1
|
Oleinikov AV, Seidu Z, Oleinikov IV, Tetteh M, Lamptey H, Ofori MF, Hviid L, Lopez-Perez M. Profiling the Plasmodium falciparum Erythrocyte Membrane Protein 1-Specific Immununoglobulin G Response Among Ghanaian Children With Hemoglobin S and C. J Infect Dis 2024; 229:203-213. [PMID: 37804095 PMCID: PMC10786258 DOI: 10.1093/infdis/jiad438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are important targets for protective immunity. Abnormal display of PfEMP1 on the surfaces of infected erythrocytes (IEs) and reduced cytoadhesion have been demonstrated in hemoglobin (Hb) AS and HbAC, inherited blood disorders associated with protection against severe P. falciparum malaria. We found that Ghanaian children with HbAS had lower levels of immunoglobulin G against several PfEMP1 variants and that this reactivity increased more slowly with age than in their HbAA counterparts. Moreover, children with HbAS have lower total parasite biomass than those with HbAA at comparable peripheral parasitemias, suggesting impaired cytoadhesion of HbAS IEs in vivo and likely explaining the slower acquisition of PfEMP1-specific immunoglobulin G in this group. In contrast, the function of acquired antibodies was comparable among Hb groups and appears to be intact and sufficient to control parasitemia via opsonization and phagocytosis of IEs.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Zakaria Seidu
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Irina V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Mary Tetteh
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
3
|
Kassa MW, Hasang W, Barateiro A, Damelang T, Brewster J, Dombrowski JG, Longley RJ, Chung AW, Wunderlich G, Mueller I, Aitken EH, Marinho CRF, Rogerson SJ. Acquisition of antibodies to Plasmodium falciparum and Plasmodium vivax antigens in pregnant women living in a low malaria transmission area of Brazil. Malar J 2022; 21:360. [PMID: 36457056 PMCID: PMC9714246 DOI: 10.1186/s12936-022-04402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.
Collapse
Affiliation(s)
- Meseret W. Kassa
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia
| | - Wina Hasang
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - André Barateiro
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Timon Damelang
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Jessica Brewster
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Jamille G. Dombrowski
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rhea J. Longley
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Amy W. Chung
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Gerhard Wunderlich
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivo Mueller
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elizabeth H. Aitken
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Claudio R. F. Marinho
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephen J. Rogerson
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| |
Collapse
|
4
|
Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1. Infect Immun 2022; 90:e0043521. [PMID: 34871039 PMCID: PMC8853675 DOI: 10.1128/iai.00435-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
Collapse
|
5
|
Oleinikov AV. Malaria Parasite Plasmodium falciparum Proteins on the Surface of Infected Erythrocytes as Targets for Novel Drug Discovery. BIOCHEMISTRY (MOSCOW) 2022; 87:S192-S177. [PMID: 35501996 PMCID: PMC8802247 DOI: 10.1134/s0006297922140152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Specific adhesion (sequestration) of Plasmodium falciparum parasite-infected erythrocytes (IEs) in deep vascular beds can cause severe complications resulting in death. This review describes our work on the discovery, characterization, and optimization of novel inhibitors that specifically prevent adhesion of IEs to the host vasculature during severe malaria, especially its placental and cerebral forms. The main idea of using anti-adhesion drugs in severe malaria is to release sequestered parasites (or prevent additional sequestration) as quickly as possible. This may significantly improve the outcomes for patients with severe malaria by decreasing local and systemic inflammation associated with the disease and reestablishing the microvascular blood flow. To identify anti-malarial adhesion-inhibiting molecules, we have developed a high-throughput (HT) screening approach and found a number of promising leads that can be further developed into anti-adhesion drugs providing an efficient adjunct therapy against severe forms of malaria.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA.
| |
Collapse
|
6
|
Oleinikov AV. High-Throughput BioPlex Assay for the Study of Functionally Active Plasmodium Falciparum Antigens That Are Expressed on the Surface of Infected Erythrocytes. Methods Mol Biol 2022; 2470:327-342. [PMID: 35881356 DOI: 10.1007/978-1-0716-2189-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification of P. falciparum infected erythrocyte surface ligands (such as PfEMP1) matched with the host receptors they interact with, as well as identification of PfEMP1 domains that are targets of protective immunity, are important for understanding of the pathophysiology of severe malaria (SM) and for design of novel vaccine candidates. In addition, identification of small-molecule drugs that can prevent or reverse receptor-ligand domain interactions could provide new tools for adjunctive therapy in SM. This protocol describes how to prepare functionally intact PfEMP1 proteins in mammalian cells (COS-7) and immobilize them on the surface of BioPlex beads. Furthermore, the protocol described how to identify PfEMP1 constructs that bind to specific host receptors or to immunoglobulins (IgG, IgM, etc.), and how to measure inhibition of the receptor binding to PfEMP1 constructs by small-molecule compounds or serum/plasma.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
7
|
Chesnokov O, Visitdesotrakul P, Kalani K, Nefzi A, Oleinikov AV. Small Molecule Compounds Identified from Mixture-Based Library Inhibit Binding between Plasmodium falciparum Infected Erythrocytes and Endothelial Receptor ICAM-1. Int J Mol Sci 2021; 22:ijms22115659. [PMID: 34073419 PMCID: PMC8198633 DOI: 10.3390/ijms22115659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
Specific adhesion of P. falciparum parasite-infected erythrocytes (IE) in deep vascular beds can result in severe complications, such as cerebral malaria, placental malaria, respiratory distress, and severe anemia. Cerebral malaria and severe malaria syndromes were associated previously with sequestration of IE to a microvasculature receptor ICAM-1. The screening of Torrey Pines Scaffold Ranking library, which consists of more than 30 million compounds designed around 75 molecular scaffolds, identified small molecules that inhibit cytoadhesion of ICAM-1-binding IE to surface-immobilized receptor at IC50 range down to ~350 nM. With their low cytotoxicity toward erythrocytes and human endothelial cells, these molecules might be suitable for development into potentially effective adjunct anti-adhesion drugs to treat cerebral and/or severe malaria syndromes. Our two-step high-throughput screening approach is specifically designed to work with compound mixtures to make screening and deconvolution to single active compounds fast and efficient.
