1
|
Pao YS, Liao KJ, Shiau YC, Chao MH, Li MC, Lin LM, Chang HH, Yeh HW, Chen YJ, Chiu YT, Pan MYC, Chang YH, Shen SY, Lin SY, Cheng HC, Lin YC, Sun YJ, Kuo CC, Hsieh HP, Wang LHC. KIF2C promotes paclitaxel resistance by depolymerizing polyglutamylated microtubules. Dev Cell 2025:S1534-5807(25)00151-0. [PMID: 40157365 DOI: 10.1016/j.devcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/27/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The long-term effectiveness of paclitaxel is limited by chemoresistance. In this study, we elucidate the molecular mechanism by which kinesin family member 2C (KIF2C), a well-known microtubule depolymerase, contributes to the development of chemoresistance in triple-negative breast cancer (TNBC). We observed elevated levels of KIF2C, tubulin tyrosination, and polyglutamylation in human and mouse breast cancer cells resistant to paclitaxel. Additionally, these chemoresistant cells possessed cross-resistance to diverse microtubule-targeting agents (MTAs). We demonstrated that KIF2C preferentially depolymerizes polyglutamylated tubulin, even in the presence of paclitaxel. To counter this, we developed 7S9, a chemical inhibitor of KIF2C, that prohibits the dissociation of KIF2C from microtubules. The combination of 7S9 and paclitaxel significantly reduced tumorigenesis in chemoresistant TNBC model in mice. Moreover, 7S9 diminished cancer cell chemoresistance to several clinically available MTAs. Our findings elucidate the molecular mechanism of KIF2C-mediated chemoresistance and highlight KIF2C as a promising target for combating cross-resistance in TNBC.
Collapse
Affiliation(s)
- Yuan-Shao Pao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Kuan-Ju Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Ya-Chia Shiau
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Ming-Hong Chao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City 115202, Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Hsuan Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Shih-Yu Shen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan.
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan.
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan.
| |
Collapse
|
2
|
Derderian S, Jarry E, Santos A, Vesval Q, Hamel L, Sanchez-Salas R, Rompré-Brodeur A, Kassouf W, Rajan R, Brimo F, Duclos M, Aprikian A, Chevalier S. Clinical significance of stratifying prostate cancer patients through specific circulating genes. Mol Oncol 2025. [PMID: 39840448 DOI: 10.1002/1878-0261.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts. Expanding on this concept, we included 57 genes representing cell subtypes, drug targets and relevant to resistance as non-invasive biomarkers for stratification. This panel was tested by RT-qPCR (quantitative reverse transcription polymerase chain reaction) in blood of controls and different categories of PCa patients. Overall, circulating transcripts showed predictive value throughout the disease. Those with aggressive pathological features such as intra-ductal carcinoma at diagnosis showed more genes over-expressed. In metastatic patients, signatures of subtypes or resistance were associated with treatments, progression-free survival and overall survival. Altogether, testing markers of cell diversity, an intrinsic feature of tumours, and drug targets via liquid biopsies represents a valuable means to stratify patients and predict responses to current or new therapeutic modalities. Over-expressed drug target genes suggest potential benefit from targeted treatments, justifying new clinical trials to offer patient-tailored strategies to eventually impact on PCa mortality.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
| | - Edouard Jarry
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Urology, Centre Hospitalier Régional et Universitaire de Lille, France
| | - Arynne Santos
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
| | - Quentin Vesval
- Department of Urology, Centre Hospitalier Régional et Universitaire de Rennes, France
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | | | | | - Wassim Kassouf
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Raghu Rajan
- Department of Oncology, McGill University, Montreal, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University, Montreal, Canada
| | - Marie Duclos
