10.1080/03008207.2016.1213247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/08/2016] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Identifying biological success criteria is needed to improve therapies, and one strategy for identifying them is to analyze the RNA transcriptome for successful and unsuccessful models of tendon healing. We have characterized the MRL/MpJ murine strain and found improved mechanical outcomes following a central patellar tendon (PT) injury. In this study, we evaluate the healing of the LG/J murine strain, which comprises 75% of the MRL/MpJ background, to determine if the LG/J also exhibits improved biomechanical properties following injury and to determine differentially expressed transcription factors across the C57BL/6, MRL/MpJ and the LG/J strains during the early stages of healing. MATERIALS AND METHODS A full-length, central PT defect was created in 16-20 week old MRL/MpJ, LG/J, and C57BL/6 murine strains. Mechanical properties were assessed at 2, 5, and 8 weeks post surgery. Transcriptomic expression was assessed at 3, 7, and 14 days following injury using a novel clustering software program to evaluate differential expression of transcription factors. RESULTS Average LG/J structural properties improved to 96.7% and 97.2% of native LG/J PT stiffness and ultimate load by 8 weeks post surgery, respectively. We found the LG/J responded by increasing expression of transcription factors implicated in the inflammatory response and collagen fibril organization. CONCLUSIONS The LG/J strain returns to normal structural properties by 8 weeks, with steadily increasing properties at each time point. Future work will characterize the cell populations responding to injury and investigate the role of the differentially expressed transcription factors during healing.
Collapse
Affiliation(s)
- Jessica R. Arble
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L. Lalley
- Engineered Skin Laboratories, Shriners Hospital for Children, Cincinnati, OH, USA
| | - Nathaniel A. Dyment
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Pujan Joshi
- Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Cynthia Gooch
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Brian Grawe
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Rowe
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Jason T. Shearn
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
Kwiatkowski A, Piatkowski M, Chen M, Kan L, Meng Q, Fan H, Osman AHK, Liu Z, Ledford B, He JQ. Superior angiogenesis facilitates digit regrowth in MRL/MpJ mice compared to C57BL/6 mice. Biochem Biophys Res Commun 2016; 473:907-912. [DOI: 10.1016/j.bbrc.2016.03.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
|
20
|
Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 2016; 62:78-85. [PMID: 27130635 DOI: 10.1016/j.semcdb.2016.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury.
Collapse
|
21
|
Matias Santos D, Rita AM, Casanellas I, Brito Ova A, Araújo IM, Power D, Tiscornia G. Ear wound regeneration in the African spiny mouse Acomys cahirinus. ACTA ACUST UNITED AC 2016; 3:52-61. [PMID: 27499879 PMCID: PMC4857749 DOI: 10.1002/reg2.50] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023]
Abstract
While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four‐millimeter‐diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.
Collapse
Affiliation(s)
- Dino Matias Santos
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Ana Martins Rita
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Ignasi Casanellas
- Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Adélia Brito Ova
- Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Inês Maria Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| | - Deborah Power
- Centro de Ciências do Mar (CCMAR) University of Algarve 8005-139 Faro Portugal
| | - Gustavo Tiscornia
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine University of Algarve 8005-139 Faro Portugal; Center for Biomedical Research, CBMR University of Algarve 8005-139 Faro Portugal
| |
Collapse
|
22
|
Podolak-Popinigis J, Górnikiewicz B, Ronowicz A, Sachadyn P. Transcriptome profiling reveals distinctive traits of retinol metabolism and neonatal parallels in the MRL/MpJ mouse. BMC Genomics 2015; 16:926. [PMID: 26572684 PMCID: PMC4647819 DOI: 10.1186/s12864-015-2075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background The MRL/MpJ mouse is a laboratory inbred strain known for regenerative abilities which are manifested by scarless closure of ear pinna punch holes. Enhanced healing responses have been reported in other organs. A remarkable feature of the strain is that the adult MRL/MpJ mouse retains several embryonic biochemical characteristics, including increased expression of stem cell markers. Results We explored the transcriptome of the MRL/MpJ mouse in the heart, liver, spleen, bone marrow and ears. We used two reference strains, thus increasing the chances to discover the genes responsible for the exceptional properties of the regenerative strain. We revealed several distinctive characteristics of gene expression patterns in the MRL/MpJ mouse, including the repression of immune response genes, the up-regulation of those associated with retinol metabolism and PPAR signalling, as well as differences in expression of the genes engaged in wounding response. Another crucial finding is that the gene expression patterns in the adult MRL/MpJ mouse and murine neonates share a number of parallels, which are also related to immune and wounding response, PPAR pathway, and retinol metabolism. Conclusions Our results indicate the significance of retinol signalling and neonatal transcriptomic relics as the distinguishing features of the MRL/MpJ mouse. The possibility that retinoids could act as key regulatory molecules in this regeneration model brings important implications for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2075-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Podolak-Popinigis
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Bartosz Górnikiewicz
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland.
