1
|
Feng YY, Liu JF, Xue Y, Liu D, Wu XZ. Network Pharmacology Based Elucidation of Molecular Mechanisms of Laoke Formula for Treatment of Advanced Non-Small Cell Lung Cancer. Chin J Integr Med 2024; 30:984-992. [PMID: 38941043 DOI: 10.1007/s11655-024-3717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To explore the specific pharmacological molecular mechanisms of Laoke Formula (LK) on treating advanced non-small cell lung cancer (NSCLC) based on clinical application, network pharmacology and experimental validation. METHODS Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of Chinese medicine (CM) treatment in 296 patients with NSCLC in Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2015. The compounds of LK were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the corresponding targets were performed from Swiss Target Prediction. NSCLC-related targets were obtained from Therapeutic Target Database and Comparative Toxicogenomics Database. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were used to predict the potential signaling pathways involved in the treatment of advanced NSCLC with LK. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, A549 cell proliferation and migration assay were used to evaluate the antitumor activity of LK. Western blot was used to further verify the expression of key target proteins related to the predicted pathways. RESULTS Kaplan-Meier survival analysis showed that the overall survival of the CM group was longer than that of the non-CM group (36 months vs. 26 months), and COX regression analysis showed that LK treatment was an independent favorable prognostic factor (P=0.027). Next, 97 components and 86 potential targets were included in the network pharmacology, KEGG and GO analyses, and the results indicated that LK was associated with proliferation and apoptosis. Moreover, molecular docking revealed a good binding affinity between the key ingredients and targets. In vitro, A549 cell proliferation and migration assay showed that the biological inhibition effect was more obvious with the increase of LK concentration (P<0.05). And decreased expressions of nuclear factor κB1 (NF-κB1), epidermal growth factor receptor (EGFR) and AKT serine/threonine kinase 1 (AKT1) and increased expression of p53 (P<0.05) indicated the inhibitory effect of LK on NSCLC by Western blot. CONCLUSION LK inhibits NSCLC by inhibiting EGFR/phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, NFκB signaling pathway and inducing apoptosis, which provides evidence for the therapeutic mechanism of LK to increase overall survival in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Yu Feng
- Department of Nursing, Tangshan Vocational and Technical College, Tangshan, Hebei Province, 063000, China
| | - Jin-Feng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Xue
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, 300020, China
| | - Dan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China
| | - Xiong-Zhi Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
2
|
Awaji AA, Alhamdi HW, Alshehri KM, Alfaifi MY, Shati AA, Elbehairi SEI, Radwan NAF, Hafez HS, Elshaarawy RFM, Welson M. Bio-molecular Fe(III) and Zn(II) complexes stimulate the interplay between PI3K/AKT1/EGFR inhibition and induce autophagy and apoptosis in epidermal skin cell cancer. J Inorg Biochem 2024; 262:112720. [PMID: 39243420 DOI: 10.1016/j.jinorgbio.2024.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effectiveness and safety of a hybrid thiosemicarbazone ligand (HL) and its metal complexes (MnII-L, FeIII-L, NiII-HL, and ZnII-HL) against epidermoid carcinoma (A-431). The results indicated that FeIII-L is the most effective, with a high selectivity index of 8.01 and an IC50 of 17.49 ± 2.12 μM for FeIII-L. The study also revealed that the synthesized complexes effectively inhibited gene expression of the Phosphoinositide 3-kinases (PI3K), alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR2) axis mechanism (P < 0.0001). Additionally, these complexes trigger a chain of events that include the inhibition of proliferating cell nuclear antigen (PCNA), transforming growth factor β1 (TGF β1), and topoisomerase II, and leading to a decrease in epidermoid cell proliferation. Furthermore, the inhibitory activity also resulted in the upregulation of caspases 3 and 9, indicating the acceleration of apoptotic markers, and the down regulation of miRNA221, suggesting a decrease in epidermoid proliferation. Molecular modeling of FeIII-L revealed that it had the best binding energy -8.02 kcal/mol and interacted with five hydrophobic π-interactions with Val270, Gln79, Leu210, and Trp80 against AKT1. Furthermore, the binding orientation of FeIII-L with Topoisomerase II was found to be the most stable, with a binding energy -8.25 kcal/mol. This stability was attributed to the presence of five hydrophobic π-interactions with His759, Guanin13, Cytosin8, and Ala465, and numerous ionic interactions, which were more favorable than those of doxorubicin and etoposide for new regimens of chemotherapeutic activities against skin cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Heba W Alhamdi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia.
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Nancy A-F Radwan
- Zoology Department, Faculty of Science, Arish University, 45511 El Arish, Egypt.
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt.