Collapse
Affiliation(s)
- Olga Chesnokov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| | | | - Komal Kalani
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Adel Nefzi
- Center for Translational Science, Florida International University (FIU), Port Saint Lucie, FL 34987, USA
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33428, USA
| |
Collapse
|
8
|
Badaut C, Visitdesotrakul P, Chabry A, Bigey P, Tornyigah B, Roman J, Maroufou JA, Amoussou A, Ayivi BS, Sagbo G, Ndam NT, Oleinikov AV, Tahar R. IgG acquisition against PfEMP1 PF11_0521 domain cassette DC13, DBLβ3_D4 domain, and peptides located within these constructs in children with cerebral malaria. Sci Rep 2021; 11:3680. [PMID: 33574457 PMCID: PMC7878510 DOI: 10.1038/s41598-021-82444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/30/2020] [Indexed: 11/09/2022] Open
Abstract
The Plasmodium falciparum erythrocyte-membrane-protein-1 (PF3D7_1150400/PF11_0521) contains both domain cassette DC13 and DBLβ3 domain binding to EPCR and ICAM-1 receptors, respectively. This type of PfEMP1 proteins with dual binding specificity mediate specific interactions with brain micro-vessels endothelium leading to the development of cerebral malaria (CM). Using plasma collected from children at time of hospital admission and after 30 days, we study an acquisition of IgG response to PF3D7_1150400/PF11_0521 DC13 and DBLβ3_D4 recombinant constructs, and five peptides located within these constructs, specifically in DBLα1.7_D2 and DBLβ3_D4 domains. We found significant IgG responses against the entire DC13, PF11_0521_DBLβ3_D4 domain, and peptides. The responses varied against different peptides and depended on the clinical status of children. The response was stronger at day 30, and mostly did not differ between CM and uncomplicated malaria (UM) groups. Specifically, the DBLβ3 B3-34 peptide that contains essential residues involved in the interaction between PF11_0521 DBLβ3_D4 domain and ICAM-1 receptor demonstrated significant increase in reactivity to IgG1 and IgG3 antibodies at convalescence. Further, IgG reactivity in CM group at time of admission against functionally active (ICAM-1-binding) PF11_0521 DBLβ3_D4 domain was associated with protection against severe anemia. These results support development of vaccine based on the PF3D7_1150400/PF11_0521 structures to prevent CM.
Collapse
Affiliation(s)
- Cyril Badaut
- Institut de Recherche Biomédicale des Armées, National Reference Laboratory for Arboviruses, Marseille, France
| | | | | | - Pascal Bigey
- Université de Paris, UMR 8151 CNRS - INSERM U1022 - ENSCP, 75006, Paris, France
| | | | | | - Jules Alao Maroufou
- Département de Pédiatrie, Hôpital Mère-Enfant La Lagune (CHUMEL) Cotonou, Cotonou, Benin
| | - Annick Amoussou
- Service de Pédiatrie, Centre Hospitalo-Universitaire, Suruléré (CHU-Suruléré, Cotonou, Benin
| | - Blaise Serge Ayivi
- Service de Pédiatrie, Centre National Hospitalo-Universitaire (CNHU), Cotonou, Benin
| | - Gratien Sagbo
- Service de Pédiatrie, Centre National Hospitalo-Universitaire (CNHU), Cotonou, Benin
| | | | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33428, USA
| | - Rachida Tahar
- Université de Paris, MERIT, IRD, 75006, Paris, France. .,Institut de Recherche Pour le Développement (IRD), UMR 261 Mère et Enfant Face Aux Infections Tropicales, Université Paris-Descartes, 4, Avenue de l'observatoire, 75270, Paris, France.
| |
Collapse
|
9
|
Doritchamou JYA, Suurbaar J, Tuikue Ndam N. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev Vaccines 2021; 20:215-226. [PMID: 33472449 DOI: 10.1080/14760584.2021.1878029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Several malaria vaccines are under various phases of development with some promising results. In placental malaria (PM) a deliberately anti-disease approach is considered as many studies have underlined the key role of VAR2CSA protein, which therefore represents the leading vaccine candidate. However, evidence indicates that VAR2CSA antigenic polymorphism remains an obstacle to overcome.Areas covered: This review analyzes the progress made thus far in developing a VAR2CSA-based vaccine, and addresses the current issues and challenges that must be overcome to develop an effective PM vaccine.Expert opinion: Phase I trials of PAMVAC and PRIMVAC VAR2CSA vaccines have shown more or less satisfactory results with regards to safety and immunogenicity. The second generation of VAR2CSA-based vaccines could benefit from optimization approaches to broaden the activity spectrum against various placenta-binding isolates through continued advances in the structural understanding of the interaction with CSA.
Collapse
Affiliation(s)
- Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Suurbaar
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, F-75006 Paris, France.,Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Gnidehou S, Yanow SK. VAR2CSA Antibodies in Non-Pregnant Populations. Trends Parasitol 2020; 37:65-76. [PMID: 33067131 DOI: 10.1016/j.pt.2020.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The Plasmodium falciparum protein VAR2CSA is a critical mediator of placental malaria, and VAR2CSA antibodies (IgGs) are important to protect pregnant women. Although infrequently detected outside pregnancy, VAR2CSA IgGs were reported in men and children from Colombia and Brazil and in select African populations. These findings raise questions about the specificity of VAR2CSA IgGs and the mechanisms by which they are acquired outside pregnancy. Here we review the data on VAR2CSA IgGs in men and children from different malaria-endemic regions. We discuss experimental factors that may affect interpretation of the serological data and consider the biological relevance of VAR2CSA IgGs in non-pregnant populations. We propose potential mechanisms for the acquisition of VARCSA IgGs outside of pregnancy. We identify knowledge gaps and research priorities.
Collapse
Affiliation(s)
- Sedami Gnidehou
- Campus Saint-Jean, University of Alberta, Edmonton, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| | - Stephanie K Yanow
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: a first-in-human, randomised, double-blind, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2020; 20:585-597. [DOI: 10.1016/s1473-3099(19)30739-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
12
|
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature 2020; 582:104-108. [PMID: 32427965 DOI: 10.1038/s41586-020-2220-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.
Collapse
|
13
|
Gnidehou S, Mitran CJ, Arango E, Banman S, Mena A, Medawar E, Lima BAS, Doritchamou J, Rajwani J, Jin A, Gavina K, Ntumngia F, Duffy P, Narum D, Ndam NT, Nielsen MA, Salanti A, Kano FS, Carvalho LH, Adams JH, Maestre A, Good MF, Yanow SK. Cross-Species Immune Recognition Between Plasmodium vivax Duffy Binding Protein Antibodies and the Plasmodium falciparum Surface Antigen VAR2CSA. J Infect Dis 2019; 219:110-120. [PMID: 30534974 DOI: 10.1093/infdis/jiy467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023] Open
Abstract
Background In pregnancy, Plasmodium falciparum parasites express the surface antigen VAR2CSA, which mediates adherence of red blood cells to chondroitin sulfate A (CSA) in the placenta. VAR2CSA antibodies are generally acquired during infection in pregnancy and are associated with protection from placental malaria. We observed previously that men and children in Colombia also had antibodies to VAR2CSA, but the origin of these antibodies was unknown. Here, we tested whether infection with Plasmodium vivax is an alternative mechanism of acquisition of VAR2CSA antibodies. Methods We analyzed sera from nonpregnant Colombians and Brazilians exposed to P. vivax and monoclonal antibodies raised against P. vivax Duffy binding protein (PvDBP). Cross-reactivity to VAR2CSA was characterized by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry, and antibodies were tested for inhibition of parasite binding to CSA. Results Over 50% of individuals had antibodies that recognized VAR2CSA. Affinity-purified PvDBP human antibodies and a PvDBP monoclonal antibody recognized VAR2CSA, showing that PvDBP can give rise to cross-reactive antibodies. Importantly, the monoclonal antibody inhibited parasite binding to CSA, which is the primary in vitro correlate of protection from placental malaria. Conclusions These data suggest that PvDBP induces antibodies that functionally recognize VAR2CSA, revealing a novel mechanism of cross-species immune recognition to falciparum malaria.
