1
|
Ogbonna HN, Roberts Z, Godwin N, Muri P, Turbitt WJ, Swalley ZN, Dempsey FR, Stephens HR, Zhang J, Plaisance EP, Norian LA. An Exogenous Ketone Ester Slows Tumor Progression in Murine Breast and Renal Cancer Models. Cancers (Basel) 2024; 16:3390. [PMID: 39410010 PMCID: PMC11476193 DOI: 10.3390/cancers16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Ketone esters (KEs) exhibit promise as anti-cancer agents but their impact on spontaneous metastases remains poorly understood. Although consumption of a ketogenic diet (KD) that is low in carbohydrates and high in fats can lead to KE production in vivo, the restrictive composition of KDs may diminish adherence in cancer patients. METHODS We investigated the effects of an exogenous ketone ester-supplemented (eKET), carbohydrate-replete diet on tumor growth, metastasis, and underlying mechanisms in orthotopic models of metastatic breast (4T1-Luc) and renal (Renca-Luc) carcinomas. Mice were randomized to diet after tumor challenge. RESULTS Administration of KEs did not alter tumor cell growth in vitro. However, in mice, our eKET diet increased circulating β-hydroxybutyrate and inhibited primary tumor growth and lung metastasis in both models. Body composition analysis illustrated the overall safety of eKET diet use, although it was associated with a loss of fat mass in mice with renal tumors. Immunogenetic profiling revealed divergent intratumoral eKET-related changes by tumor type. In mammary tumors, Wnt and TGFβ pathways were downregulated, whereas in renal tumors, genes related to hypoxia and DNA damage repair were downregulated. CONCLUSIONS Thus, our eKET diet exerts potent antitumor and antimetastatic effects in both breast and renal cancer models, albeit with different modes of action and physiologic effects. Its potential as an adjuvant dietary approach for patients with diverse cancer types should be explored further.
Collapse
Affiliation(s)
- Henry Nnaemeka Ogbonna
- Graduate Biomedical Sciences, Pathobiology, Pharmacology, and Physiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Zachary Roberts
- Undergraduate Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Pia Muri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - William J. Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
| | - Zoey N. Swalley
- Undergraduate Honors College, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Francesca R. Dempsey
- Graduate Biomedical Sciences, Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Holly R. Stephens
- Graduate Biomedical Sciences, Immunology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jianqing Zhang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (P.M.); (W.J.T.)
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Rachamala HK, Madamsetty VS, Angom RS, Nakka NM, Dutta SK, Wang E, Mukhopadhyay D, Pal K. Targeting mTOR and survivin concurrently potentiates radiation therapy in renal cell carcinoma by suppressing DNA damage repair and amplifying mitotic catastrophe. J Exp Clin Cancer Res 2024; 43:159. [PMID: 38840237 PMCID: PMC11155143 DOI: 10.1186/s13046-024-03079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.
Collapse
Affiliation(s)
- Hari K Rachamala
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Vijay S Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
- PolyARNA Therapeutics, One Kendal Square, Cambridge, MA, 01329, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Naga M Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
3
|
Somasundaram DB, Maher A, Aravindan S, Yu Z, Besch BM, Aravindan N. Mesenchymal stem cell-based TRAIL delivery inhibits the metastatic state of clinical therapy-resistant progressive neuroblastoma. World J Pediatr 2024; 20:287-293. [PMID: 38060141 DOI: 10.1007/s12519-023-00769-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023]
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andrew Maher
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brian M Besch
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Radiation Biology Laboratory, University of Oklahoma Health Sciences Center, BSEB 302F, 941 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Loeuillard EJ, Li B, Stumpf HE, Yang J, Willhite JR, Tomlinson JL, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Growth in Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:853-876. [PMID: 38219900 PMCID: PMC10981132 DOI: 10.1016/j.jcmgh.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIMS Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.
Collapse
Affiliation(s)
- Emilien J Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica R Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jennifer L Tomlinson
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
5
|
Loeuillard E, Li B, Stumpf HE, Yang J, Willhite J, Tomlinson JL, Wang J, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Progression in Cholangiocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541931. [PMID: 37293061 PMCID: PMC10245899 DOI: 10.1101/2023.05.24.541931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in humans, challenging the concept of TRAIL as a potent anticancer agent. Herein, we demonstrate that TRAIL + cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). In multiple immunocompetent syngeneic, orthotopic murine models of CCA, implantation of TRAIL + murine cancer cells into Trail-r -/- mice resulted in a significant reduction in tumor volumes compared to wild type mice. Tumor bearing Trail-r -/- mice had a significant decrease in the abundance of MDSCs due to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent NF-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) of CD45 + cells in murine tumors from three distinct immunocompetent CCA models demonstrated a significant enrichment of an NF-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis due to enhanced expression of cellular FLICE inhibitory protein (cFLIP), an inhibitor of proapoptotic TRAIL signaling. Accordingly, cFLIP knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. In summary, our findings define a noncanonical TRAIL signal in MDSCs and highlight the therapeutic potential of targeting TRAIL + cancer cells for the treatment of a poorly immunogenic cancer.
Collapse
|
6
|
L-Serine-Modified Poly-L-Lysine as a Biodegradable Kidney-Targeted Drug Carrier for the Efficient Radionuclide Therapy of Renal Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14091946. [PMID: 36145694 PMCID: PMC9503061 DOI: 10.3390/pharmaceutics14091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, L-serine (Ser)-modified poly-L-lysine (PLL) was synthesized to develop a biodegradable, kidney-targeted drug carrier for efficient radionuclide therapy in renal cell carcinoma (RCC). Ser-PLL was labeled with 111In/90Y via diethylenetriaminepentaacetic acid (DTPA) chelation for biodistribution analysis/radionuclide therapy. In mice, approximately 91% of the total dose accumulated in the kidney 3 h after intravenous injection of 111In-labeled Ser-PLL. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed that 111In-labeled Ser-PLL accumulated in the renal cortex following intravenous injection. An intrarenal distribution study showed that fluorescein isothiocyanate (FITC)-labeled Ser-PLL accumulated mainly in the renal proximal tubules. This pattern was associated with RCC pathogenesis. Moreover, 111In-labeled Ser-PLL rapidly degraded and was eluted along with the low-molecular-weight fractions of the renal homogenate in gel filtration chromatography. Continuous Ser-PLL administration over five days had no significant effect on plasma creatinine, blood urea nitrogen (BUN), or renal histology. In a murine RCC model, kidney tumor growth was significantly inhibited by the administration of the beta-emitter 90Y combined with Ser-PLL. The foregoing results indicate that Ser-PLL is promising as a biodegradable drug carrier for kidney-targeted drug delivery and efficient radionuclide therapy in RCC.
Collapse
|
7
|
Bisgin A, Sanlioglu AD, Eksi YE, Griffith TS, Sanlioglu S. Current Update on Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development with a Special Emphasis on Gene Therapy Viral Vector Design and Construction for Vaccination. Hum Gene Ther 2021; 32:541-562. [PMID: 33858231 DOI: 10.1089/hum.2021.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.