- Department of Radiation Oncology, McGill University, Montreal, Canada
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Fan H, Li J, Manuel AM, Zhao Z. Enzalutamide-induced signatures revealed by epigenetic plasticity using single-cell multi-omics sequencing in prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:648-661. [PMID: 36910711 PMCID: PMC9995291 DOI: 10.1016/j.omtn.2023.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Prostate cancer is morphologically and molecularly heterogeneous, which poses obstacles for early diagnosis and treatment. Advancements in understanding the heterogeneity of prostate cancer will help navigate through these challenges and ultimately benefit patients. In this study, we integrated single-cell sequencing for transposase-accessible chromatin and whole transcriptome in prostate cancer cell lines, aiming to decode the epigenetic plasticity upon enzalutamide (ENZ) treatment. By comparing the cell populations representing early-treatment response or resistance to the initial tumor cells, we identified seven signature gene sets; they present consistent trends of chromatin closing co-occurred with down-regulated genes during early response and chromatin opening with up-regulated genes upon maintaining drug resistance. In the molecular signatures, we found genes ZNF337, MAPK15, and ESRRG are favorable in progression-free prognosis during early response, while genes CCDC150, CCDC18, and POC1A marked poor prognosis underpinning the pre-existing drug resistance in The Cancer Genome Atlas prostate adenocarcinoma cohort. Ultimately, drug-target analyses nominated combinatory drug candidates to either enhance early-treatment response or potentially overcome ENZ resistance. Together, our integrative, single-cell multi-omics approach in pre-clinical models is effective in identifying informative signatures from complex molecular events, illustrating diverse drug responses in prostate cancer, and invoking novel combinatory drug strategies to inform clinical decision making.
Collapse
Affiliation(s)
- Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinze Li
- Environmental and Occupational Health Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Astrid M Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center, University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Hongo H, Kosaka T, Suzuki Y, Oya M. Discovery of a new candidate drug to overcome cabazitaxel-resistant gene signature in castration-resistant prostate cancer by in silico screening. Prostate Cancer Prostatic Dis 2023; 26:59-66. [PMID: 34593983 PMCID: PMC10023558 DOI: 10.1038/s41391-021-00426-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The taxane cabazitaxel (CBZ) is a promising treatment for docetaxel-resistant castration-resistant prostate cancer (CRPC). However, the survival benefit with CBZ for patients with CRPC is limited. This study used screening tests for candidate drugs targeting CBZ-resistant-related gene expression and identified pimozide as a potential candidate for overcoming CBZ resistance in CRPC. METHODS We established CBZ-resistant cell lines, DU145CR and PC3CR by incubating DU145 cells and PC3 cells with gradually increasing concentrations of CBZ. We performed in silico drug screening for candidate drugs that could reprogram the gene expression signature of a CBZ-resistant prostate cancer cells using a Connectivity Map. The in vivo effect of the drug combination was tested in xenograft mice models. RESULTS We identified pimozide as a promising candidate drug for CBZ-resistant CRPC. Pimozide had a significant antitumor effect on DU145CR cells. Moreover, combination treatment with pimozide and CBZ had a synergic effect for DU145CR cells in vitro and in vivo. Microarray analysis identified AURKB and KIF20A as potential targets of pimozide in CBZ-resistant CRPC. DU145CR had significantly higher AURKB and KIF20A expression compared with a non-CBZ-resistant cell line. Inhibition of AURKB and KIF20A had an antitumor effect in DU145CR xenograft tumors. Higher expression of AURKB and KIF20A was a poor prognostic factor of TGCA prostate cancer cohort. CBZ-resistant prostate cancer tissues in our institution had higher AURKB and KIF20A expression. CONCLUSIONS Pimozide appears to be a promising drug to overcome CBZ resistance in CRPC by targeting AURKB and KIF20A.