Collapse
Affiliation(s)
- Sédami Gnidehou
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Canada
| | | | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Medellín, Colombia
| | - Shanna Banman
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Angie Mena
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Evelyn Medawar
- School of Public Health, University of Alberta, Edmonton, Canada
| | | | - Justin Doritchamou
- National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Jahanara Rajwani
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Albert Jin
- School of Public Health, University of Alberta, Edmonton, Canada
| | - Kenneth Gavina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - David Narum
- National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | | | - Morten A Nielsen
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Denmark
| | - Ali Salanti
- Department of Immunology and Microbiology, Center for Medical Parasitology, University of Copenhagen, Denmark
| | | | | | | | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Medellín, Colombia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Stephanie K Yanow
- School of Public Health, University of Alberta, Edmonton, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Krüger R, Barrera V, Harding SP, Berg A, Patel S, Otterdal K, Mordmüller B, Schwarzer E, Brinkmann V, Zychlinsky A, Amulic B. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol 2019; 4:eaaw0336. [PMID: 31628160 PMCID: PMC6892640 DOI: 10.1126/sciimmunol.aaw0336] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.
Collapse
Affiliation(s)
- Sebastian Lorenz Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Abu-Abed
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | | | - Bärbel Raupach
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pneumology, Immunology and Intensive Care, Berlin, Germany
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aase Berg
- Stavanger University Hospital, Stavanger, Norway
| | - Sam Patel
- Maputo Central Hospital, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Universität Tübingen, Institut für Tropenmedizin, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Borko Amulic
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
- University of Bristol, School of Cellular and Molecular Medicine, Bristol BS8 1TD, UK
| |
Collapse
|
15
|
Quintana MDP, Ecklu-Mensah G, Tcherniuk SO, Ditlev SB, Oleinikov AV, Hviid L, Lopez-Perez M. Comprehensive analysis of Fc-mediated IgM binding to the Plasmodium falciparum erythrocyte membrane protein 1 family in three parasite clones. Sci Rep 2019; 9:6050. [PMID: 30988351 PMCID: PMC6465264 DOI: 10.1038/s41598-019-42585-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
PfEMP1 is a family of adhesive proteins expressed on the surface of Plasmodium falciparum-infected erythrocytes (IEs), where they mediate adhesion of IEs to a range of host receptors. Efficient PfEMP1-dependent IE sequestration often depends on soluble serum proteins, including IgM. Here, we report a comprehensive investigation of which of the about 60 var gene-encoded PfEMP1 variants per parasite genome can bind IgM via the Fc part of the antibody molecule, and which of the constituent domains of those PfEMP1 are involved. We erased the epigenetic memory of var gene expression in three distinct P. falciparum clones, 3D7, HB3, and IT4/FCR3 by promoter titration, and then isolated individual IEs binding IgM from malaria-unexposed individuals by fluorescence-activated single-cell sorting. The var gene transcription profiles of sub-clones measured by real-time qPCR were used to identify potential IgM-binding PfEMP1 variants. Recombinant DBL and CIDR domains corresponding to those variants were tested by ELISA and protein arrays to confirm their IgM-binding capacity. Selected DBL domains were used to raise specific rat anti-sera to select IEs with uniform expression of candidate PfEMP1 proteins. Our data document that IgM-binding PfEMP1 proteins are common in each of the three clones studied, and that the binding epitopes are mainly found in DBLε and DBLζ domains near the C-terminus.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sergey O Tcherniuk
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Sisse Bolm Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - Mary Lopez-Perez
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Chesnokov O, Merritt J, Tcherniuk SO, Milman N, Oleinikov AV. Plasmodium falciparum infected erythrocytes can bind to host receptors integrins αVβ3 and αVβ6 through DBLδ1_D4 domain of PFL2665c PfEMP1 protein. Sci Rep 2018; 8:17871. [PMID: 30552383 PMCID: PMC6294747 DOI: 10.1038/s41598-018-36071-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023] Open
Abstract
Major complications and mortality from Plasmodium falciparum malaria are associated with cytoadhesion of parasite-infected erythrocytes (IE). The main parasite ligands for cytoadhesion are members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. Interactions of different host receptor-ligand pairs may lead to various pathological outcomes, like placental or cerebral malaria. It has been shown previously that IE can bind integrin αVβ3. Using bead-immobilized PfEMP1 constructs, we have identified that the PFL2665c DBLδ1_D4 domain binds to αVβ3 and αVβ6. A parasite line expressing PFL2665c binds to surface-immobilized αVβ3 and αVβ6; both are RGD motif-binding integrins. Interactions can be inhibited by cyloRGDFV peptide, an antagonist of RGD-binding integrins. This is a first, to the best of our knowledge, implication of a specific PfEMP1 domain for binding to integrins. These host receptors have important physiological functions in endothelial and immune cells; therefore, these results will contribute to future studies and a better understanding, at the molecular level, of the physiological outcome of interactions between IE and integrin receptors on the surface of host cells.