Collapse
Affiliation(s)
- Atil Bisgin
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Medical Genetics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Ahter D Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Yunus Emre Eksi
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Thomas S Griffith
- The Department of Urology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Salih Sanlioglu
- The Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Yan Y, Yao D, Li X. Immunological Mechanism and Clinical Application of PAMP Adjuvants. Recent Pat Anticancer Drug Discov 2021; 16:30-43. [PMID: 33563182 DOI: 10.2174/1574892816666210201114712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The host innate immune system can recognize Pathogen-Associated Molecular Patterns (PAMPs) through Pattern Recognition Receptors (PRRs), thereby initiating innate immune responses and subsequent adaptive immune responses. PAMPs can be developed as a vaccine adjuvant for modulating and optimizing antigen-specific immune responses, especially in combating viral infections and tumor therapy. Although several PAMP adjuvants have been successfully developed they are still lacking in general, and many of them are in the preclinical exploration stage. OBJECTIVE This review summarizes the research progress and development direction of PAMP adjuvants, focusing on their immune mechanisms and clinical applications. METHODS PubMed, Scopus, and Google Scholar were screened for this information. We highlight the immune mechanisms and clinical applications of PAMP adjuvants. RESULTS Because of the differences in receptor positions, specific immune cells targets, and signaling pathways, the detailed molecular mechanism and pharmacokinetic properties of one agonist cannot be fully generalized to another agonist, and each PAMP should be studied separately. In addition, combination therapy and effective integration of different adjuvants can increase the additional efficacy of innate and adaptive immune responses. CONCLUSION The mechanisms by which PAMPs exert adjuvant functions are diverse. With continuous discovery in the future, constant adjustments should be made to build new understandings. At present, the goal of therapeutic vaccination is to induce T cells that can specifically recognize and eliminate tumor cells and establish long-term immune memory. Following immune checkpoint modulation therapy, cancer treatment vaccines may be an option worthy of clinical testing.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Dan Yao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Xiaoyu Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| |
Collapse
|
9
|
Diet-Induced Obesity Impairs Outcomes and Induces Multi-Factorial Deficiencies in Effector T Cell Responses Following Anti-CTLA-4 Combinatorial Immunotherapy in Renal Tumor-Bearing Mice. Cancers (Basel) 2021; 13:cancers13102295. [PMID: 34064933 PMCID: PMC8151089 DOI: 10.3390/cancers13102295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Immunotherapy use has become standard for many patients with advanced kidney cancer; unfortunately, <50% of patients experience durable responses. Mounting evidence suggests that modifiable factors, such as diet and obesity, impact immunotherapy outcomes. Obesity, a major U.S. health epidemic, blunts anti-tumor immunity and promotes tumor growth in multiple preclinical models. However, the full biological impact of obesity on the T cell responses needed to achieve positive immunotherapy outcomes remains unclear. Here, we studied the effects of obesity on T cell responses following combinatorial immunotherapy in a mouse model of kidney cancer. We found that obesity is associated with blunted effector T cell responses, resulting in diminished immunotherapy outcomes. This therapy produces sustained T cell responses and robust tumor control in obese-resistant mice fed the same high-fat diet. Finding ways to amplify T cell responses within renal tumors from hosts with obesity will be critical for achieving optimal immunotherapy outcomes. Abstract Associations between modifiable factors and the efficacy of cancer immunotherapies remain uncertain. We found previously that diet-induced obesity (DIO) reduces the efficacy of an immunotherapy consisting of adenovirus-encoded TRAIL plus CpG oligonucleotide (AdT/CpG) in mice with renal tumors. To eliminate confounding effects of diet and determine whether outcomes could be improved in DIO mice, we evaluated AdT/CpG combined with anti-CTLA-4 in diet-matched, obese-resistant (OB-RES) versus DIO tumor-bearing mice. Therapy-treated OB-RES mice displayed effective renal tumor control and sustained CD4+ and CD8+ T cell responses. In contrast, therapy-treated DIO mice exhibited progressive tumor outgrowth and blunted T cell responses, characterized by reduced intratumoral frequencies of IFNγ+ CD4+ and CD8+ T cells. Weak effector T cell responses in therapy-treated DIO mice were accompanied by low intratumoral concentrations of the T cell chemoattractant CCL5, heightened concentrations of pro-tumorigenic GM-CSF, and impaired proliferative capacity of CD44+CD8+ T cells in tumor-draining lymph nodes. Our findings demonstrate that in lean mice with renal tumors, combining in situ T cell priming upstream of anti-CTLA-4 enhances outcomes versus anti-CTLA-4 alone. However, host obesity is associated with heightened immunotherapy resistance, characterized by multi-factorial deficiencies in effector CD4+ and CD8+ T cell responses that extend beyond the tumor microenvironment.
Collapse
|
10
|
Park JS, Lee ME, Kim SH, Jang WS, Ham WS. Development of a highly pulmonary metastatic orthotopic renal cell carcinoma murine model. Biol Open 2021; 10:256557. [PMID: 33913471 PMCID: PMC8084570 DOI: 10.1242/bio.058566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of renal cell carcinoma (RCC) is high, and its outcomes remain poor. Mortality is attributable largely to metastatic disease and a dearth of effective therapeutic interventions. The lungs are the most common metastatic site. To elucidate the biological mechanisms underlying pulmonary metastasis and identify superior therapeutic strategies, we developed a novel and clinically relevant murine RCC model exhibiting enhanced pulmonary metastasis. Mice underwent intrarenal implantation using luciferase-expressing Renca, a murine renal adenocarcinoma cell line. Primary renal tumor progression and development of metastatic lung lesions were monitored in live mice using bioluminescent imaging, followed by post-mortem organ assessment. Cells were isolated from pulmonary metastases for reimplantation, followed by repeat monitoring and assessment. This process was repeated once more for a total of two in vivo passages to select for pulmonary metastatic Renca cell subpopulations. However, a single round of in vivo selection was sufficient to produce a near-maximally metastatic subpopulation. Relative to Renca cell-implanted mice, subpopulation-implanted mice exhibited shorter implantation-metastasis intervals (5 days), shorter implantation-moribundity intervals (sacrificed at 18.6±2.9 versus 22.3±1.1 days), a higher number of metastatic lung lesions at 23 days (183.9±39.0 versus 172.6±38.2) and poorer survival. Implantation of cells derived from the second round of in vivo selection produced no further significant differences in the above metrics. This model consistently and efficiently recapitulates RCC pulmonary metastasis while allowing in vivo monitoring of tumor progression, thereby facilitating elucidation of the molecular mechanisms underlying pulmonary metastasis and evaluation of therapeutic modalities.
Collapse
Affiliation(s)
- Jee Soo Park
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung Eun Lee
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Hwan Kim
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Sik Jang
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Won Sik Ham
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:biom11040499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
|
12
|
Boi SK, Orlandella RM, Gibson JT, Turbitt WJ, Wald G, Thomas L, Buchta Rosean C, Norris KE, Bing M, Bertrand L, Gross BP, Makkouk A, Starenki D, Farag KI, Sorge RE, Brown JA, Gordetsky J, Yasin H, Garje R, Nandagopal L, Weiner GJ, Lubaroff DM, Arend RC, Li P, Zakharia Y, Yang E, Salem AK, Nepple K, Marquez-Lago TT, Norian LA. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J Immunother Cancer 2020; 8:e000725. [PMID: 33427691 PMCID: PMC7757487 DOI: 10.1136/jitc-2020-000725] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity is a major risk factor for renal cancer, yet our understanding of its effects on antitumor immunity and immunotherapy outcomes remains incomplete. Deciphering these associations is critical, given the growing clinical use of immune checkpoint inhibitors for metastatic disease and mounting evidence for an obesity paradox in the context of cancer immunotherapies, wherein obese patients with cancer have improved outcomes. METHODS We investigated associations between host obesity and anti-programmed cell death (PD-1)-based outcomes in both renal cell carcinoma (RCC) subjects and orthotopic murine renal tumors. Overall survival (OS) and progression-free survival (PFS) were determined for advanced RCC subjects receiving standard of care anti-PD-1 who had ≥6 months of follow-up from treatment initiation (n=73). Renal tumor tissues were collected from treatment-naive subjects categorized as obese (body mass index, 'BMI' ≥30 kg/m2) or non-obese (BMI <30 kg/m2) undergoing partial or full nephrectomy (n=19) then used to evaluate the frequency and phenotype of intratumoral CD8+ T cells, including PD-1 status, by flow cytometry. In mice, antitumor immunity and excised renal tumor weights were evaluated ±administration of a combinatorial anti-PD-1 therapy. For a subset of murine renal tumors, immunophenotyping was performed by flow cytometry and immunogenetic profiles were evaluated via nanoString. RESULTS With obesity, RCC patients receiving anti-PD-1 administration exhibited shorter PFS (p=0.0448) and OS (p=0.0288). Treatment-naive renal cancer subjects had decreased frequencies of tumor-infiltrating PD-1highCD8+ T cells, a finding recapitulated in our murine model. Following anti-PD-1-based immunotherapy, both lean and obese mice possessed distinct populations of treatment responders versus non-responders; however, obesity reduced the frequency of treatment responders (73% lean vs 44% obese). Tumors from lean and obese treatment responders displayed similar immunogenetic profiles, robust infiltration by PD-1int interferon (IFN)γ+CD8+ T cells and reduced myeloid-derived suppressor cells (MDSC), yielding favorable CD44+CD8+ T cell to MDSC ratios. Neutralizing interleukin (IL)-1β in obese mice improved treatment response rates to 58% and reduced MDSC accumulation in tumors. CONCLUSIONS We find that obesity is associated with diminished efficacy of anti-PD-1-based therapies in renal cancer, due in part to increased inflammatory IL-1β levels, highlighting the need for continued study of this critical issue.