Collapse
Grants
- the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant No. #17K11158 the Takeda Science Foundation Japan Research Foundation for Clinical Pharmacology (JRFCP)
- the Ministry of Education, Culture, Sports, Science and Technology of Japan; Grant No. #21K09436, #20K22822, #17K16813, #15K20109 Keio University School of Medicine; Grant No. 02-002-0014, 02-002-0020 Sakaguchi Mitsunada Memorial Fund
Collapse
Affiliation(s)
- Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Suzuki
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH, Xue XY. Development and Validation of Novel Biomarkers Related to M2 Macrophages Infiltration by Weighted Gene Co-Expression Network Analysis in Prostate Cancer. Front Oncol 2021; 11:634075. [PMID: 34268107 PMCID: PMC8276177 DOI: 10.3389/fonc.2021.634075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
M2-tumor-associated macrophages (TAMs) work as a promoter in the processes of bone metastases, chemotherapy resistance, and castration resistance in prostate cancer (PCa), but how M2-TAMs affect PCa has not been fully understood. In this study, we analyzed the proportion of tumor-infiltrating immune cells using the CIBERSORT algorithm, based on samples from the Cancer Genome Atlas database. Then we performed weighted gene co-expression network analysis to examine the modules concerning infiltrated M2-TAMs. Gene Ontology analysis and pathway enrichment analysis were performed for functional annotation and a protein–protein interaction network was constructed. The International Cancer Genomics Consortium cohort was used as a validation cohort. The red module showed the most correlation with M2-TAMs in PCa. Biological processes and pathways were mainly associated with the immune-related processes, as revealed by functional annotation. Four hub genes were screened: ACSL1, DLGAP5, KIF23 and NCAPG. Further validation showed that the four hub genes had a higher expression level in tumor tissues than that in normal tissues, and they were good prognosis biomarkers for PCa. In conclusion, these findings contribute to understanding the underlying molecular mechanisms of how M2-TAMs affect PCa, and looking for the potential biomarkers and therapeutic targets for PCa patients.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ru-Nan Dong
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting-Ting Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tian Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Huang
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Central Lab, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye-Hui Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Duan H, Zhang X, Wang FX, Cai MY, Ma GW, Yang H, Fu JH, Tan ZH, Fu XY, Ma QL, Wang XY, Lin P. KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients. Oncotarget 2018; 7:80493-80507. [PMID: 27563815 PMCID: PMC5348336 DOI: 10.18632/oncotarget.11492] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023] Open
Abstract
To determine the prognostic significance of Kinesin family member 2C (KIF-2C) expression in patients with operable esophageal squamous cell carcinoma (ESCC), we conducted an immunohistochemical analysis of KIF-2C expression in 415 surgically resected primary tumor tissues and 40 adjacent non-cancerous tissues from patients with operable ESCC. The median duration of postoperative follow-up was 76.0 months. Higher KIF-2C expression was associated with significantly increased risks of higher pathologic tumor (pT) status (P=0.038) and poorer tumor differentiation (P=0.022). For the entire cohort, KIF-2C expression was not an independent factor significantly associated with overall survival (OS) (P=0.097) or disease-free survival (DFS) (P=0.152). In female patients, KIF-2C expression had no effect on OS (P=0.880) and DFS (P=0.864). However, OS (hazard ratio (HR)=1.480, P=0.013) and DFS (HR=1.418, P=0.024) were worse for male patients with high KIF-2C expression compared with male patients with low KIF-2C expression. Moreover, the OS and DFS of male patients with high KIF-2C expression were also significantly shorter compared with female patients with low KIF-2C expression (P=0.022, P=0.029) and female patients with high KIF-2C expression (P=0.014, P=0.018). Based on these findings, KIF-2C expression in tumor tissues promises to serve as an independent prognostic marker for male, but not female, patients with operable ESCC. Prognosis was worse for male patients with high KIF-2C expression compared with patients with the same pathologic tumor-node-metastasis (pTNM) stage.