Collapse
Affiliation(s)
- Olga Chesnokov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Jordan Merritt
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Sergey O Tcherniuk
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
17
|
IgG Responses to the Plasmodium falciparum Antigen VAR2CSA in Colombia Are Restricted to Pregnancy and Are Not Induced by Exposure to Plasmodium vivax. Infect Immun 2018; 86:IAI.00136-18. [PMID: 29784859 PMCID: PMC6056870 DOI: 10.1128/iai.00136-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical immunity to malaria is associated with the acquisition of IgG specific for members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens on the surface of infected erythrocytes (IEs). The VAR2CSA subtype of PfEMP1 mediates IE binding in the placenta. Clinical immunity to malaria is associated with the acquisition of IgG specific for members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens on the surface of infected erythrocytes (IEs). The VAR2CSA subtype of PfEMP1 mediates IE binding in the placenta. VAR2CSA-specific IgG is normally acquired only after exposure to placental parasites. However, it was recently reported that men and children from Colombia often have high levels of functional VAR2CSA-specific IgG. This potentially undermines the current understanding of malaria immunity in pregnant women, and we thus conducted a study to assess further the levels of VAR2CSA-specific IgG in pregnant and nonpregnant Colombians. Plasma IgG against two full-length recombinant PfEMP1 proteins (one of the VAR2CSA type and one not) produced in baculovirus-transfected insect cells was detected frequently among Colombian men, children, and pregnant women with acute or previous malaria exposure. In contrast, IgG reactivity to a homologous full-length VAR2CSA-type protein expressed in Chinese hamster ovary (CHO) cells was low and infrequent among the Colombian plasma samples, as was reactivity to both corresponding native PfEMP1 proteins. Moreover, human and rabbit antibodies specific for Plasmodium vivax Duffy-binding protein (PvDBP), a protein with some homology to PfEMP1, did not react with VAR2CSA-type recombinant or native proteins, although the mouse monoclonal and PvDBP-specific antibody 3D10 was weakly reactive with recombinant proteins expressed in baculovirus-transfected insect cells. Our data indicate that the previously reported Colombian IgG reactivity to recombinant VAR2CSA is not malaria specific and that the acquisition of VAR2CSA-specific IgG is restricted to pregnancy, in Colombia and elsewhere.
Collapse
|
18
|
Antibodies to Intercellular Adhesion Molecule 1-Binding Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLβ Are Biomarkers of Protective Immunity to Malaria in a Cohort of Young Children from Papua New Guinea. Infect Immun 2018; 86:IAI.00485-17. [PMID: 29784862 DOI: 10.1128/iai.00485-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
Collapse
|
19
|
Antibody responses to the full-length VAR2CSA and its DBL domains in Cameroonian children and teenagers. Malar J 2016; 15:532. [PMID: 27814765 PMCID: PMC5097422 DOI: 10.1186/s12936-016-1585-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antigenic variation of Plasmodium falciparum erythrocyte membrane protein 1 is a key parasite mechanism for immune evasion and parasite survival. It is assumed that the number of parasites expressing the same var gene must reach high enough numbers before the host can produce detectable levels of antibodies (Ab) to the variant. VAR2CSA is a protein coded for by one of 60 var genes that is expressed on the surface of infected erythrocytes (IE) and mediates IE binding to the placenta. The idea that Ab to VAR2CSA are pregnancy-associated was challenged when VAR2CSA-specific Ab were reported in children and men. However, the frequency and conditions under which Ab to VAR2CSA are produced outside pregnancy is unclear. This study sought to determine frequency, specificity and level of Ab to VAR2CSA produced in children and whether children with hyperparasitaemia and severe malaria are more likely to produce Ab to VAR2CSA compared to healthy children. METHODS Antibody responses to a panel of recombinant proteins consisting of multiple VAR2CSA Duffy-binding-like domains (DBL) and full-length VAR2CSA (FV2) were characterized in 193 1-15 year old children from rural Cameroonian villages and 160 children with severe malaria from the city. RESULTS Low Ab levels to VAR2CSA were detected in children; however, Ab levels to FV2 in teenagers were rare. Children preferentially recognized DBL2 (56-70%) and DBL4 (50-60%), while multigravidae produced high levels of IgG to DBL3, DBL5 and FV2. Sixty-seven percent of teenage girls (n = 16/24) recognized ID1-ID2a region of VAR2CSA. Children with severe forms of malaria had significantly higher IgG to merozoite antigens (all p < 0.05), but not to VAR2CSA (all p > 0.05) when compared to the healthy children. CONCLUSION The study suggests that children, including teenage girls acquire Ab to VAR2CSA domains and FV2, but Ab levels are much lower than those needed to protect women from placental infections and repertoire of Ab responses to DBL domains is different from those in pregnant women. Interestingly, children with severe malaria did not have higher Ab levels to VAR2CSA compared to healthy children.
Collapse
|
20
|
Nunes-Silva S, Dechavanne S, Moussiliou A, Pstrąg N, Semblat JP, Gangnard S, Tuikue-Ndam N, Deloron P, Chêne A, Gamain B. Beninese children with cerebral malaria do not develop humoral immunity against the IT4-VAR19-DC8 PfEMP1 variant linked to EPCR and brain endothelial binding. Malar J 2015; 14:493. [PMID: 26646943 PMCID: PMC4672576 DOI: 10.1186/s12936-015-1008-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background Malaria is still one of the most prevalent infectious diseases in the world. Sequestration of infected erythrocytes (IEs) is the prime mediator of disease. Cytoadhesion of IEs is mediated by members of the highly diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). A restricted sub-set of var genes encoding for PfEMP1s possessing the domain cassettes DC8 and DC13 were found to bind to the endothelial protein C receptor (EPCR). These var genes were shown to be highly expressed by parasites from patients with severe malaria clinical outcomes compared to those from patients with uncomplicated symptoms. Methods In order to further study the molecular mechanisms underlying DC8/DC13 expressing IEs adhesion to EPCR, a method was developed to produce highly pure recombinant EPCR. The IT4 parasite strain was selected on either anti-IT4-VAR19 purified IgG, EPCR or human brain endothelial cell line and their var gene expression profiles as well as their binding phenotypes were compared. The N-terminal region of IT4-VAR19 comprising a full-length DC8 cassette as well as the single EPCR binding CIDRα1.1 domain were also produced, and their immune recognition (IgG) was assessed using plasma samples from Beninese children presenting acute mild malaria, severe malaria or cerebral malaria at the time of their admission to the clinic, and from convalescent-phase plasma collected 30 days after anti-malarial treatment. Results The multi-domain VAR19-NTS-DBLγ6 binds to EPCR with a greater affinity than the CIDRα1.1 domain alone and this study also demonstrates that VAR19-NTS-DBLγ6 binding to the EPCR-expressing endothelial cell line (HBEC5i) is more pronounced than that of the CIDRα1.1 domain alone. IT4-VAR19 represents the preferentially expressed-PfEMP1 when FCR3-IEs are selected based on their capability to bind EPCR. Notably, no significant difference in the levels of antibodies towards IT4-VAR19 antigens was observed within all clinical groups between plasma samples collected during the acute malaria phase compared to samples collected 30 days after anti-malaria treatment. Conclusions These data indicate that even being the preferentially selected IT4-EPCR-binding variant, the IT4-VAR19-DC8 region does not appear to be associated with the acquisition of antibodies during a single severe paediatric malaria episode in Benin. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1008-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Nunes-Silva
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Sébastien Dechavanne
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Azizath Moussiliou
- Laboratory of Excellence GR-Ex, Paris, France. .,Institut de Recherche pour le développement, UMR_216, Mère et enfant face aux infections tropicales, Paris, France. .,Faculté de pharmacie, PRES Sorbonne Paris Cité, Paris, France.