Collapse
Affiliation(s)
- Shannon K Boi
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachael M Orlandella
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Justin Tyler Gibson
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William James Turbitt
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gal Wald
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Lewis Thomas
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Claire Buchta Rosean
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Katlyn E Norris
- Honors Undergraduate Research Program, School of Health Professions, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Megan Bing
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Laura Bertrand
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Brett P Gross
- Interdisciplinary Program in Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Amani Makkouk
- Interdisciplinary Program in Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Dmytro Starenki
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Kristine I Farag
- Science and Technology Honors Program, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A Brown
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Jennifer Gordetsky
- Departments of Pathology and Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hesham Yasin
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Rohan Garje
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
- Genitourinary Oncology Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - Lakshminarayanan Nandagopal
- Division of Hematology and Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- The University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - George J Weiner
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
- Department of Internal Medicine, Division of General Medicine, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
| | - David M Lubaroff
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Rebecca C Arend
- The University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
- Department of Obstetrics and Gynecology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Peng Li
- Department of Biostatistics, The University of Alabama at Birmingham School of Nursing, Birmingham, Alabama, USA
| | - Yousef Zakharia
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
- Genitourinary Oncology Program, Division of Hematology, Oncology and Blood and Marrow Transplantation, The University of Iowa, Iowa City, Iowa, USA
| | - Eddy Yang
- The University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
- Department of Radiation Oncology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Aliasger K Salem
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa, USA
| | - Kenneth Nepple
- Department of Urology, University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA
- University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lyse A Norian
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- The University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Gibson JT, Orlandella RM, Turbitt WJ, Behring M, Manne U, Sorge RE, Norian LA. Obesity-Associated Myeloid-Derived Suppressor Cells Promote Apoptosis of Tumor-Infiltrating CD8 T Cells and Immunotherapy Resistance in Breast Cancer. Front Immunol 2020; 11:590794. [PMID: 33123173 PMCID: PMC7573510 DOI: 10.3389/fimmu.2020.590794] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Nearly 70% of adults in the US are currently overweight or obese. Despite such high prevalence, the impact of obesity on antitumor immunity and immunotherapy outcomes remains incompletely understood, particularly in patients with breast cancer. Here, we addressed these gaps in knowledge using two murine models of breast cancer combined with diet-induced obesity. We report that obesity increases CXCL1 concentrations in the mammary tumor microenvironment, driving CXCR2-mediated chemotaxis and accumulation of granulocytic myeloid-derived suppressor cells (G-MDSCs) expressing Fas ligand (FasL). Obesity simultaneously promotes hyperactivation of CD8 tumor-infiltrating lymphocytes (TILs), as evidenced by increased expression of CD44, PD-1, Ki-67, IFNγ, and the death receptor Fas. Accordingly, G-MDSCs induce Fas/FasL-mediated apoptosis of CD8 T cells ex vivo and in vivo. These changes promote immunotherapy resistance in obese mice. Disruption of CXCR2-mediated G-MDSC chemotaxis in obese mice is sufficient to limit intratumoral G-MDSC accumulation and improve immunotherapy outcomes. The translational relevance of our findings is demonstrated by transcriptomic analyses of human breast tumor tissues, which reveal positive associations between CXCL1 expression and body mass index, poor survival, and a MDSC gene signature. Further, this MDSC gene signature is positively associated with FASLG expression. Thus, we have identified a pathway wherein obesity leads to increased intratumoral CXCL1 concentrations, which promotes CXCR2-mediated accumulation of FasL+ G-MDSCs, resulting in heightened CD8 TIL apoptosis and immunotherapy resistance. Disruption of this pathway may improve immunotherapy outcomes in patients with breast cancer and obesity.
Collapse
Affiliation(s)
- Justin T Gibson
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael M Orlandella
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William J Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
The Antidiabetic Agent Acarbose Improves Anti-PD-1 and Rapamycin Efficacy in Preclinical Renal Cancer. Cancers (Basel) 2020; 12:cancers12102872. [PMID: 33036247 PMCID: PMC7601245 DOI: 10.3390/cancers12102872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immune-stimulatory and targeted therapies benefit many patients with metastatic kidney cancer, a sizeable proportion of patients fail to respond. Recent studies in mice demonstrate that nutrient-limiting dietary interventions can improve responses to chemotherapy. However, these studies did not investigate effects on metastasis, and the impact of these interventions on the response to immunotherapy or targeted therapies in kidney cancer is unknown. We therefore studied the effects of a glucose-limiting drug called acarbose, which is used to treat type 2 diabetes, in a spontaneously-metastasizing mouse model of kidney cancer. We found that acarbose slowed kidney cancer growth and promoted protective immune responses. In combination with either an immunotherapy or a targeted therapy used clinically to treat kidney cancer, acarbose led to improved treatment outcomes and reduced lung metastases. Our findings contribute to the emerging idea of using nutrition-based interventions to enhance responses to cancer treatments. Abstract Although immune checkpoint inhibitors and targeted therapeutics have changed the landscape of treatment for renal cell carcinoma (RCC), most patients do not experience significant clinical benefits. Emerging preclinical studies report that nutrition-based interventions and glucose-regulating agents can improve therapeutic efficacy. However, the impact of such agents on therapeutic efficacy in metastatic kidney cancer remains unclear. Here, we examined acarbose, an alpha-glucosidase inhibitor and antidiabetic agent, in a preclinical model of metastatic kidney cancer. We found that acarbose blunted postprandial blood glucose elevations in lean, nondiabetic mice and impeded the growth of orthotopic renal tumors, an outcome that was reversed by exogenous glucose administration. Delayed renal tumor outgrowth in mice on acarbose occurred in a CD8 T cell-dependent manner. Tumors from these mice exhibited increased frequencies of CD8 T cells that retained production of IFNγ, TNFα, perforin, and granzyme B. Combining acarbose with either anti-PD-1 or the mammalian target of rapamycin inhibitor, rapamycin, significantly reduced lung metastases relative to control mice on the same therapies. Our findings in mice suggest that combining acarbose with current RCC therapeutics may improve outcomes, warranting further study to determine whether acarbose can achieve similar responses in advanced RCC patients in a safe and likely cost-effective manner.
Collapse
|
15
|
Turbitt WJ, Orlandella RM, Gibson JT, Peterson CM, Norian LA. Therapeutic Time-restricted Feeding Reduces Renal Tumor Bioluminescence in Mice but Fails to Improve Anti-CTLA-4 Efficacy. Anticancer Res 2020; 40:5445-5456. [PMID: 32988866 PMCID: PMC7957951 DOI: 10.21873/anticanres.14555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Dietary interventions like time-restricted feeding (TRF) show promising anti-cancer properties. We examined whether therapeutic TRF alone or combined with immunotherapy would diminish renal tumor growth in mice of varying body weights. MATERIALS AND METHODS Young (7 week) chow-fed or older (27 week) high-fat diet (HFD)-fed BALB/c mice were orthotopically injected with renal tumor cells expressing luciferase. After tumor establishment, mice were randomized to ad libitum feeding or TRF +/- anti-CTLA-4. Body composition, tumor viability and growth, and immune responses were quantified. RESULTS TRF alone reduced renal tumor bioluminescence in older HFD-fed, but not young chow-fed mice. In the latter, TRF mitigated tumor-induced loss of lean- and fat-mass. However, TRF did not alter excised renal tumor weights or intratumoral immune responses and failed to improve anti-CTLA-4 outcomes in any mice. CONCLUSION Therapeutic TRF exhibits modest anti-cancer properties but fails to improve anti-CTLA-4 immune checkpoint blockade in murine renal cancer.