| |
Collapse
|
23
|
Lalley AL, Dyment NA, Kazemi N, Kenter K, Gooch C, Rowe DW, Butler DL, Shearn JT. Improved biomechanical and biological outcomes in the MRL/MpJ murine strain following a full-length patellar tendon injury. J Orthop Res 2015; 33:1693-703. [PMID: 25982892 PMCID: PMC5007538 DOI: 10.1002/jor.22928] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/10/2015] [Indexed: 02/06/2023]
Abstract
Musculoskeletal injuries greatly affect the U.S. population and current clinical approaches fail to restore long-term native tissue structure and function. Tissue engineering is a strategy advocated to improve tendon healing; however, the field still needs to establish biological benchmarks for assessing the effectiveness of tissue-engineered structures. Investigating superior healing models, such as the MRL/MpJ, offers the opportunity to first characterize successful healing and then apply experimental findings to tissue-engineered therapies. This study seeks to evaluate the MRL/MpJ's healing response following a central patellar tendon injury compared to wildtype. Gene expression and histology were assessed at 3, 7, and 14 days following injury and mechanical properties were measured at 2, 5, and 8 weeks. Native patellar tendon biological and mechanical properties were not different between strains. Following injury, the MRL/MpJ displayed increased mechanical properties between 5 and 8 weeks; however, early tenogenic expression patterns were not different between the strains. Furthermore, expression of the cyclin-dependent kinase inhibitor, p21, was not different between strains, suggesting an alternative mechanism may be driving the healing response. Future studies will investigate collagen structure and alignment of the repair tissue and characterize the complete healing transcriptome to identify mechanisms driving the MRL/MpJ response.
Collapse
Affiliation(s)
- Andrea L. Lalley
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Nathaniel A. Dyment
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Namdar Kazemi
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Keith Kenter
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Cynthia Gooch
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - David W. Rowe
- Department of Reconstructive Sciences, College of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - David L. Butler
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Jason T. Shearn
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
24
|
Dyment NA, Galloway JL. Regenerative biology of tendon: mechanisms for renewal and repair. ACTA ACUST UNITED AC 2015; 1:124-131. [PMID: 26389023 DOI: 10.1007/s40610-015-0021-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the molecular and cellular mechanisms underlying tissue turnover and repair are essential towards addressing pathologies in aging, injury and disease. Each tissue has distinct means of maintaining homeostasis and healing after injury. For some, resident stem cell populations mediate both of these processes. These stem cells, by definition, are self renewing and give rise to all the differentiated cells of that tissue. However, not all organs fit with this traditional stem cell model of regeneration, and some do not appear to harbor somatic stem or progenitor cells capable of multilineage in vivo reconstitution. Despite recent progress in tendon progenitor cell research, our current knowledge of the mechanisms regulating tendon cell homeostasis and injury response is limited. Understanding the role of resident tendon cell populations is of great importance for regenerative medicine based approaches to tendon injuries and disease. The goal of this review is to bring to light our current knowledge regarding tendon progenitor cells and their role in tissue maintenance and repair. We will focus on pressing questions in the field and the new tools, including model systems, available to address them.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute
| |
Collapse
|
25
|
Galatz LM, Gerstenfeld L, Heber-Katz E, Rodeo SA. Tendon regeneration and scar formation: The concept of scarless healing. J Orthop Res 2015; 33:823-31. [PMID: 25676657 PMCID: PMC6084432 DOI: 10.1002/jor.22853] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/03/2015] [Indexed: 02/04/2023]
Abstract
Tendon healing is characterized by the formation of fibrovascular scar tissue, as tendon has very little intrinsic regenerative capacity. This creates a substantial clinical challenge in the setting of large, chronic tears seen clinically. Interest in regenerative healing seen in amphibians and certain strains of mice has arisen in response to the biological behavior of tendon tissue. Bone is also a model of tissue regeneration as healing bone will achieve the mechanical and histologic characteristics of the original tissue. The ultimate goal of the study of genes and mechanisms that contribute to true tissue regeneration is to ultimately attempt to manipulate the expression of those genes and activate these mechanisms in the setting of tendon injury and repair. Clearly, further research is needed to bring this to the forefront, however, study of scarless healing has potential to have meaningful application to tendon healing.