| | - Natalia Pstrąg
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Jean-Philippe Semblat
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Stéphane Gangnard
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Nicaise Tuikue-Ndam
- Laboratory of Excellence GR-Ex, Paris, France. .,Institut de Recherche pour le développement, UMR_216, Mère et enfant face aux infections tropicales, Paris, France. .,Faculté de pharmacie, PRES Sorbonne Paris Cité, Paris, France.
| | - Philippe Deloron
- Laboratory of Excellence GR-Ex, Paris, France. .,Institut de Recherche pour le développement, UMR_216, Mère et enfant face aux infections tropicales, Paris, France. .,Faculté de pharmacie, PRES Sorbonne Paris Cité, Paris, France.
| | - Arnaud Chêne
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| | - Benoît Gamain
- Inserm UMR_1134, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France. .,Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75015, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
21
|
Babakhanyan A, Fang R, Wey A, Salanti A, Sama G, Efundem C, Leke RJI, Chen JJ, Leke RGF, Taylor DW. Comparison of the specificity of antibodies to VAR2CSA in Cameroonian multigravidae with and without placental malaria: a retrospective case-control study. Malar J 2015; 14:480. [PMID: 26626275 PMCID: PMC4666123 DOI: 10.1186/s12936-015-1023-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background Antibodies (Ab) to VAR2CSA prevent Plasmodium falciparum-infected erythrocytes from sequestrating in the placenta, i.e., prevent placental malaria (PM). The specificity of Ab to VAR2CSA associated with absence of PM is unknown. Accordingly, differences in the specificity of Ab to VAR2CSA were compared between multigravidae with and without PM who had Ab to VAR2CSA. Methods In a retrospective case–control study, plasma collected from Cameroonian multigravidae with (n = 96) and without (n = 324) PM were screened in 21 assays that measured antibody levels to full length VAR2CSA (FV2), individual VAR2CSA DBL domains, VAR2CSA domains from different genetic backgrounds (variants), as well as proportion of high avidity Ab to FV2. Results Multigravidae with and without PM had similar levels of Ab to FV2, the six VAR2CSA DBL domains and different variants, while the proportion of high avidity Ab to FV2 was significantly higher in women without PM at delivery (p = 0.0030) compared to women with PM. In a logistic regression model adjusted for gravidity and age, the percentage of high avidity Ab to FV2 was associated with reduced likelihood of PM in multigravidae. A 5 % increase in proportion of high avidity Ab to FV2 was associated with a nearly 15 % lower likelihood of PM. Conclusion Ab avidity to FV2 may be an important indicator of immunity to PM. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1023-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Babakhanyan
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Rui Fang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Andrew Wey
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Ali Salanti
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Grace Sama
- Faculty of Medicine and Biomedical Research, Biotechnology Centre, University of Yaounde 1, Yaounde, Cameroon.
| | - Canisia Efundem
- Faculty of Medicine and Biomedical Research, Biotechnology Centre, University of Yaounde 1, Yaounde, Cameroon.
| | - Robert J I Leke
- Faculty of Medicine and Biomedical Research, Biotechnology Centre, University of Yaounde 1, Yaounde, Cameroon.
| | - John J Chen
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Rose G F Leke
- Faculty of Medicine and Biomedical Research, Biotechnology Centre, University of Yaounde 1, Yaounde, Cameroon.
| | - Diane W Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| |
Collapse
|
22
|
Nielsen MA, Resende M, de Jongh WA, Ditlev SB, Mordmüller B, Houard S, Ndam NT, Agerbæk MØ, Hamborg M, Massougbodji A, Issifou S, Strøbæk A, Poulsen L, Leroy O, Kremsner PG, Chippaux JP, Luty AJF, Deloron P, Theander TG, Dyring C, Salanti A. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine. PLoS One 2015; 10:e0135406. [PMID: 26327283 PMCID: PMC4556615 DOI: 10.1371/journal.pone.0135406] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
The disease caused by Plasmodium falciparum (Pf) involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM) is one such manifestation in which Pf infected erythrocytes (IE) bind to chondroitin sulphate A (CSA) through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2) expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens that induce a broadly strain-transcending antibody response.
Collapse
Affiliation(s)
- Morten A. Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- * E-mail:
| | - Mafalda Resende
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Sisse B. Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Benjamin Mordmüller
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Sophie Houard
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mette Ø. Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Mette Hamborg
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Achille Massougbodji
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Saddou Issifou
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Anette Strøbæk
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Lars Poulsen
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Odile Leroy
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Peter G. Kremsner
- Eberhard Karls Universität Tübingen, Institut für Tropenmedizin, Tübingen, Germany, and Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jean-Philippe Chippaux
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Adrian J. F. Luty
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
- Faculté des Sciences de la Santé de l’Université d’Abomey-Calavi, Centre d’étude et de recherche sur le paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR216 Mère et enfant face aux infections tropicales, Paris, France
- PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Thor G. Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Charlotte Dyring
- ExpreSion Biotechnologies, SCION-DTU Science Park, Hørsholm, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
23
|
Travassos MA, Coulibaly D, Bailey JA, Niangaly A, Adams M, Nyunt MM, Ouattara A, Lyke KE, Laurens MB, Pablo J, Jasinskas A, Nakajima R, Berry AA, Takala-Harrison S, Kone AK, Kouriba B, Rowe JA, Doumbo OK, Thera MA, Laufer MK, Felgner PL, Plowe CV. Differential recognition of terminal extracellular Plasmodium falciparum VAR2CSA domains by sera from multigravid, malaria-exposed Malian women. Am J Trop Med Hyg 2015; 92:1190-1194. [PMID: 25918203 PMCID: PMC4458824 DOI: 10.4269/ajtmh.14-0524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates parasite sequestration in small capillaries through tissue-specific cytoadherence. The best characterized of these proteins is VAR2CSA, which is expressed on the surface of infected erythrocytes that bind to chondroitin sulfate in the placental matrix. Antibodies to VAR2CSA prevent placental cytoadherence and protect against placental malaria. The size and complexity of the VAR2CSA protein pose challenges for vaccine development, but smaller constitutive domains may be suitable for subunit vaccine development. A protein microarray was printed to include five overlapping fragments of the 3D7 VAR2CSA extracellular region. Malian women with a history of at least one pregnancy had antibody recognition of four of these fragments and had stronger reactivity against the two distal fragments than did nulliparous women, children, and men from Mali, suggesting that the C-terminal extracellular VAR2CSA domains are a potential focus of protective immunity. With carefully chosen sera from longitudinal studies of pregnant women, this approach has the potential to identify seroreactive VAR2CSA domains associated with protective immunity against pregnancy-associated malaria.