Collapse
Affiliation(s)
- William J Turbitt
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Rachael M Orlandella
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Justin T Gibson
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Courtney M Peterson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
16
|
Gross BP, Chitphet K, Wongrakpanich A, Wafa EI, Norian LA, Salem AK. Biotinylated Streptavidin Surface Coating Improves the Efficacy of a PLGA Microparticle-Based Cancer Vaccine. Bioconjug Chem 2020; 31:2147-2157. [DOI: 10.1021/acs.bioconjchem.0c00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Brett P. Gross
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Khanidtha Chitphet
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amaraporn Wongrakpanich
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
- Department of Pharmacy and Center of Excellence in Innovation Drug Delivery and Nanomedicine, Mahidol University, Rakatjavee, Bangkok 10400, Thailand
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Lyse A. Norian
- Department of Nutrition Sciences and University of Alabama at Birmingham O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
17
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
18
|
Ishihara M, Hu J, Wong A, Cano-Ruiz C, Wu L. Mouse- and patient-derived CAM xenografts for studying metastatic renal cell carcinoma. Enzymes 2019; 46:59-80. [PMID: 31727277 DOI: 10.1016/bs.enz.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Renal cell carcinoma is the seventh most common cancer in the United States, and its metastatic form has a very poor prognosis due to a lack of effective treatment and thorough understanding on metastatic mechanism. This chapter will demonstrate a novel concept that intratumoral heterogeneity is essential for metastasis in renal cell carcinoma. We will first introduce the in vitro system and the mouse model that led to the finding of the cooperative mechanism for metastasis. Then, the results from the CAM model illustrate the cooperative interactions that lead to metastasis also occur in this model. We believe that the CAM model, as a unique and sustainable system, can open up new opportunities to study the metastatic disease.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
19
|
Murphy KA, James BR, Sjaastad FV, Kucaba TA, Kim H, Brincks EL, Chua SC, Wilber A, Griffith TS. Cutting Edge: Elevated Leptin during Diet-Induced Obesity Reduces the Efficacy of Tumor Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 201:1837-1841. [PMID: 30135180 DOI: 10.4049/jimmunol.1701738] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/27/2018] [Indexed: 12/12/2022]
Abstract
Various malignancies are reproducibly cured in mouse models, but most cancer immunotherapies show objective responses in a fraction of treated patients. One reason for this disconnect may be the use of young, lean mice lacking immune-altering comorbidities present in cancer patients. Although many cancer patients are overweight or obese, the effect of obesity on antitumor immunity is understudied in preclinical tumor models. We examined the effect of obesity on two immunotherapeutic models: systemic anti-CTLA-4 mAb and intratumoral delivery of a TRAIL-encoding adenovirus plus CpG. Both therapies were effective in lean mice, but neither provided a survival benefit to diet-induced obese BALB/c mice. Interestingly, tumor-bearing leptin-deficient (ob/ob) obese BALB/c mice did respond to treatment. Moreover, reducing systemic leptin with soluble leptin receptor:Fc restored the antitumor response in diet-induced obese mice. These data demonstrate the potential of targeting leptin to improve tumor immunotherapy when immune-modulating comorbidities are present.
Collapse
Affiliation(s)
| | - Britnie R James
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Hyunjoon Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455
| | - Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Streamson C Chua
- Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702.,Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455; .,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
20
|
Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 2018; 164:38-53. [DOI: 10.1016/j.biomaterials.2018.02.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022]
|
21
|
O'Shaughnessy MJ, Murray KS, La Rosa SP, Budhu S, Merghoub T, Somma A, Monette S, Kim K, Corradi RB, Scherz A, Coleman JA. Systemic Antitumor Immunity by PD-1/PD-L1 Inhibition Is Potentiated by Vascular-Targeted Photodynamic Therapy of Primary Tumors. Clin Cancer Res 2018; 24:592-599. [PMID: 28954788 PMCID: PMC7558370 DOI: 10.1158/1078-0432.ccr-17-0186] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022]
Abstract
Purpose: PD-1/PD-L1 pathway inhibition is effective against advanced renal cell carcinoma, although results are variable and may depend on host factors, including the tumor microenvironment. Vascular-targeted photodynamic (VTP) therapy with the photosensitizer WST11 induces a defined local immune response, and we sought to determine whether this could potentiate the local and systemic antitumor response to PD-1 pathway inhibition.Experimental Design: Using an orthotopic Renca murine model of renal cell carcinoma that develops lung metastases, we treated primary renal tumors with either VTP alone, PD-1/PD-L1 antagonistic antibodies alone, or a combination of VTP and antibodies and then examined treatment responses, including immune infiltration in primary and metastatic sites. Modulation of PD-L1 expression by VTP in human xenograft tumors was also assessed.Results: Treatment of renal tumors with VTP in combination with systemic PD-1/PD-L1 pathway inhibition, but neither treatment alone, resulted in regression of primary tumors, prevented growth of lung metastases, and prolonged survival in a preclinical mouse model. Analysis of tumor-infiltrating lymphocytes revealed that treatment effect was associated with increased CD8+:regulatory T cell (Treg) and CD4+FoxP3-:Treg ratios in primary renal tumors and increased T-cell infiltration in sites of lung metastasis. Furthermore, PD-L1 expression is induced following VTP treatment of human renal cell carcinoma xenografts.Conclusions: Our results demonstrate a role for local immune modulation with VTP in combination with PD-1/PD-L1 pathway inhibition for generation of potent local and systemic antitumor responses. This combined modality strategy may be an effective therapy in cancers resistant to PD-1/PD-L1 pathway inhibition alone. Clin Cancer Res; 24(3); 592-9. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew J O'Shaughnessy
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Urology Associates/Minnesota Urology, Minneapolis, Minnesota
| | - Katie S Murray
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Ellis Fischel Cancer Center, Columbia, Missouri
| | - Stephen P La Rosa
- Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sadna Budhu
- Immunology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Taha Merghoub
- Melanoma and Immunotherapeutics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Somma
- Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, New York
| | - Kwanghee Kim
- Department of Surgery, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renato Beluco Corradi
- Department of Surgery, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Mario Penna Cancer Institute, Belo Horizonte, Brazil
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Urology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
|
23
|
Murphy KA, James BR, Wilber A, Griffith TS. A Syngeneic Mouse Model of Metastatic Renal Cell Carcinoma for Quantitative and Longitudinal Assessment of Preclinical Therapies. J Vis Exp 2017. [PMID: 28448047 DOI: 10.3791/55080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Renal cell carcinoma (RCC) affects > 60,000 people in the United States annually, and ~ 30% of RCC patients have multiple metastases at the time of diagnosis. Metastatic RCC (mRCC) is incurable, with a median survival time of only 18 months. Immune-based interventions (e.g., interferon (IFN) and interleukin (IL)-2) induce durable responses in a fraction of mRCC patients, and multikinase inhibitors (e.g., sunitinib or sorafenib) or anti-VEGF receptor monoclonal antibodies (mAb) are largely palliative, as complete remissions are rare. Such shortcomings in current therapies for mRCC patients provide the rationale for the development of novel treatment protocols. A key component in the preclinical testing of new therapies for mRCC is a suitable animal model. Beneficial features that recapitulate the human condition include a primary renal tumor, renal tumor metastases, and an intact immune system to investigate any therapy-driven immune effector responses and the formation of tumor-induced immunosuppressive factors. This report describes an orthotopic mRCC mouse model that has all of these features. We describe an intrarenal implantation technique using the mouse renal adenocarcinoma cell line Renca, followed by the assessment of tumor growth in the kidney (primary site) and lungs (metastatic site).
Collapse
Affiliation(s)
- Katherine A Murphy
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota
| | - Britnie R James
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine; Simmons Cancer Institute
| | - Thomas S Griffith
- Department of Urology, University of Minnesota; Masonic Cancer Center, University of Minnesota; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota;
| |
Collapse
|
24
|
Murphy KA, James BR, Guan Y, Torry DS, Wilber A, Griffith TS. Exploiting natural anti-tumor immunity for metastatic renal cell carcinoma. Hum Vaccin Immunother 2016; 11:1612-20. [PMID: 25996049 DOI: 10.1080/21645515.2015.1035849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical observations of spontaneous disease regression in some renal cell carcinoma (RCC) patients implicate a role for tumor immunity in controlling this disease. Puzzling, however, are findings that high levels of tumor infiltrating lymphocytes (TIL) are common to RCC. Despite expression of activation markers by TILs, functional impairment of innate and adaptive immune cells has been consistently demonstrated contributing to the failure of the immune system to control RCC. Immunotherapy can overcome the immunosuppressive effects of the tumor and provide an opportunity for long-term disease free survival. Unfortunately, complete response rates remain sub-optimal indicating the effectiveness of immunotherapy remains limited by tumor-specific factors and/or cell types that inhibit antitumor immune responses. Here we discuss immunotherapies and the function of multiple immune system components to achieve an effective response. Understanding these complex interactions is essential to rationally develop novel therapies capable of renewing the immune system's ability to respond to these tumors.