Collapse
Affiliation(s)
- Hao Duan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xu Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Fei-Xiang Wang
- Department of Thoracic Oncology, Cancer Center of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Mu-Yan Cai
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Guo-Wei Ma
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Hong Yang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Jian-Hua Fu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Zi-Hui Tan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xia-Yu Fu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Qi-Long Ma
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xin-Ye Wang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Peng Lin
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
7
|
Tsai HK, Lehrer J, Alshalalfa M, Erho N, Davicioni E, Lotan TL. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. BMC Cancer 2017; 17:759. [PMID: 29132337 PMCID: PMC5683385 DOI: 10.1186/s12885-017-3729-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/30/2017] [Indexed: 12/28/2022] Open
Abstract
Background Neuroendocrine prostate cancer (NEPC) may be rising in prevalence as patients with advanced prostate cancer potentially develop resistance to contemporary anti-androgen treatment through a neuroendocrine phenotype. While prior studies comparing NEPC and prostatic adenocarcinoma have identified important candidates for targeted therapy, most have relied on few NEPC patients due to disease rarity, resulting in thousands of differentially expressed genes collectively and offering an opportunity for meta-analysis. Moreover, past studies have focused on prototypical NEPC samples with classic immunohistochemistry profiles, whereas there is increasing recognition of atypical phenotypes. In the primary setting, small cell prostatic carcinoma (SCPC) is frequently admixed with adenocarcinomas that may be clonally related, and a minority of SCPCs express markers typical of prostatic adenocarcinoma while rare cases do not express neuroendocrine markers. We derived a meta-signature of prototypical high-grade NEPC, then applied it to develop a classifier of primary SCPC incorporating disease heterogeneity. Methods Prototypical NEPC samples from 15 patients across 6 frozen tissue microarray datasets were assessed for genes with consistent outlier expression relative to adenocarcinomas. Resulting genes were used to determine subgroups of primary SCPCs (N=16) and high-grade adenocarcinomas (N=16) profiled by exon arrays using formalin-fixed paraffin-embedded (FFPE) material from our institutional archives. A subgroup classifier was developed using differential expression for feature selection, and applied to radical prostatectomy cohorts. Results Sixty nine and 375 genes demonstrated consistent outlier expression in at least 80% and 60% of NEPC patients, with close resemblance in expression between NEPC and small cell lung cancer. Clustering by these genes generated 3 subgroups among primary samples from our institution. Nearest centroid classification based on the predominant phenotype from each subgroup (9 prototypical SCPCs, 9 prototypical adenocarcinomas, and 4 atypical SCPCs) achieved a 4.5% error rate by leave-one-out cross-validation. The classifier identified SCPC-like expression in 40% (2/5) of mixed adenocarcinomas and 0.3-0.6% of adenocarcinomas from prospective (4/2293) and retrospective (2/355) radical prostatectomy cohorts, where both SCPC-like retrospective cases subsequently developed metastases. Conclusions Meta-analysis generates a robust signature of prototypical high-grade NEPC, and may facilitate development of a primary SCPC classifier based on FFPE material with potential prognostic implications. Electronic supplementary material The online version of this article (10.1186/s12885-017-3729-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harrison K Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Present address: Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017; 57:16-27. [PMID: 28527407 DOI: 10.1016/j.ctrv.2017.04.008] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.
