1
|
Hammond FR, Lewis A, Pollara G, Tomlinson GS, Noursadeghi M, Kiss-Toth E, Elks PM. Tribbles1 is host protective during in vivo mycobacterial infection. eLife 2024; 13:e95980. [PMID: 38896446 PMCID: PMC11186633 DOI: 10.7554/elife.95980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.
Collapse
Affiliation(s)
- Ffion R Hammond
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Amy Lewis
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Gabriele Pollara
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Gillian S Tomlinson
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Mahdad Noursadeghi
- Division of Infection & Immunity, University College LondonLondonUnited Kingdom
| | - Endre Kiss-Toth
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, Faculty of Health, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
2
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
3
|
Integrative Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unveils the Characteristics of the Immune Microenvironment and Prognosis Signature in Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6768139. [PMID: 35909899 PMCID: PMC9325591 DOI: 10.1155/2022/6768139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
The immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer development. The underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. This study provides novel insights into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD. The identification of key cell subpopulations has a potential therapeutic and prognostic use in PRAD.
Collapse
|
4
|
ADCK2 Knockdown Affects the Migration of Melanoma Cells via MYL6. Cancers (Basel) 2022; 14:cancers14041071. [PMID: 35205819 PMCID: PMC8869929 DOI: 10.3390/cancers14041071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a growing health issue in the 21st century. Due to early metastasis and the development of resistance, it still goes along with a poor prognosis. ADCK protein kinases have been shown to play a role during cancer development and metastasis. Here, we investigated the role of ADCK2 in melanoma. In our study, we showed that higher levels of intratumoral ADCK2 benefit patient survival, while a low expression of ADCK2 was associated with a higher motility and a dedifferentiated state of melanoma cells, which facilitates metastasis. Our results could give new insights into melanoma metastasis, and ADCK2 could qualify as a prognostic marker or a target for melanoma therapy in the future. Abstract Background: ADCK2 is a member of the AarF domain-containing kinase family, which consists of five members, and has been shown to play a role in CoQ metabolism. However, ADCKs have also been connected to cancer cell survival, proliferation and motility. In this study, we investigated the role of ADCK2 in melanoma. Methods: The effect of ADCK2 on melanoma cell motility was evaluated by a scratch assay and a transwell invasion assay upon siRNA-mediated knockdown or stable overexpression of ADCK2. Results: We found that high levels of intratumoral ADCK2 and MYL6 are associated with a higher survival rate in melanoma patients. Knocking down ADCK2 resulted in enhanced cell migration of melanoma cells. Moreover, ADCK2-knockdown cells adopted a more dedifferentiated phenotype. A gene expression array revealed that the expression of ADCK2 correlated with the expressions of MYL6 and RAB2A. Knocking down MYL6 in ADCK2-overexpressing cells could abrogate the effect of ADCK2 overexpression and thus confirm the functional connection between ADCK2 and MYL6. Conclusion: ADCK2 affects melanoma cell motility, most probably via MYL6. Our results allow the conclusion that ADCK2 could act as a tumor suppressor in melanoma.
Collapse
|
5
|
Suppression of TRPM7 Inhibited Hypoxia-Induced Migration and Invasion of Androgen-Independent Prostate Cancer Cells by Enhancing RACK1-Mediated Degradation of HIF-1 α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6724810. [PMID: 32215176 PMCID: PMC7079255 DOI: 10.1155/2020/6724810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Transient receptor potential melastatin subfamily member 7 (TRPM7) was essential in the growth and metastatic ability of prostate cancer cells. However, the effects and the relevant molecular mechanisms of TRPM7 on metastasis of prostate cancer under hypoxic atmosphere remain unclear. This study investigated the role of TRPM7 in the metastatic ability of androgen-independent prostate cancer cells under hypoxia. First, data mining was carried out to disclose the relationship between the TRPM7 gene level and the survival of prostate cancer patients. Specific siRNAs were used to knockdown target genes. Western blotting and qPCR were employed to determine protein and gene expression, respectively. The gene transcription activity was evaluated by luciferase activity assay of promoter gene. The protein interaction was determined by coimmunoprecipitation. Wound healing and transwell assays were employed to evaluated cell migration and invasion, respectively. Open access database results showed that high expression of TRPM7 was closely related to the poor survival of prostate cancer patients. Hypoxia simultaneously increased TRPM7 expression and induced HIF-1α accumulation in androgen-independent prostate cancer cells. Knockdown of TRPM7 significantly promoted HIF-1α degradation through the proteasome and inhibited EMT changes in androgen-independent prostate cancer cells under hypoxic condition. Moreover, TRPM7 knockdown increased the phosphorylation of RACK1 and strengthened the interaction between RACK1 and HIF-1α but attenuated the binding of HSP90 to HIF-1α. Whereas knockdown of RACK1 increased the binding of HSP90 to HIF-1α. Furthermore, both TRPM7 and HIF-1α knockdown significantly suppressed hypoxia-induced Annexin A1 protein expression, and suppression of HIF-1α/Annexin A1 signaling significantly inhibited hypoxia-induced cell migration and invasion of androgen-independent prostate cancer cells. Our findings demonstrate that TRPM7 knockdown promotes HIF-1α degradation via an oxygen-independent mechanism involving increased binding of RAKC1 to HIF-1α, and TRPM7-HIF-1α-Annexin A1 signaling axis plays a crucial role in the EMT, cell migration, and invasion of androgen-independent prostate cancer cells under hypoxic conditions.