Collapse
Affiliation(s)
- Katherine A Murphy
- a Department of Urology; University of Minnesota ; Minneapolis , MN , USA
| | | | | | | | | | | |
Collapse
|
25
|
Rivoltini L, Chiodoni C, Squarcina P, Tortoreto M, Villa A, Vergani B, Bürdek M, Botti L, Arioli I, Cova A, Mauri G, Vergani E, Bianchi B, Della Mina P, Cantone L, Bollati V, Zaffaroni N, Gianni AM, Colombo MP, Huber V. TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Armed Exosomes Deliver Proapoptotic Signals to Tumor Site. Clin Cancer Res 2016; 22:3499-512. [PMID: 26944067 DOI: 10.1158/1078-0432.ccr-15-2170] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Exosomes deliver signals to target cells and could thus be exploited as an innovative therapeutic tool. We investigated the ability of membrane TRAIL-armed exosomes to deliver proapoptotic signals to cancer cells and mediate growth inhibition in different tumor models. EXPERIMENTAL METHODS AND RESULTS K562 cells, transduced with lentiviral human membrane TRAIL, were used for the production of TRAIL(+) exosomes, which were studied by nanoparticle tracking analysis, cytofluorimetry, immunoelectronmicroscopy, Western blot, and ELISA. In vitro, TRAIL(+) exosomes induced more pronounced apoptosis (detected by Annexin V/propidium iodide and activated caspase-3) in TRAIL-death receptor (DR)5(+) cells (SUDHL4 lymphoma and INT12 melanoma), with respect to the DR5(-)DR4(+)KMS11 multiple myeloma. Intratumor injection of TRAIL(+) exosomes, but not mock exosomes, induced growth inhibition of SUDHL4 (68%) and INT12 (51%), and necrosis in KMS11 tumors. After rapid blood clearance, systemically administered TRAIL(+) exosomes accumulated in the liver, lungs, and spleen and homed to the tumor site, leading to a significant reduction of tumor growth (58%) in SUDHL4-bearing mice. The treatment of INT12-bearing animals promoted tumor necrosis and a not statistically significant tumor volume reduction. In KMS11-bearing mice, despite massive perivascular necrosis, no significant tumor growth inhibition was detected. CONCLUSIONS TRAIL-armed exosomes can induce apoptosis in cancer cells and control tumor progression in vivo Therapeutic efficacy was particularly evident in intratumor setting, while depended on tumor model upon systemic administration. Thanks to their ability to deliver multiple signals, exosomes thus represent a promising therapeutic tool in cancer. Clin Cancer Res; 22(14); 3499-512. ©2016 AACR.
Collapse
Affiliation(s)
- Licia Rivoltini
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Squarcina
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Department of Experimental Oncology and Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonello Villa
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Barbara Vergani
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Maja Bürdek
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ivano Arioli
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Agata Cova
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Mauri
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Bianchi
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pamela Della Mina
- Consorzio M.I.A., Microscopy and Image Analysis, Università degli Studi di Milano Bicocca, Milan, Italy
| | - Laura Cantone
- Department of Clinical Sciences and Community Health, EPIGET, Epidemiology, Epigenetics, and Toxicology Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, EPIGET, Epidemiology, Epigenetics, and Toxicology Laboratory, Università degli Studi di Milano, Milan, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Mario Paolo Colombo
- Department of Experimental Oncology and Molecular Medicine, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Department of Experimental Oncology and Molecular Medicine, Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
26
|
Brincks EL, Kucaba TA, James BR, Murphy KA, Schwertfeger KL, Sangwan V, Banerjee S, Saluja AK, Griffith TS. Triptolide enhances the tumoricidal activity of TRAIL against renal cell carcinoma. FEBS J 2015; 282:4747-4765. [PMID: 26426449 DOI: 10.1111/febs.13532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/19/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Renal cell carcinoma (RCC) is resistant to traditional cancer therapies, and metastatic RCC (mRCC) is incurable. The shortcomings in current therapeutic options for patients with mRCC provide the rationale for the development of novel treatment protocols. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has proven to be a potent inducer of tumor cell death in vitro and in vivo, and a number of TRAIL death receptor agonists (recombinant TRAIL or TRAIL death receptor-specific mAb) have been developed and tested clinically. Unfortunately the clinical efficacy of TRAIL has been underwhelming and is likely due to a number of possible mechanisms that render tumors resistant to TRAIL, prompting the search for drugs that increase tumor cell susceptibility to TRAIL. The objective of this study was to determine the effectiveness of combining the diterpene triepoxide triptolide, or its water-soluble prodrug, Minnelide, with TRAIL receptor agonists against RCC in vitro or in vivo, respectively. TRAIL-induced apoptotic death of human RCC cells was increased in the presence of triptolide. The triptolide-induced sensitization was accompanied by increased TRAIL-R2 (DR5) and decreased heat shock protein 70 expression. In vivo treatment of mice bearing orthotopic RCC (Renca) tumors showed the combination of Minnelide and agonistic anti-DR5 mAb significantly decreased tumor burden and increased animal survival compared to either therapy alone. Our data suggest triptolide/Minnelide sensitizes RCC cells to TRAIL-induced apoptosis through altered TRAIL death receptor and heat shock protein expression.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | - Britnie R James
- Department of Urology, University of Minnesota, Minneapolis, MN 55455
| | | | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Veena Sangwan
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Sulagna Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Ashok K Saluja
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Department of Surgery, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
27
|
Fend L, Remy-Ziller C, Foloppe J, Kempf J, Cochin S, Barraud L, Accart N, Erbs P, Fournel S, Préville X. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology 2015; 5:e1080414. [PMID: 27057460 PMCID: PMC4801465 DOI: 10.1080/2162402x.2015.1080414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Oncolytic virotherapy is an emergent promising therapeutic approach for the treatment of cancer. We have constructed a vaccinia virus (WR strain) deleted for thymidine kinase (TK) and ribonucleotide reductase (RR) genes that expressed the fusion suicide gene FCU1 derived from the yeast cytosine deaminase and uracil phosphoribosyltransferase genes. We evaluated this construct (VV-FCU1) in the orthotopic model of renal carcinoma (RenCa). Systemic administration of VV-FCU1 resulted in orthotopic tumor growth inhibition, despite temporary expression of viral proteins. VV-FCU1 treatment was associated with an infiltration of tumors by CD8+ T lymphocytes and a decrease in the proportion of infiltrating Tregs, thus modifying the ratio of CD8+/CD4+ Treg in favor of CD8+cytotoxic T cells. We demonstrated that VV-FCU1 treatment prolonged survival of animals implanted with RenCa cells in kidney. Depletion of CD8+ T cells abolished the therapeutic effect of VV-FCU1 while depletion of CD4+ T cells enhanced its protective activity. Administration of the prodrug 5-fluorocytosine (5-FC) resulted in a sustained control of tumor growth but did not extend survival. This study shows the importance of CD4+ and CD8+ T cells in vaccinia virus-mediated oncolytic virotherapy and suggests that this approach may be evaluated for the treatment of human renal cell carcinoma.