Collapse
|
9
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ritter A, Kreis NN, Louwen F, Wordeman L, Yuan J. Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 2016; 51:228-45. [DOI: 10.1080/10409238.2016.1178705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Martin SK, Pu H, Penticuff JC, Cao Z, Horbinski C, Kyprianou N. Multinucleation and Mesenchymal-to-Epithelial Transition Alleviate Resistance to Combined Cabazitaxel and Antiandrogen Therapy in Advanced Prostate Cancer. Cancer Res 2016; 76:912-26. [PMID: 26645563 PMCID: PMC4755804 DOI: 10.1158/0008-5472.can-15-2078] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Abstract
Patients with metastatic castration-resistant prostate cancer (CRPC) frequently develop therapeutic resistance to taxane chemotherapy and antiandrogens. Cabazitaxel is a second-line taxane chemotherapeutic agent that provides additional survival benefits to patients with advanced disease. In this study, we sought to identify the mechanism of action of combined cabazitaxel and androgen receptor (AR) targeting in preclinical models of advanced prostate cancer. We found that cabazitaxel induced mitotic spindle collapse and multinucleation by targeting the microtubule depolymerizing kinesins and inhibiting AR. In androgen-responsive tumors, treatment with the AR inhibitor, enzalutamide, overcame resistance to cabazitaxel. Combination treatment of human CRPC xenografts with cabazitaxel and enzalutamide reversed epithelial-mesenchymal transition (EMT) to mesenchymal-epithelial transition (MET) and led to multinucleation, while retaining nuclear AR. In a transgenic mouse model of androgen-responsive prostate cancer, cabazitaxel treatment induced MET, glandular redifferentiation, and AR nuclear localization that was inhibited by androgen deprivation. Collectively, our preclinical studies demonstrate that prostate tumor resistance to cabazitaxel can be overcome by antiandrogen-mediated EMT-MET cycling in androgen-sensitive tumors but not in CRPC. Moreover, AR splice variants may preclude patients with advanced disease from responding to cabazitaxel chemotherapy and antiandrogen combination therapy. This evidence enables a significant insight into therapeutic cross-resistance to taxane chemotherapy and androgen deprivation therapy in advanced prostate cancer.
Collapse
Affiliation(s)
- Sarah K Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Pu
- Department of Urology, University of Kentucky, Lexington, Kentucky
| | | | - Zheng Cao
- Department of Urology, University of Kentucky, Lexington, Kentucky
| | - Craig Horbinski
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky. Department of Pathology and Laboratory Medicine, Lexington, Kentucky. Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Natasha Kyprianou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky. Department of Urology, University of Kentucky, Lexington, Kentucky. Department of Pathology and Laboratory Medicine, Lexington, Kentucky. Markey Cancer Center, University of Kentucky, Lexington, Kentucky. Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
12
|
Martin SK, Kyprianou N. Exploitation of the Androgen Receptor to Overcome Taxane Resistance in Advanced Prostate Cancer. Adv Cancer Res 2015; 127:123-58. [PMID: 26093899 DOI: 10.1016/bs.acr.2015.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a tumor addicted to androgen receptor (AR) signaling, even in its castration resistant state, and recently developed antiandrogen therapies including Abiraterone acetate and enzalutamide effectively target the androgen signaling axis, but there is ultimately recurrence to lethal disease. Development of advanced castration-resistant prostate cancer (CRPC) is a biological consequence of lack of an apoptotic response of prostate tumor cells to androgen ablation. Taxanes represent the major clinically relevant chemotherapy for the treatment of patients with metastatic CRPC; unfortunately, they do not deliver a cure but an extension of overall survival. First-generation taxane chemotherapies, Docetaxel (Taxotere), effectively target the cytoskeleton by stabilizing the interaction of β-tubulin subunits of microtubules preventing depolymerization, inducing G2M arrest and apoptosis. Shifting the current paradigm is a growing evidence to indicate that Docetaxel can effectively target the AR signaling axis by blocking its nuclear translocation and transcriptional activity in androgen-sensitive and castration-resistant prostate cancer cells, implicating a new mechanism of cross-resistance between microtubule-targeting chemotherapy and antiandrogen therapies. More recently, Cabazitaxel has emerged as a second-line taxane chemotherapy capable of conferring additional survival benefit to patients with CRPC previously treated with Docetaxel or in combination with antiandrogens. Similar to Docetaxel, Cabazitaxel induces apoptosis and G2M arrest; in contrast to Docetaxel, it sustains AR nuclear accumulation although it reduces the overall AR levels and FOXO1 expression. Cabazitaxel treatment also leads to downregulation of the microtubule-depolymerizing mitotic kinesins, MCAK, and HSET, preventing their ability to depolymerize microtubules and thus enhancing sensitivity to taxane treatment. The molecular mechanisms underlying taxane resistance involve mutational alterations in the tubulin subunits, microtubule dynamics, phenotyping programming of the epithelial-to-mesenchymal transition landscape, and the status of AR activity. This chapter discusses the mechanisms driving the therapeutic resistance of taxanes and antiandrogen therapies in CRPC, and the role of AR in potential interventions toward overcoming such resistance in patients with advanced metastatic disease.