Collapse
|
6
|
Vázquez-Fonseca L, Schaefer J, Navas-Enamorado I, Santos-Ocaña C, Hernández-Camacho JD, Guerra I, Cascajo MV, Sánchez-Cuesta A, Horvath Z, Siendones E, Jou C, Casado M, Gutiérrez P, Brea-Calvo G, López-Lluch G, Fernández-Ayala DJM, Cortés-Rodríguez AB, Rodríguez-Aguilera JC, Matté C, Ribes A, Prieto-Soler SY, Dominguez-Del-Toro E, Francesco AD, Aon MA, Bernier M, Salviati L, Artuch R, Cabo RD, Jackson S, Navas P. ADCK2 Haploinsufficiency Reduces Mitochondrial Lipid Oxidation and Causes Myopathy Associated with CoQ Deficiency. J Clin Med 2019; 8:jcm8091374. [PMID: 31480808 PMCID: PMC6780728 DOI: 10.3390/jcm8091374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/27/2023] Open
Abstract
Fatty acids and glucose are the main bioenergetic substrates in mammals. Impairment of mitochondrial fatty acid oxidation causes mitochondrial myopathy leading to decreased physical performance. Here, we report that haploinsufficiency of ADCK2, a member of the aarF domain-containing mitochondrial protein kinase family, in human is associated with liver dysfunction and severe mitochondrial myopathy with lipid droplets in skeletal muscle. In order to better understand the etiology of this rare disorder, we generated a heterozygous Adck2 knockout mouse model to perform in vivo and cellular studies using integrated analysis of physiological and omics data (transcriptomics–metabolomics). The data showed that Adck2+/− mice exhibited impaired fatty acid oxidation, liver dysfunction, and mitochondrial myopathy in skeletal muscle resulting in lower physical performance. Significant decrease in Coenzyme Q (CoQ) biosynthesis was observed and supplementation with CoQ partially rescued the phenotype both in the human subject and mouse model. These results indicate that ADCK2 is involved in organismal fatty acid metabolism and in CoQ biosynthesis in skeletal muscle. We propose that patients with isolated myopathies and myopathies involving lipid accumulation be tested for possible ADCK2 defect as they are likely to be responsive to CoQ supplementation.
Collapse
Affiliation(s)
- Luis Vázquez-Fonseca
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Jochen Schaefer
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Ignacio Navas-Enamorado
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Boston University School of Medicine, Boston, MA 02118, USA
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ignacio Guerra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Zoltan Horvath
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Cristina Jou
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Mercedes Casado
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Purificación Gutiérrez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Ana B Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Juan C Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
| | - Cristiane Matté
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. CEP 90035-003, Porto Alegre, RS, Brazil
| | - Antonia Ribes
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Secciód'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica I Genètica Molecular, Hospital Clinic, 08000 Barcelona, Spain
| | | | | | - Andrea di Francesco
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, and IRP Città della Speranza, 35100 Padova, Italy
| | - Rafael Artuch
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain
- Clinical Chemistry and Pathology Departments, Institut de Recerca Sant Joan de Déu, 08000 Barcelona, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 20201, USA
| | - Sandra Jackson
- Department of Neurology, Carl Gustav Carus University Dresden, 01307 Dresden, Germany
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain.
- CIBERER, Instituto de Salud Carlos III, 28000 Madrid, Spain.
| |
Collapse
|
7
|
Pandya C, Uzilov AV, Bellizzi J, Lau CY, Moe AS, Strahl M, Hamou W, Newman LC, Fink MY, Antipin Y, Yu W, Stevenson M, Cavaco BM, Teh BT, Thakker RV, Morreau H, Schadt EE, Sebra R, Li SD, Arnold A, Chen R. Genomic profiling reveals mutational landscape in parathyroid carcinomas. JCI Insight 2017; 2:e92061. [PMID: 28352668 DOI: 10.1172/jci.insight.92061] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.
Collapse
Affiliation(s)
- Chetanya Pandya
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew V Uzilov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Bellizzi
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Chun Yee Lau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aye S Moe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maya Strahl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wissam Hamou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leah C Newman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marc Y Fink
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yevgeniy Antipin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willie Yu
- Center for Computational Biology, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| | - Branca M Cavaco
- Molecular Endocrinology Group, Molecular Pathobiology Research Centre Unit (UIPM) of the Portuguese Institute of Oncology from Lisbon Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Bin T Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, United Kingdom
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuyu D Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Arnold
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
8
|
"TRP inflammation" relationship in cardiovascular system. Semin Immunopathol 2015; 38:339-56. [PMID: 26482920 PMCID: PMC4851701 DOI: 10.1007/s00281-015-0536-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.
Collapse
|
9
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|