Collapse
Affiliation(s)
- Laetitia Fend
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Christelle Remy-Ziller
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Johann Foloppe
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Juliette Kempf
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Sandrine Cochin
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Luc Barraud
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Nathalie Accart
- Novartis Institutes for Biomedical Research, Analytical Sciences and Imaging , WSJ386, Basel, Switzerland
| | - Philippe Erbs
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| | - Sylvie Fournel
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Biovectorologie, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie , 74 Route du Rhin- BP60024 , Illkirch-Graffenstaden Cedex, France
| | - Xavier Préville
- Transgene S.A., 400 boulevard Gonthier d'Andernach, Parc d'innovation, CS80166, Illkirch-Graffenstaden Cedex, France and Institut Gustave Roussy, Unité INSERM 1015 114 rue Edouard-Vaillant , 94805 Villejuif Cedex, France
| |
Collapse
|
28
|
Laudenbach M, Baruffaldi F, Vervacke JS, Distefano MD, Titcombe PJ, Mueller DL, Tubo NJ, Griffith TS, Pravetoni M. The frequency of naive and early-activated hapten-specific B cell subsets dictates the efficacy of a therapeutic vaccine against prescription opioid abuse. THE JOURNAL OF IMMUNOLOGY 2015; 194:5926-36. [PMID: 25972483 DOI: 10.4049/jimmunol.1500385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Translation of therapeutic vaccines for addiction, cancer, or other chronic noncommunicable diseases has been slow because only a small subset of immunized subjects achieved effective Ab levels. We hypothesize that individual variability in the number of naive and early-activated hapten-specific B cells determines postvaccination serum Ab levels and vaccine efficacy. Using a model vaccine against the highly abused prescription opioid oxycodone, the polyclonal B cell population specific for an oxycodone-based hapten (6OXY) was analyzed by flow cytometry paired with Ag-based magnetic enrichment. A higher frequency of 6OXY-specific B cells in either spleen biopsies or blood, before and after immunization, correlated to subsequent greater oxycodone-specific serum Ab titers and their efficacy in blocking oxycodone distribution to the brain and oxycodone-induced behavior in mice. The magnitude of 6OXY-specific B cell activation and vaccine efficacy was tightly correlated to the size of the CD4(+) T cell population. The frequency of enriched 6OXY-specific B cells was consistent across various mouse tissues. These data provide novel evidence that variations in the frequency of naive or early-activated vaccine-specific B and T cells can account for individual responses to vaccines and may predict the clinical efficacy of a therapeutic vaccine.
Collapse
Affiliation(s)
| | - Federico Baruffaldi
- Minneapolis Medical Research Foundation, Minneapolis, MN 55415; Università degli Studi di Milano, Facoltà di Scienze del Farmaco, Milan, Italy 20133
| | | | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Philip J Titcombe
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Daniel L Mueller
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Noah J Tubo
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Marco Pravetoni
- Minneapolis Medical Research Foundation, Minneapolis, MN 55415; Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
29
|
Abstract
Kidney cancer incidence in the USA has been steadily increasing over the past several decades. The reasons for this are not completely clear, but an increased prevalence of known predisposing factors may be promoting this trend. Several major risk factors for kidney cancer have been identified. Among these, obesity is notable because its incidence has risen dramatically during this same period of time. Here, we will review the relationship between obesity and kidney cancer, and will explore the idea that obesity-mediated alterations in immune function may render immunotherapies for renal tumors ineffective. To support this idea, we will summarize characteristics of endogenous immune responses to renal tumors, as well as existing and developing immune-based therapies for kidney cancer patients. In doing so, we will highlight the ways in which altered immune function in obese individuals may render these therapies ineffective.
Collapse
Affiliation(s)
- Vincent Chehval
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | | |
Collapse
|
30
|
Lodhia KA, Hadley AM, Haluska P, Scott CL. Prioritizing therapeutic targets using patient-derived xenograft models. Biochim Biophys Acta Rev Cancer 2015; 1855:223-34. [PMID: 25783201 DOI: 10.1016/j.bbcan.2015.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/12/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDXs) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximize insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design.
Collapse
Affiliation(s)
- K A Lodhia
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - A M Hadley
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - P Haluska
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - C L Scott
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Hale M, Itani F, Buchta CM, Wald G, Bing M, Norian LA. Obesity triggers enhanced MDSC accumulation in murine renal tumors via elevated local production of CCL2. PLoS One 2015; 10:e0118784. [PMID: 25769110 PMCID: PMC4358922 DOI: 10.1371/journal.pone.0118784] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/21/2015] [Indexed: 01/02/2023] Open
Abstract
Obesity is one of the leading risk factors for developing renal cell carcinoma, an immunogenic tumor that is treated clinically with immunostimulatory therapies. Currently, however, the mechanisms linking obesity with renal cancer incidence are unclear. Using a model of diet-induced obesity, we found that obese BALB/c mice with orthotopic renal tumors had increased total frequencies of myeloid-derived suppressor cells (MDSC) in renal tumors and spleens by d14 post-tumor challenge, relative to lean counterparts. Renal tumors from obese mice had elevated concentrations of the known myeloid cell chemoattractant CCL2, which was produced locally by increased percentages of dendritic cells, macrophages, B cells, and CD45- cells in tumors. MDSC expression of the CCL2 receptor, CCR2, was unaltered by obesity but greater percentages of CCR2+ MDSCs were present in renal tumors from obese mice. Of note, the intracellular arginase levels and per-cell suppressive capacities of tumor-infiltrating and splenic MDSCs were unchanged in obese mice relative to lean controls. Thus, our findings suggest that obesity promotes renal tumor progression via development of a robust immunosuppressive environment that is characterized by heightened local and systemic MDSC prevalence. Targeted intervention of the CCL2/CCR2 pathway may facilitate immune-mediated renal tumor clearance in the obese.
Collapse
Affiliation(s)
- Malika Hale
- Department of Urology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Farah Itani
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Claire M. Buchta
- Department of Urology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Gal Wald
- Department of Urology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Megan Bing
- Department of Urology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Lyse A. Norian
- Department of Urology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yuan JL, Wang FL, Yi XM, Qin WJ, Wu GJ, Huan Y, Yang LJ, Zhang G, Yu L, Zhang YT, Qin RL, Tian CJ. More than 10 years survival with sequential therapy in a patient with advanced renal cell carcinoma: a case report. Braz J Med Biol Res 2014; 48:34-38. [PMID: 25493380 PMCID: PMC4288490 DOI: 10.1590/1414-431x20144096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/22/2014] [Indexed: 12/04/2022] Open
Abstract
Although radical nephrectomy alone is widely accepted as the standard of care in
localized treatment for renal cell carcinoma (RCC), it is not sufficient for the
treatment of metastatic RCC (mRCC), which invariably leads to an unfavorable outcome
despite the use of multiple therapies. Currently, sequential targeted agents are
recommended for the management of mRCC, but the optimal drug sequence is still
debated. This case was a 57-year-old man with clear-cell mRCC who received multiple
therapies following his first operation in 2003 and has survived for over 10 years
with a satisfactory quality of life. The treatments given included several surgeries,
immunotherapy, and sequentially administered sorafenib, sunitinib, and everolimus
regimens. In the course of mRCC treatment, well-planned surgeries, effective
sequential targeted therapies and close follow-up are all of great importance for
optimal management and a satisfactory outcome.
Collapse
Affiliation(s)
- J L Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - F L Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - X M Yi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W J Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - G J Wu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Huan
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L J Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - G Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Yu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y T Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - R L Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - C J Tian
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D, Griffith TS. CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother 2014; 63:1213-27. [PMID: 25143233 PMCID: PMC4412276 DOI: 10.1007/s00262-014-1598-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Tumor progression occurs through the modulation of a number of physiological parameters, including the development of immunosuppressive mechanisms to prevent immune detection and response. Among these immune evasion mechanisms, the mobilization of myeloid-derived suppressor cells (MDSC) is a major contributor to the suppression of antitumor T-cell immunity. Patients with renal cell carcinoma (RCC) show increased MDSC, and methods are being explored clinically to reduce the prevalence of MDSC and/or inhibit their function. In the present study, we investigated the relationship between MDSC and the therapeutic potential of a TRAIL-encoding recombinant adenovirus (Ad5-TRAIL) in combination with CpG-containing oligodeoxynucleotides (Ad5-TRAIL/CpG) in an orthotopic mouse model of RCC. This immunotherapy effectively clears renal (Renca) tumors and enhances survival, despite the presence of a high frequency of MDSC in the spleens and primary tumor-bearing kidneys at the time of treatment. Subsequent analyses revealed that the CpG component of the immunotherapy was responsible for decreasing the frequency of MDSC in Renca-bearing mice; further, treatment with CpG modulated the phenotype and function of MDSC that remained after immunotherapy and correlated with an increased T-cell response. Interestingly, the CpG-dependent alterations in MDSC frequency and function did not occur in tumor-bearing mice complicated with diet-induced obesity. Collectively, these data suggest that in addition to its adjuvant properties, CpG also enhances antitumor responses by altering the number and function of MDSC.