Collapse
Affiliation(s)
- Sarah K Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Natasha Kyprianou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Department of Pathology and Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
13
|
Selimovic D, Badura HE, El-Khattouti A, Soell M, Porzig BBOW, Spernger A, Ghanjati F, Santourlidis S, Haikel Y, Hassan M. Vinblastine-induced apoptosis of melanoma cells is mediated by Ras homologous A protein (Rho A) via mitochondrial and non-mitochondrial-dependent mechanisms. Apoptosis 2014; 18:980-97. [PMID: 23564313 DOI: 10.1007/s10495-013-0844-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the availability of melanoma treatment at the primary site, the recurrence of local melanoma can metastasize to any distant organ. Currently, the available therapies for the treatment of metastatic melanoma are of limited benefit. Thus, the functional analysis of conventional therapies may help to improve their efficiency in the treatment of metastatic melanoma. In the present study, the exposure of melanoma cells to vinblastine was found to trigger apoptosis as evidenced by the loss of mitochondrial membrane potential, the release of both cytochrome c and apoptosis inducing factor, activation of caspase-9 and 3, and cleavage of Poly (ADP-ribose)-Polymerase. Also, vinblastine enhances the phosphorylation of Ras homologous protein A, the accumulation of reactive oxygen species, the release of intracellular Ca(2+), as well as the activation of apoptosis signal-regulating kinase 1, c-jun-N-terminal kinase, p38, inhibitor of kappaBα (IκBα) kinase, and inositol requiring enzyme 1α. In addition, vinblastine induces the DNA-binding activities of the transcription factor NF-κB, HSF1, AP-1, and ATF-2, together with the expression of HSP70 and Bax proteins. Moreover, inhibitory experiments addressed a central role for Rho A in the regulation of vinblastine-induced apoptosis of melanoma cells via mitochondrial and non-mitochondrial-dependent mechanisms. In conclusion, the present study addresses for the first time a central role for Rho A in the modulation of vinblastine-induced apoptosis of melanoma cells and thereby provides an insight into the molecular action of vinblastine in melanoma treatment.
Collapse
Affiliation(s)
- Denis Selimovic
- Institut National de la Santé et de la Recherche Médicale, U 977, Faculty of Medicine and Dental Faculty, 11 Rue Humann, 67000 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gwon MR, Cho JH, Kim JR. Mitotic centromere-associated kinase (MCAK/Kif2C) regulates cellular senescence in human primary cells through a p53-dependent pathway. FEBS Lett 2012; 586:4148-56. [PMID: 23098759 DOI: 10.1016/j.febslet.2012.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Mitotic centromere-associated kinase (MCAK/Kif2C) plays a critical role in chromosome movement and segregation with ATP-dependent microtubule depolymerase activity. However, its role in cellular senescence remains unclear. MCAK/Kif2C expression decreased in human primary cells under replicative and premature senescence. MCAK/Kif2C down-regulation in young cells induced premature senescence. MCAK/Kif2C overexpression in old cells partially reversed cell senescence. Senescence phenotypes by MCAK/Kif2C knockdown were observed in p16-knockdown cells, but not in p53-knockdown cells. These results suggest that MCAK/Kif2C plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue/organism aging and protection of cellular transformation.
Collapse
Affiliation(s)
- Mi-Ri Gwon
- Department of Biochemistry and Molecular Biology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | | | | |
Collapse
|