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - Mary Welson
- Zoology Department, Faculty of Science, Suez University 43533, Suez, Egypt
| |
Collapse
|
3
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
4
|
The efficacy of PI3Kγ and EGFR inhibitors on the suppression of the characteristics of cancer stem cells. Sci Rep 2022; 12:347. [PMID: 35013447 PMCID: PMC8748513 DOI: 10.1038/s41598-021-04265-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are capable of continuous proliferation, self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. We have established a model of CSCs that was originally developed from mouse induced pluripotent stem cells (miPSCs) by proposing miPSCs to the conditioned medium (CM) of cancer derived cells, which is a mimic of carcinoma microenvironment. Further research found that not only PI3K-Akt but also EGFR signaling pathway was activated during converting miPSCs into CSCs. In this study, we tried to observe both of PI3Kγ inhibitor Eganelisib and EGFR inhibitor Gefitinib antitumor effects on the models of CSCs derived from miPSCs (miPS-CSC) in vitro and in vivo. As the results, targeting these two pathways exhibited significant inhibition of cell proliferation, self-renewal, migration and invasion abilities in vitro. Both Eganelisib and Gefitinib showed antitumor effects in vivo while Eganelisib displayed more significant therapeutic efficacy and less side effects than Gefitinib on all miPS-CSC models. Thus, these data suggest that the inhibitiors of PI3K and EGFR, especially PI3Kγ, might be a promising therapeutic strategy against CSCs defeating cancer in the near future.
Collapse
|
5
|
Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:399-409. [PMID: 32074070 DOI: 10.2478/acph-2020-0029] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
Curcumin has been proved to inhibit cell proliferation and induce cell apoptosis in non-small cell lung cancer (NSCLC). However, little is known about antimetastatic effects and molecular mechanisms of curcumin in NSCLC. In this study, we investigated the involvement of miR-206 in curcumin's anti-invasion and anti-migration in NSCLC. Cell proliferation was determined by MTT assay. Cell migration and invasion were analyzed by wound healing assay and transwell assay. MiRNA-206 expression was detected by real-time PCR. Western blot was used to detect the protein expression of PI3K/AKT/mTOR signaling pathway. Curcumin significantly inhibited migration and invasion in A549 cells, accompanied by significantly elevated miR-206 expression. Overexpression of miR-206 could inhibit migration and invasion of A549 cells, but it could also significantly decrease the phosphorylation levels of mTOR and AKT. The inhibition of miR-206 promoted cell migration, invasion and increased the phosphorylation level of mTOR and AKT. Furthermore, miR-206 mimics improved the inhibitory effects of curcumin on cell migration, invasion and the phosphorylation level of mTOR and AKT in A549 cells. On the contrary, MiR-206 inhibitors reversed the inhibitory effects of curcumin on cell migration, invasion and the phosphorylation level of mTOR and AKT. In conclusion, curcumin inhibited cell invasion and migration in NSCLC by elevating the expression of miR-206 which further suppressed the activation of the PI3K/AKT/mTOR pathway.
Collapse
|
6
|
Chen K, Shang Z, Dai AL, Dai PL. Novel PI3K/Akt/mTOR pathway inhibitors plus radiotherapy: Strategy for non-small cell lung cancer with mutant RAS gene. Life Sci 2020; 255:117816. [PMID: 32454155 DOI: 10.1016/j.lfs.2020.117816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) with RAS -mutant gene has been the most difficult obstacle to overcome. Over 25% of muted lung adenocarcinomas have RAS mutation. The prognosis of NSCLC patients with RAS-mutant genes is always poor because there is no effective drug to suppress RAS-mutant genes. NSCLC patients with RAS-mutant usually develop resistance to radiotherapy and chemotherapy, which in some cases leads to a 5-10% survival rate for non-small cell lung cancer (NSCLC). As little clinical symptom of NSCLC was presented at its early stages, thus it always brings in disappointing treatment outcome. Currently, NSCLC presents the highest morbidity and mortality all over the world. The combination of PI3K/AKT/mTOR pathway inhibitors with radiotherapy is a novel strategy to improve radiosensitivity and therapeutic outcome of NSCLC with a RAS-mutant gene. There have been many preclinical studies and clinical trials on the effect of PI3K/AKT/mTOR pathway inhibitors combined with radiotherapy in NSCLC with a RAS-mutant gene have been reported in the past years. This review provides current knowledge of the combination of PI3K/Akt/mTOR pathway inhibitors with radiotherapy, which prove to be a significant improvement for the treatment of NSCLC patients with RAS mutations and will benefit NSCLC patients with RAS mutations.