Collapse
Affiliation(s)
- Britnie R. James
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kristin G. Anderson
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Erik L. Brincks
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
| | - Lyse A. Norian
- Department of Urology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Holden Comprehensive Cancer Center, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
- Center for Immunology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| | - David Masopust
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN 55455 USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
34
|
James BR, Griffith TS. Activation of systemic antitumor immunity via TRAIL-induced apoptosis. Oncoimmunology 2014; 1:1178-1180. [PMID: 23170271 PMCID: PMC3494637 DOI: 10.4161/onci.20638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) continues to be intently studied as a cancer therapeutic because of its selective tumoricial activity. We have been interesting in evaluating the ability of TRAIL to induce systemic antitumor immunity through the generation of apoptotic tumor cells. Recent observations suggest that localized administration of TRAIL in combination with CpG ODN generates a systemic antitumor immune response to eliminate the primary tumor and distant metastases.
Collapse
Affiliation(s)
- Britnie R James
- Microbiology, Immunology, and Cancer Biology Ph.D. Program; University of Minnesota; Minneapolis, MN USA
| | | |
Collapse
|
35
|
Fend L, Gatard-Scheikl T, Kintz J, Gantzer M, Schaedler E, Rittner K, Cochin S, Fournel S, Préville X. Intravenous injection of MVA virus targets CD8+ lymphocytes to tumors to control tumor growth upon combinatorial treatment with a TLR9 agonist. Cancer Immunol Res 2014; 2:1163-74. [PMID: 25168392 DOI: 10.1158/2326-6066.cir-14-0050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effector T-cell access to tumor tissue is a limiting step for clinical efficacy of antigen-specific T cell-based immunotherapies. Ectopic mouse tumor models, in which a subcutaneously (s.c.) implanted tumor is treated with s.c. or intramuscular therapeutic immunization, may not be optimal for targeting effector T cells to an organ-borne tumor. We used an orthotopic renal carcinoma model to evaluate the impact of injection routes on therapeutic efficacy of a Modified Vaccinia virus Ankara viral vector expressing the human mucin 1 tumor-associated xeno-antigen (MVA-MUC1). We show that intravenous (i.v.) administration of MVA-MUC1 displayed enhanced efficacy when compared with s.c. injection. Therapeutic efficacy of MVA-MUC1 was further enhanced by i.v. injection of a TLR9 agonist. In all cases, infiltration of tumor-bearing kidney by CD8(+) lymphocytes was associated with control of tumor growth. Biodistribution experiments indicate that, following i.v. injection, MVA-encoded antigens are quickly expressed in visceral organs and, in particular, in splenic antigen-presenting cells, compared with those following s.c. injection. This appears to result in a faster generation of MUC1-specific CD8(+) T cells. Lymphocytes infiltrating tumor-bearing kidneys are characterized by an effector memory phenotype and express PD-1 and Tim3 immune checkpoint molecules. Therapeutic efficacy was associated with a modification of the tumor microenvironment toward a Th1-type immune response and recruitment of activated lymphocytes. This study supports the clinical evaluation of MVA-based immunotherapies via the i.v. route.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Fournel
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Biovectorologie, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France
| | | |
Collapse
|
36
|
The osteoprotegerin/tumor necrosis factor related apoptosis-inducing ligand axis in the kidney. Curr Opin Nephrol Hypertens 2014; 23:69-74. [PMID: 24247823 DOI: 10.1097/01.mnh.0000437611.42417.7a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a cytokine belonging to the TNF superfamily. TRAIL may modulate cell survival and proliferation through interaction with two different receptors, TRAIL-R1 and TRAIL-R2. The actions of TRAIL are regulated by three decoy receptors, TRAIL-R3, TRAIL-R4 and osteoprotegerin (OPG). There is evidence that both TRAIL and OPG are expressed by renal cells. The OPG/TRAIL axis has been recently linked to the pathogenesis of renal damage and, in particular, diabetic nephropathy. RECENT FINDINGS In patients with kidney diseases, serum TRAIL and OPG levels are increased in parallel and are significantly associated with each other. In diabetic nephropathy, the renal expression of TRAIL and OPG is elevated, and in tubular cells proinflammatory cytokines enhance TRAIL expression. Additionally, a high-glucose microenvironment sensitizes tubular cells to apoptosis induced by TRAIL, whereas OPG counteracts the actions of TRAIL in cultured cells. SUMMARY It seems that the expression and levels of TRAIL and OPG at serum and kidney levels are crucial for the pathogenesis of kidney diseases, and in particular diabetic nephropathy. Although further studies are necessary to clarify the exact role of the OPG/TRAIL axis in the kidney, this system seems to hold promise to provide therapeutic approaches for the management of renal damage. VIDEO ABSTRACT AVAILABLE See the Video Supplementary Digital Content 1 (http://links.lww.com/CONH/A5).
Collapse
|
37
|
Westwood JA, Potdevin Hunnam TCU, Pegram HJ, Hicks RJ, Darcy PK, Kershaw MH. Routes of delivery for CpG and anti-CD137 for the treatment of orthotopic kidney tumors in mice. PLoS One 2014; 9:e95847. [PMID: 24788789 PMCID: PMC4008493 DOI: 10.1371/journal.pone.0095847] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/01/2014] [Indexed: 12/24/2022] Open
Abstract
We have found previously that the tumor cell lines, Renca (a renal cancer) and MC38 (a colon tumor) which had been injected subcutaneously in mice, could be successfully treated with a combination therapy of an oligodeoxynucleotide (CpG1826) (injected intratumorally) and anti-CD137 antibody (injected intraperitoneally). Thus the combination treatment was expected to initiate a “danger” signal via TLR9 on immune cells, and the anti-CD137 was expected to further activate T cells. In the present study, we found that several other tumor types injected subcutaneously could also be successfully treated with this combination therapy. In addition, we wished to determine if the treatment could work as effectively in an orthotopic metastatic model, which is more physiologically relevant to cancer in humans. Renca was selected as we were familiar with injecting this orthotopically into the outer cortex of the kidney in mice, and it spontaneously metastasizes to lung and abdominal sites. We tested various routes of delivery of CpG combined with intraperitoneal delivery of anti-CD137. Orthotopic tumors were injected with CpG intratumorally, using ultrasound-guided delivery on multiple occasions, combined with anti-CD137 intraperitoneally. A reduction in primary tumor size was observed following intratumoral injection of CpG compared to other treatments. We found that there was a statistically significant increase in survival of mice with orthotopic Renca tumor following intratumoral injection of CpG. However, we determined that the most effective route of delivery of CpG was intravenous, which led to further significantly enhanced survival of mice when combined with anti-CD137 intraperitoneally, likely due to inhibition of metastatic disease. Our data supports future development of this combination therapy for cancer.