Collapse
Affiliation(s)
- Mark A. Travassos
- *Address correspondence to Mark A. Travassos, Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parity-dependent recognition of DBL1X-3X suggests an important role of the VAR2CSA high-affinity CSA-binding region in the development of the humoral response against placental malaria. Infect Immun 2015; 83:2466-74. [PMID: 25824842 DOI: 10.1128/iai.03116-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum multidomain protein VAR2CSA stands today as the leading vaccine candidate against pregnancy-associated malaria (PAM). Most of the studies aiming to decrypt how naturally acquired immunity develops have assessed the immune recognition of individual VAR2CSA Duffy-binding-like (DBL) domains, thus overlooking the presence of conformational epitopes resulting from the overall folding of the full-length protein. In order to characterize the development of humoral immunity toward VAR2CSA, we made use of a large cohort of 293 Senegalese pregnant women to assess the level of recognition by plasma IgG of the full-length VAR2CSA protein of the 3D7 parasite strain (3D7-VAR2CSA), the CSA-binding multidomains 3D7-DBL1X to -DBL3X (3D7-DBL1X-3X), and the CSA nonbinding multidomains 3D7-DBL4ε to -DBL6ε (3D7-DBL4ε-6ε), as well as individual 3D7-DBL domains. Our results revealed a parity-dependent recognition of the full-length 3D7-VAR2CSA and of the CSA-binding region, 3D7-DBL1X-3X. Indeed, multigravid women possess significantly higher levels of antibodies directed against these constructs than primigravidae. Our results suggest an important role of antibodies targeting the CSA-binding region in the development of immunity against PAM, therefore providing new insights on how natural protection might be acquired and further information for the design of VAR2CSA-based vaccines.
Collapse
|
25
|
Nielsen MA, Salanti A. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites. Methods Mol Biol 2015; 1325:241-53. [PMID: 26450394 DOI: 10.1007/978-1-4939-2815-6_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range of different human receptors through Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of the infected cell. As the var genes encoding the large PfEMP1 antigens are extensively polymorphic, vaccine development strategies are focused on targeting the functional binding epitopes. This involves identification of recombinant fragments of PfEMP1s that induce antibodies, which hinder the adhesion of the IE to a given receptor or tissue. Different assays to measure the blocking of adhesion have been described in the literature, each with different advantages. This chapter describes a high-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria.
Collapse
Affiliation(s)
- Morten A Nielsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| | - Ali Salanti
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, CSS Building 22/23, Øster Farimagsgade 5, 2099, Copenhagen K, 1014, Denmark.
| |
Collapse
|
26
|
Tembo DL, Nyoni B, Murikoli RV, Mukaka M, Milner DA, Berriman M, Rogerson SJ, Taylor TE, Molyneux ME, Mandala WL, Craig AG, Montgomery J. Differential PfEMP1 expression is associated with cerebral malaria pathology. PLoS Pathog 2014; 10:e1004537. [PMID: 25473835 PMCID: PMC4256257 DOI: 10.1371/journal.ppat.1004537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is unique among human malarias in its ability to sequester in post-capillary venules of host organs. The main variant antigens implicated are the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which can be divided into three major groups (A–C). Our study was a unique examination of sequestered populations of parasites for genetic background and expression of PfEMP1 groups. We collected post-mortem tissue from twenty paediatric hosts with pathologically different forms of cerebral malaria (CM1 and CM2) and parasitaemic controls (PC) to directly examine sequestered populations of parasites in the brain, heart and gut. Use of two different techniques to investigate this question produced divergent results. By quantitative PCR, group A var genes were upregulated in all three organs of CM2 and PC cases. In contrast, in CM1 infections displaying high levels of sequestration but negligible vascular pathology, there was high expression of group B var. Cloning and sequencing of var transcript tags from the same samples indicated a uniformly low expression of group A-like var. Generally, within an organ sample, 1–2 sequences were expressed at dominant levels. 23% of var tags were detected in multiple patients despite the P. falciparum infections being genetically distinct, and two tags were observed in up to seven hosts each with high expression in the brains of 3–4 patients. This study is a novel examination of the sequestered parasites responsible for fatal cerebral malaria and describes expression patterns of the major cytoadherence ligand in three organ-derived populations and three pathological states. One of the most severe forms of malarial disease is cerebral malaria, which disproportionally affects young children. In this disease, the parasite places proteins on the red blood cell surface, providing a “smokescreen” by which they evade host immunity and hide in organ blood vessels, blocking them and causing tissue damage. It is impossible to study parasites in the organs during life and autopsy studies on children with malaria are exceedingly rare. In Malawi, we examined parasites from the brain, heart and intestine of twenty cases of fatal malaria including controls with low numbers of malaria parasites but another identified cause of death. We found little difference in the category of proteins the parasites used in controls and cerebral malaria, although a small number of specific proteins were detected in multiple infections. In an alternative form of malaria in which the brain is heavily infected but shows no evidence of damage, we found a different set of proteins at high proportion. However, as these children were typically older and most were infected with HIV, we could not determine which of these factors was most important. Interactions between host and parasite have the potential to influence disease outcomes.
Collapse
Affiliation(s)
- Dumizulu L. Tembo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Benjamin Nyoni
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Rekah V. Murikoli
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
| | - Mavuto Mukaka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Danny A. Milner
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Matthew Berriman
- Pathogen Sequencing Unit, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Terrie E. Taylor
- Blantyre Malaria Project, College of Medicine, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Malcolm E. Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Wilson L. Mandala
- Department of Basic Medical Sciences, College of Medicine, Blantyre, Malawi
| | - Alister G. Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Gullingsrud J, Milman N, Saveria T, Chesnokov O, Williamson K, Srivastava A, Gamain B, Duffy PE, Oleinikov AV. High-throughput screening platform identifies small molecules that prevent sequestration of Plasmodium falciparum-infected erythrocytes. J Infect Dis 2014; 211:1134-43. [PMID: 25355939 DOI: 10.1093/infdis/jiu589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We developed a 2-step approach to screen molecules that prevent and/or reverse Plasmodium falciparum-infected erythrocyte (IE) binding to host receptors. IE adhesion and sequestration in vasculature causes severe malaria, and therefore antiadhesion therapy might be useful as adjunctive treatment. IE adhesion is mediated by the polymorphic family (approximately 60 members) of P. falciparum EMP1 (PfEMP1) multidomain proteins. METHODS We constructed sets of PfEMP1 domains that bind ICAM-1, CSA, or CD36, receptors that commonly support IE binding. Combinations of domain-coated beads were assayed by Bio-Plex technology as a high-throughput molecular platform to screen antiadhesion molecules (antibodies and small molecules). Molecules identified as so-called hits in the screen (first step) then could be assayed individually for inhibition of binding of live IE to receptors (second step). RESULTS In proof-of-principle studies, the antiadhesion activity of several antibodies was concordant in Bio-Plex and live IE assays. Using this 2-step approach, we identified several molecules in a small molecule library of 10 000 compounds that could inhibit and reverse binding of IEs to ICAM-1 and CSA receptors. CONCLUSION This 2-step screening approach should be efficient for identification of antiadhesion drug candidates for falciparum malaria.