Collapse
Affiliation(s)
- Leesa M. Galatz
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Ellen Heber-Katz
- The Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Scott A. Rodeo
- Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
26
|
Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. Inflammation and Its Correlates in Regenerative Wound Healing: An Alternate Perspective. Adv Wound Care (New Rochelle) 2014; 3:592-603. [PMID: 25207202 DOI: 10.1089/wound.2014.0528] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Objective: The wound healing response may be viewed as partially overlapping sets of two physiological processes, regeneration and wound repair with the former overrepresented in some lower species such as newts and the latter more typical of mammals. A robust and quantitative model of regenerative healing has been described in Murphy Roths Large (MRL) mice in which through-and-through ear hole wounds in the ear pinna leads to scarless healing and replacement of all tissue through blastema formation and including cartilage. Since these mice are naturally autoimmune and display many aspects of an enhanced inflammatory response, we chose to examine the inflammatory status during regenerative ear hole closure and observed that inflammation has a clear positive effect on regenerative healing. Approach: The inflammatory gene expression patterns (Illumina microarrays) of early healing ear tissue from regenerative MRL and nonregenerative C57BL/6 (B6) strains are presented along with a survey of innate inflammatory cells found in this tissue type pre and postinjury. The role of inflammation on healing is tested using a COX-2 inhibitor. Innovation and Conclusion: We conclude that (1) enhanced inflammation is consistent with, and probably necessary, for a full regenerative response and (2) the inflammatory gene expression and cell distribution patterns suggest a novel mast cell population with markers found in both immature and mature mast cells that may be a key component of regeneration.
Collapse
Affiliation(s)
| | | | - Yong Zhang
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Lise Clark
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Celia Chang
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
27
|
Abstract
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Cell Biology and Physiology, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
28
|
Lee-Liu D, Moreno M, Almonacid LI, Tapia VS, Muñoz R, von Marées J, Gaete M, Melo F, Larraín J. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev 2014; 9:12. [PMID: 24885550 PMCID: PMC4046850 DOI: 10.1186/1749-8104-9-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/02/2014] [Indexed: 11/23/2022] Open
Abstract
Background Xenopus laevis has regenerative and non-regenerative stages. As a tadpole, it is fully capable of functional recovery after a spinal cord injury, while its juvenile form (froglet) loses this capability during metamorphosis. We envision that comparative studies between regenerative and non-regenerative stages in Xenopus could aid in understanding why spinal cord regeneration fails in human beings. Results To identify the mechanisms that allow the tadpole to regenerate and inhibit regeneration in the froglet, we obtained a transcriptome-wide profile of the response to spinal cord injury in Xenopus regenerative and non-regenerative stages. We found extensive transcriptome changes in regenerative tadpoles at 1 day after injury, while this was only observed by 6 days after injury in non-regenerative froglets. In addition, when comparing both stages, we found that they deployed a very different repertoire of transcripts, with more than 80% of them regulated in only one stage, including previously unannotated transcripts. This was supported by gene ontology enrichment analysis and validated by RT-qPCR, which showed that transcripts involved in metabolism, response to stress, cell cycle, development, immune response and inflammation, neurogenesis, and axonal regeneration were regulated differentially between regenerative and non-regenerative stages. Conclusions We identified differences in the timing of the transcriptional response and in the inventory of regulated transcripts and biological processes activated in response to spinal cord injury when comparing regenerative and non-regenerative stages. These genes and biological processes provide an entry point to understand why regeneration fails in mammals. Furthermore, our results introduce Xenopus laevis as a genetic model organism to study spinal cord regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Larraín
- Center for Aging and Regeneration, Millennium Nucleus for Regenerative Biology, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
29
|
Cheverud JM, Lawson HA, Bouckaert K, Kossenkov AV, Showe LC, Cort L, Blankenhorn EP, Bedelbaeva K, Gourevitch D, Zhang Y, Heber-Katz E. Fine-mapping quantitative trait loci affecting murine external ear tissue regeneration in the LG/J by SM/J advanced intercross line. Heredity (Edinb) 2014; 112:508-18. [PMID: 24569637 PMCID: PMC3998788 DOI: 10.1038/hdy.2013.133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022] Open
Abstract
External ear hole closure in LG/J mice represents a model of regenerative response. It is accompanied by the formation of a blastema-like structure and the re-growth of multiple tissues, including cartilage. The ability to regenerate tissue is heritable. An F34 advanced intercross line of mice (Wustl:LG,SM-G34) was generated to identify genomic loci involved in ear hole closure over a 30-day healing period. We mapped 19 quantitative trait loci (QTL) for ear hole closure. Individual gene effects are relatively small (0.08 mm), and most loci have co-dominant effects with phenotypically intermediate heterozygotes. QTL support regions were limited to a median size of 2 Mb containing a median of 19 genes. Positional candidate genes were evaluated using differential transcript expression between LG/J and SM/J healing tissue, function analysis and bioinformatic analysis of single-nucleotide polymorphisms in and around positional candidate genes of interest. Analysis of the set of 34 positional candidate genes and those displaying expression differences revealed over-representation of genes involved in cell cycle regulation/DNA damage, cell migration and adhesion, developmentally related genes and metabolism. This indicates that the healing phenotype in LG/J mice involves multiple physiological mechanisms.