Collapse
Affiliation(s)
- Jennifer A. Westwood
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Australia
| | | | - Hollie J. Pegram
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Australia
| | - Rodney J. Hicks
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Australia
| | - Phillip K. Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Immunology, Monash University, Prahran, Australia
| | - Michael H. Kershaw
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Immunology, Monash University, Prahran, Australia
- * E-mail:
| |
Collapse
|
38
|
Zhang Z, Zhang H, Li H, Chen X, Liu M, Liu D, Zhao Y, Kong X. Selective expression of tumor necrosis factor-related apoptosis-inducing ligand mediated by microRNA suppresses renal carcinoma growth. Mol Cell Biochem 2014; 392:125-34. [PMID: 24788726 DOI: 10.1007/s11010-014-2025-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/05/2014] [Indexed: 12/29/2022]
Abstract
Renal cell carcinoma (RCC) is the most common types among kidney cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) strongly induces apoptosis in RCC. However, TRAIL therapy also leads to hepatotoxicity. To improve the biosafety, we inserted miRNA response elements (MREs) of miR-138, miR-199, and miR-122 into an adenoviral vector, Ad-TRAIL-3MREs, to restrict TRAIL expression within RCC cells. Luciferase assays showed that MREs can regulate the expression of exogenous gene in RCC cells. Ad-TRAIL-3MREs selectively expressed TRAIL and induce apoptosis in RCC cells, but not in normal cells. MTT assays revealed that Ad-TRAIL-3MREs reduced viability of RCC cells without cytotoxicity to normal cells. Ad-TRAIL-3MREs suppressed the growth of ACHN tumors and exerted no hepatotoxicity in vivo. Collectively, we generated a TRAIL-expressing adenoviral vector under the regulation of MREs. This miRNA-based gene therapy may be a promising strategy for RCC treatment.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Urology, China Japan Union Hospital of Jilin University, Changchun, 130033, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
James BR, Brincks EL, Kucaba TA, Boon L, Griffith TS. Effective TRAIL-based immunotherapy requires both plasmacytoid and CD8α dendritic cells. Cancer Immunol Immunother 2014; 63:685-97. [PMID: 24711083 DOI: 10.1007/s00262-014-1548-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
It is now appreciated that there are distinct subsets of dendritic cells (DC) with specialized functions. Plasmacytoid DC (pDC) and CD8α DC can contribute to the priming, activation and function of antitumor CD8 T cells; however, their specific roles and necessity in stimulating antitumor immunity are not clearly understood. We examined the importance of pDC and CD8α DC during immunotherapy of an orthotopic model of metastatic renal cell carcinoma. Immunotherapy that utilizes a recombinant adenovirus encoding tumor necrosis factor-related apoptosis-inducing ligand (Ad5-TRAIL) in combination with an immunostimulatory CpG-containing oligodeoxynucleotide (CpG) resulted in the clearance of primary and metastatic tumors in wild-type (WT) replete BALB/c mice and prolonged survival. In comparison, mice deficient in either pDC (accomplished using a depleting mAb specific for PDCA1) or CD8α DC (through utilization of CD8α DC-deficient Batf3(-/-) BALB/c mice) had uncontrolled tumor growth and high mortality after Ad5-TRAIL/CpG administration. The ineffectiveness of Ad5-TRAIL/CpG therapy in the anti-PDCA1-treated and Batf3(-/-) BALB/c mice was marked by an altered activation phenotype of the DC, as well as significantly reduced expression of type I IFN-stimulated genes and IL-15/IL-15R complex production. In addition, pDC-depleted and Batf3(-/-) BALB/c mice had significantly decreased effector CD8 T cell infiltration in the primary tumor site compared with WT mice after therapy. These data collectively suggest that pDC and CD8α DC carry out independent, but complementary, roles that are necessary to initiate an efficacious antitumor immune response after Ad5-TRAIL/CpG therapy.
Collapse
Affiliation(s)
- Britnie R James
- Department of Urology, University of Minnesota, 3-125 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | | | | | | | | |
Collapse
|
40
|
Ou YC, Li JR, Kuan YH, Raung SL, Wang CC, Hung YY, Pan PH, Lu HC, Chen CJ. Luteolin sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis. Life Sci 2014; 100:110-117. [DOI: 10.1016/j.lfs.2014.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 02/01/2014] [Indexed: 11/29/2022]
|
41
|
Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 2014; 9:209-22. [PMID: 24385150 PMCID: PMC4428344 DOI: 10.1038/nprot.2014.005] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Characterization of the cellular participants in tissue immune responses is crucial to understanding infection, cancer, autoimmunity, allergy, graft rejection and other immunological processes. Previous reports indicate that leukocytes in lung vasculature fail to be completely removed by perfusion. Several studies suggest that intravascular staining may discriminate between tissue-localized and blood-borne cells in the mouse lung. Here we outline a protocol for the validation and use of intravascular staining to define innate and adaptive immune cells in mice. We demonstrate application of this protocol to leukocyte analyses in many tissues and we describe its use in the contexts of lymphocytic choriomeningitis virus and Mycobacterium tuberculosis infections or solid tumors. Intravascular staining and organ isolation usually takes 5-30 min per mouse, with additional time required for any subsequent leukocyte isolation, staining and analysis. In summary, this simple protocol should help enable interpretable analyses of tissue immune responses.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katrin Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, US National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Heungsup Sung
- 1] Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA. [2]
| | - Lalit Beura
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Britnie R James
- Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Justin J Taylor
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lindor Qunaj
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vaiva Vezys
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel L Barber
- T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
42
|
Stuckey DW, Shah K. TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 2013; 19:685-94. [PMID: 24076237 PMCID: PMC3880796 DOI: 10.1016/j.molmed.2013.08.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/26/2013] [Accepted: 08/28/2013] [Indexed: 01/14/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, or TRAIL, is a promising anticancer agent as it can induce apoptosis in a wide range of cancers whilst generally sparing non-malignant cells. However, the translation of TRAIL into the clinic has been confounded by its short half-life, inadequate delivery methods, and TRAIL-resistant cancer cell populations. In this review, we discuss how TRAIL has been functionalized to diversify its traditional tumor-killing role and novel strategies to facilitate its effective deployment in preclinical cancer models. The successes and failures of the most recent clinical trials using TRAIL agonists are highlighted and we provide a perspective for improving its clinical implementation.
Collapse
Affiliation(s)
- Daniel W Stuckey
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
43
|
Lu Y, Yuan H, Deng S, Wei Q, Guo C, Yi J, Wu J, Li R, Wen L, He Z, Yuan L. Arsanilic acid causes apoptosis and oxidative stress in rat kidney epithelial cells (NRK-52e cells) by the activation of the caspase-9 and -3 signaling pathway. Drug Chem Toxicol 2013; 37:55-62. [DOI: 10.3109/01480545.2013.806532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Complete Regression of Metastatic Renal Cell Carcinoma by Multiple Injections of Engineered Mesenchymal Stem Cells Expressing Dodecameric TRAIL and HSV-TK. Clin Cancer Res 2012. [DOI: 10.1158/1078-0432.ccr-12-1568] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Beljanski V, Hiscott J. The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol 2012; 2:629-35. [PMID: 22910124 DOI: 10.1016/j.coviro.2012.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Intrinsic and acquired drug resistance remains a fundamental obstacle to successful applications of anticancer therapies for lung cancer. Combining conventional therapies with immunotherapeutic approaches is a promising strategy to circumvent lung cancer drug resistance. Genetically modified oncolytic viruses (OVs) kill tumor cells via completely unique mechanisms compared to small molecule chemotherapeutics typically used in lung cancer treatment and can also be used to deliver specific toxic, therapeutic or immunomodulatory genes to tumor cells. Recent pre-clinical and clinical studies with oncolytic vaccine approaches have revealed promising combination strategies that enhance oncolysis of tumor cells and circumvent tumor resistance mechanisms. As clinical trials with oncolytic vaccines progress, and as the knowledge acquired from these studies builds a foundation demonstrating OVs safety and efficacy, novel combination approaches could soon have a major impact on the clinical management of patients diagnosed with lung cancer.
Collapse
Affiliation(s)
- Vladimir Beljanski
- Vaccine and Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, United States
| | | |
Collapse
|
46
|
James BR, Tomanek-Chalkley A, Askeland EJ, Kucaba T, Griffith TS, Norian LA. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth. THE JOURNAL OF IMMUNOLOGY 2012; 189:1311-21. [PMID: 22745381 DOI: 10.4049/jimmunol.1100587] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a mounting health concern in the United States and is associated with an increased risk for developing several cancers, including renal cell carcinoma (RCC). Despite this, little is known regarding the impact of obesity on antitumor immunity. Because dendritic cells (DC) are critical regulators of antitumor immunity, we examined the combined effects of obesity and tumor outgrowth on DC function. Using a diet-induced obesity (DIO) model, DC function was evaluated in mice bearing orthotopic RCC and in tumor-free controls. Tumor-free DIO mice had profoundly altered serum cytokine and chemokine profiles, with upregulation of 15 proteins, including IL-1α, IL-17, and LIF. Tumor-free DIO mice had elevated percentages of conventional splenic DC that were impaired in their ability to stimulate naive T cell expansion, although they were phenotypically similar to normal weight (NW) controls. In DIO mice, intrarenal RCC tumor challenge in the absence of therapy led to increased local infiltration by T cell-suppressive DC and accelerated early tumor outgrowth. Following administration of a DC-dependent immunotherapy, established RCC tumors regressed in normal weight mice. The same immunotherapy was ineffective in DIO mice and was characterized by an accumulation of regulatory DC in tumor-bearing kidneys, decreased local infiltration by IFN-γ-producing CD8 T cells, and progressive tumor outgrowth. Our results suggest that the presence of obesity as a comorbidity can impair the efficacy of DC-dependent antitumor immunotherapies.
Collapse
Affiliation(s)
- Britnie R James
- Microbiology, Immunology, and Cancer Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|