Collapse
Affiliation(s)
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, Washington
| | - Tracy Saveria
- Seattle Biomedical Research Institute, Seattle, Washington
| | - Olga Chesnokov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton
| | | | - Anand Srivastava
- Inserm UMR 1134 Université Paris Diderot, Sorbonne Paris Cité, UMR S1134 Institut National de la Transfusion Sanguine, Paris, France
| | - Benoit Gamain
- Inserm UMR 1134 Université Paris Diderot, Sorbonne Paris Cité, UMR S1134 Institut National de la Transfusion Sanguine, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institutes of Health, Bethesda, Maryland
| | - Andrew V Oleinikov
- Seattle Biomedical Research Institute, Seattle, Washington Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton
| |
Collapse
|
28
|
Functional antibodies against VAR2CSA in nonpregnant populations from colombia exposed to Plasmodium falciparum and Plasmodium vivax. Infect Immun 2014; 82:2565-73. [PMID: 24686068 DOI: 10.1128/iai.01594-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pregnancy, parity-dependent immunity is observed in response to placental infection with Plasmodium falciparum. Antibodies recognize the surface antigen, VAR2CSA, expressed on infected red blood cells and inhibit cytoadherence to the placental tissue. In most settings of malaria endemicity, antibodies against VAR2CSA are predominantly observed in multigravid women and infrequently in men, children, and nulligravid women. However, in Colombia, we detected antibodies against multiple constructs of VAR2CSA among men and children with acute P. falciparum and Plasmodium vivax infection. The majority of men and children (>60%) had high levels of IgGs against three recombinant domains of VAR2CSA: DBL5ε, DBL3X, and ID1-ID2. Surprisingly, these antibodies were observed only in pregnant women, men, and children exposed either to P. falciparum or to P. vivax. Moreover, the anti-VAR2CSA antibodies are of high avidity and efficiently inhibit adherence of infected red blood cells to chondroitin sulfate A in vitro, suggesting that they are specific and functional. These unexpected results suggest that there may be genotypic or phenotypic differences in the parasites of this region or in the host response to either P. falciparum or P. vivax infection outside pregnancy. These findings may hold significant clinical relevance to the pathophysiology and outcome of malaria infections in this region.
Collapse
|
29
|
Chandrasiri UP, Randall LM, Saad AA, Bashir AM, Rogerson SJ, Adam I. Low antibody levels to pregnancy-specific malaria antigens and heightened cytokine responses associated with severe malaria in pregnancy. J Infect Dis 2013; 209:1408-17. [PMID: 24277742 DOI: 10.1093/infdis/jit646] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pregnant women living in unstable malaria transmission settings may develop severe malaria (SM). The pathogenesis of SM in pregnancy is poorly understood. METHODS To determine whether SM in pregnancy is associated with lower malarial antibody responses and higher cytokine responses, plasma samples were collected from 121 Sudanese pregnant women of whom 39 were diagnosed with SM. Antibodies to pregnancy-specific and non-pregnancy-specific Plasmodium falciparum variant surface antigens (VSA) and concentrations of cytokines TNF, IFNγ, IL-1β, IL-6, IL-8 and IL-10 were measured. RESULTS Pregnant women with SM demonstrated significantly lower antibody levels to pregnancy-specific VSA (P = .020) and higher plasma IFNγ (P = .020), IL-10 (P = .0002) and IL-6 levels (P < .0001) than uninfected pregnant women. Concentrations of inflammatory cytokines IL-1β (P = .001), IL-6 (P = .004) and IL-8 (P = .020) were inversely correlated with antibodies to VAR2CSA-DBL5 in pregnant women with SM. Lower haemoglobin levels and higher parasite densities were associated with lack of pregnancy-specific antibodies (P = .028) and higher levels of inflammatory cytokines, in particular IL-6 and IL-8. CONCLUSIONS Pregnant women with SM lack pregnancy-specific malaria immunity, and this correlates with heightened inflammatory cytokine concentrations, low haemoglobin levels and high parasite density, suggesting that failure of antibody to control parasitaemia may contribute to SM pathogenesis.
Collapse
Affiliation(s)
- Upeksha P Chandrasiri
- Department of Medicine, The University of Melbourne, Melbourne Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Gullingsrud J, Saveria T, Amos E, Duffy PE, Oleinikov AV. Structure-function-immunogenicity studies of PfEMP1 domain DBL2βPF11_0521, a malaria parasite ligand for ICAM-1. PLoS One 2013; 8:e61323. [PMID: 23593462 PMCID: PMC3625211 DOI: 10.1371/journal.pone.0061323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/07/2013] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum virulence has been ascribed to its ability to sequester in deep vascular beds, mediated by the variant surface antigen family PfEMP1 binding endothelial receptors like ICAM-1. We previously observed that naturally-acquired antibodies that block a PfEMP1 domain, DBL2β of PF11_0521 allele, from binding to the human ICAM1 receptor, reduce the risk of malaria hospitalization in children. Here, we find that DBL2βPF11_0521 binds ICAM-1 in the low nM range and relate the structure of this domain with its function and immunogenicity. We demonstrate that the interaction with ICAM-1 is not impaired by point mutations in the N-terminal subdomain or in the flexible Loop 4 of DBL2βPF11_0521, although both substructures were previously implicated in binding ICAM-1. These data will help to refine the existing model of DBLβ::ICAM-1 interactions. Antibodies raised against full-length DBL2βPF11_0521, but not truncated forms lacking the N terminal fragment, block its interaction with ICAM-1. Our data suggest that full length domain is optimal for displaying functional epitopes and has a broad surface of interaction with ICAM-1 that is not disrupted by individual amino acid substitutions at putative key residues. This information might be important for the future design of anti-malarial vaccines based on PfEMP1 antigens.