Collapse
Affiliation(s)
- J M Cheverud
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - H A Lawson
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - K Bouckaert
- Department of Anatomy and Neurobiology,
Washington University School of Medicine, St Louis,
MO, USA
| | - A V Kossenkov
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L C Showe
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - L Cort
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - E P Blankenhorn
- Department of Microbiology and Immunology,
Drexel University College of Medicine, Philadelphia,
PA, USA
| | - K Bedelbaeva
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - D Gourevitch
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - Y Zhang
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| | - E Heber-Katz
- Molecular and Cellular Oncogenesis, The
Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
30
|
Górnikiewicz B, Ronowicz A, Podolak J, Madanecki P, Stanisławska-Sachadyn A, Sachadyn P. Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res 2013; 20:605-21. [PMID: 23929942 PMCID: PMC3859327 DOI: 10.1093/dnares/dst034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epigenetic regulation plays essential role in cell differentiation and dedifferentiation, which are the intrinsic processes involved in regeneration. To investigate the epigenetic basis of regeneration capacity, we choose DNA methylation as one of the most important epigenetic mechanisms and the MRL/MpJ mouse as a model of mammalian regeneration known to exhibit enhanced regeneration response in different organs. We report the comparative analysis of genomic DNA methylation profiles of the MRL/MpJ and the control C57BL/6J mouse. Methylated DNA immunoprecipitation followed by microarray analysis using the Nimblegen '3 × 720 K CpG Island Plus RefSeq Promoter' platform was applied in order to carry out genome-wide DNA methylation profiling covering 20 404 promoter regions. We identified hundreds of hypo- and hypermethylated genes and CpG islands in the heart, liver, and spleen, and 37 of them in the three tissues. Decreased inter-tissue diversification and the shift of DNA methylation balance upstream the genes distinguish the genomic methylation patterns of the MRL/MpJ mouse from the C57BL/6J. Homeobox genes and a number of other genes involved in embryonic morphogenesis are significantly overrepresented among the genes hypomethylated in the MRL/MpJ mouse. These findings indicate that epigenetic patterning might be a likely molecular basis of regeneration capability in the MRL/MpJ mouse.
Collapse
|
31
|
Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull 2013; 29:421-35. [PMID: 23861090 DOI: 10.1007/s12264-013-1358-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/03/2013] [Indexed: 12/21/2022] Open
Abstract
Glial scarring following severe tissue damage and inflammation after spinal cord injury (SCI) is due to an extreme, uncontrolled form of reactive astrogliosis that typically occurs around the injury site. The scarring process includes the misalignment of activated astrocytes and the deposition of inhibitory chondroitin sulfate proteoglycans. Here, we first discuss recent developments in the molecular and cellular features of glial scar formation, with special focus on the potential cellular origin of scar-forming cells and the molecular mechanisms underlying glial scar formation after SCI. Second, we discuss the role of glial scar formation in the regulation of axonal regeneration and the cascades of neuro-inflammation. Last, we summarize the physical and pharmacological approaches targeting the modulation of glial scarring to better understand the role of glial scar formation in the repair of SCI.
Collapse
Affiliation(s)
- Yi-Min Yuan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | |
Collapse
|