Collapse
Affiliation(s)
- Justin Gullingsrud
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tracy Saveria
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Emily Amos
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Patrick E. Duffy
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, Program of Pathobiology, University of Washington, Seattle, Washington, United States of America
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, Maryland, United States of America
| | - Andrew V. Oleinikov
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Cytokine and antibody responses to Plasmodium falciparum in naïve individuals during a first malaria episode: effect of age and malaria exposure. PLoS One 2013; 8:e55756. [PMID: 23437061 PMCID: PMC3578867 DOI: 10.1371/journal.pone.0055756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/30/2012] [Indexed: 12/22/2022] Open
Abstract
Age- and exposure-dependent immune responses during a malaria episode may be key to understanding the role of these factors in the acquisition of immunity to malaria. Plasma/serum samples collected from naïve Mozambican children (n=48), European adults (naïve travelers, n=22; expatriates with few prior malaria exposures, n=15) and Mozambican adults with long-life malaria exposure (n=99) during and after a malaria episode were analyzed for IgG against merozoite proteins by Luminex and against infected erythrocytes by flow cytometry. Cytokines and chemokines were analyzed in plasmas/sera by suspension array technology. No differences were detected between children and adults with a primary infection, with the exception of higher IgG levels against 3D7 MSP-1(42) (P=0.030) and a P. falciparum isolate (P=0.002), as well as higher IL-12 (P=0.020) in children compared to other groups. Compared to malaria-exposed adults, children, travelers and expatriates had higher concentrations of IFN-γ (P ≤ 0.0090), IL-2 (P ≤ 0.0379) and IL-8 (P ≤ 0.0233). Children also had higher IL-12 (P=0.0001), IL-4 (P=0.003), IL-1β (P=0.024) and TNF (P=0.006) levels compared to malaria-exposed adults. Although IL-12 was elevated in children, overall the data do not support a role of age in immune responses to a first malaria episode. A T(H)1/pro-inflammatory response was the hallmark of non-immune subjects.
Collapse
|
32
|
Plasmodium falciparum variability and immune evasion proceed from antigenicity of consensus sequences from DBL6ε; generalization to all DBL from VAR2CSA. PLoS One 2013; 8:e54882. [PMID: 23372786 PMCID: PMC3555990 DOI: 10.1371/journal.pone.0054882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied all consensus sequences within the four least ‘variable blocks’ (VB) present in the DBL6ε domain of VAR2CSA, the protein involved in the adhesion of infected red blood cells by Plasmodium falciparum that causes the Pregnancy-Associated Malaria (PAM). Characterising consensus sequences with respect to recognition of antibodies and percentage of responders among pregnant women living in areas where P. falciparum is endemic allows the identification of the most antigenic sequences within each VB. When combining these consensus sequences among four serotypes from VB1 or VB5, the most often recognized ones are expected to induce pan-reactive antibodies recognizing VAR2CSA from all plasmodial strains. These sequences are of main interest in the design of an immunogenic molecule. Using a similar approach than for DBL6ε, we studied the five other DBL and the CIDRpam from VAR2CSA, and again identified VB segments with highly conserved consensus sequences. In addition, we identified consensus sequences in other var genes expressed by non-PAM parasites. This finding paves the way for vaccine design against other pathologies caused by P. falciparum.
Collapse
|
33
|
Doritchamou J, Bertin G, Moussiliou A, Bigey P, Viwami F, Ezinmegnon S, Fievet N, Massougbodji A, Deloron P, Tuikue Ndam N. First-trimester Plasmodium falciparum infections display a typical "placental" phenotype. J Infect Dis 2012; 206:1911-9. [PMID: 23045626 DOI: 10.1093/infdis/jis629] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum-infected erythrocytes (IEs) adhere to host cell receptors, allowing parasites to sequester into deep vascular beds of various organs. This defining phenomenon of malaria pathogenesis is key to the severe clinical complications associated with cerebral and placental malaria. The principal ligand associated with the binding to chondroitin sulfate A (CSA) that allows placental sequestration of IEs is a P. falciparum erythrocyte membrane protein 1 (PfEMP1) family member encoded by the var2csa gene. METHODS Here, we investigated the transcription pattern of var genes by real-time polymerase chain reaction, the expression of VAR2CSA, protein by flow cytometry, and the CSA-binding ability of IEs collected at different stages of pregnancy using a static-based Petri dish assay. RESULTS Through comparison with the profiles of isolates from nonpregnant hosts, we report several lines of evidence showing that parasites infecting women during pregnancy preferentially express VAR2CSA protein, and that selection for the capacity to adhere to CSA via VAR2CSA expression occurs early in pregnancy. CONCLUSIONS Our data suggest that the placental tropism of P. falciparum is already established in the first trimester of pregnancy, with consequent implications for the development of the pathology associated with placental malaria.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rovira-Vallbona E, Moncunill G, Bassat Q, Aguilar R, Machevo S, Puyol L, Quintó L, Menéndez C, Chitnis CE, Alonso PL, Dobaño C, Mayor A. Low antibodies against Plasmodium falciparum and imbalanced pro-inflammatory cytokines are associated with severe malaria in Mozambican children: a case-control study. Malar J 2012; 11:181. [PMID: 22646809 PMCID: PMC3464173 DOI: 10.1186/1475-2875-11-181] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Background The factors involved in the progression from Plasmodium falciparum infection to severe malaria (SM) are still incompletely understood. Altered antibody and cellular immunity against P. falciparum might contribute to increase the risk of developing SM. Methods To identify immune responses associated with SM, a sex- and age-matched case–control study was carried out in 134 Mozambican children with SM (cerebral malaria, severe anaemia, acidosis and/or respiratory distress, prostration, hypoglycaemia, multiple seizures) or uncomplicated malaria (UM). IgG and IgM against P. falciparum lysate, merozoite antigens (MSP-119, AMA-1 and EBA-175), a Duffy binding like (DBL)-α rosetting domain and antigens on the surface of infected erythrocytes were measured by ELISA or flow cytometry. Plasma concentrations of IL-12p70, IL-2, IFN-γ, IL-4, IL-5, IL-10, IL-8, IL-6, IL-1β, TNF, TNF-β and TGF-β1 were measured using fluorescent bead immunoassays. Data was analysed using McNemar’s and Signtest. Results Compared to UM, matched children with SM had reduced levels of IgG against DBLα (P < 0.001), IgM against MSP-119 (P = 0.050) and AMA-1 (P = 0.047), TGF-β1 (P <0.001) and IL-12 (P = 0.039). In addition, levels of IgG against P. falciparum lysate and IL-6 concentrations were increased (P = 0.004 and P = 0.047, respectively). Anti-DBLα IgG was the only antibody response associated to reduced parasite densities in a multivariate regression model (P = 0.026). Conclusions The lower levels of antibodies found in children with SM compared to children with UM were not attributable to lower exposure to P. falciparum in the SM group. IgM against P. falciparum and specific IgG against a rosetting PfEMP1 domain may play a role in the control of SM, whereas an imbalanced pro-inflammatory cytokine response may exacerbate the severity of infection. A high overlap in symptoms together with a limited sample size of different SM clinical groups reduced the power to identify immunological correlates for particular forms of SM.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research, (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|