Collapse
Affiliation(s)
- Kai Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhongjun Shang
- Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming 650118, China
| | - Ai-Lin Dai
- Kunming Medical University Haiyuan School, Kunming 650100, China; Maternal and Child Health and Family Planning Service Center of Wenshan state, 663000, China
| | - Pei-Ling Dai
- Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming 650118, China; Kunming Medical University, Kunming 650100, China.
| |
Collapse
|
7
|
Naderali E, Valipour B, Khaki AA, Soleymani Rad J, Alihemmati A, Rahmati M, Nozad Charoudeh H. Positive Effects of PI3K/Akt Signaling Inhibition on PTEN and P53 in Prevention of Acute Lymphoblastic Leukemia Tumor Cells. Adv Pharm Bull 2019; 9:470-480. [PMID: 31592121 PMCID: PMC6773944 DOI: 10.15171/apb.2019.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose: The PI3K/Akt signaling pathway regulates cell growth, proliferation and viability in
hematopoietic cells. This pathway always dysregulates in acute lymphoblastic leukemia (ALL).
PTEN and P53 are tumor suppressor genes correlated with PI3K/Akt signaling pathway, and both
have a tight link in regulation of cell proliferation and cell death. In this study, we investigated
the effects of dual targeting of PI3K/Akt pathway by combined inhibition with nvp-BKM-120
(PI3K inhibitor) and MK-2206 (Akt inhibitor) in relation with PTEN and P53 on apoptosis and
proliferation of leukemia cells.
Methods: Both T and B ALL cell lines were treated with both inhibitors alone or in combination
with each other, and induction of apoptosis and inhibition of proliferation were evaluated by
flow cytometry. Expression levels of PTEN as well as p53 mRNA and protein were measured by
real-time qRT-PCR and western blot, respectively.
Results: We indicated that both inhibitors (BKM-120 and MK-2206) decreased cell viability and
increased cytotoxicity in leukemia cells. Reduction in Akt phosphorylation increased PTEN and
p53 mRNA and p53 protein level (in PTEN positive versus PTEN negative cell lines). Additionally,
both inhibitors, particularly in combination with each other, increased apoptosis (evaluated
with Annexin V and caspase 3) and reduced proliferation (Ki67 expression) in leukemia cells.
However, administration of IL7 downregulated PTEN and P53 mRNA expression and rescued
cancer cells following inhibition of BKM-120 and MK-2206.
Conclusion: This investigation suggested that inhibition of Akt and PI3K could be helpful in
leukemia treatment.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Wang S, Niu X, Bao X, Wang Q, Zhang J, Lu S, Wang Y, Xu L, Wang M, Zhang J. The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging. Oncol Rep 2019; 41:2636-2646. [PMID: 30896825 PMCID: PMC6448067 DOI: 10.3892/or.2019.7080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) metastasis commonly occurs in bone, which often results in pathological fractures. Sustained phosphoinositide‑3‑kinase (PI3K) signalling promotes the growth of PI3K‑dependent NSCLC and elevates osteoclastogenic potential. The present study investigated the effects of a PI3K inhibitor on NSCLC growth in bone and osteoclast formation, and aimed to determine whether it could control symptoms associated with bone metastasis. A bone metastasis xenograft model was established by implanting NCI‑H460‑luc2 lung cancer cells, which contain a phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α mutation, into the right tibiae of mice. After 1 week, the tumours were challenged with a PI3K inhibitor (buparlisib) or blank control for 3 weeks. Tumour growth and burden were longitudinally assessed in vivo via reporter gene bioluminescence imaging (BLI), small animal positron emission tomography/computed tomography (CT) [18F‑fluorodeoxyglucose (18F‑FDG)] and single‑photon emission computed tomography/CT [99mTc‑methylene diphosphonate (99mTc‑MDP)] imaging. Tibia sections of intraosseous NCI‑H460 tumours were analysed by immunohistochemistry (IHC), western blotting and flow cytometry. Dynamic weight bearing (DWB) tests were further performed to examine the improvement of symptoms associated with bone metastasis during the entire study. Administration of buparlisib significantly inhibited the progression of bone metastasis of NSCLC, as evidenced by significantly reduced uptake of 18F‑FDG, 99mTc‑MDP and BLI signals in the treated lesions. In addition, buparlisib appeared to inhibit the expression of tartrate‑resistant acid phosphatase and receptor activator of nuclear factor‑κB ligand, as determined by IHC. Buparlisib also resulted in increased cell apoptosis, as determined by a higher percentage of Annexin V staining and increased caspase 3 expression. Furthermore, buparlisib significantly increased weight‑bearing capacity, as revealed by DWB tests. The PI3K inhibitor, buparlisib, suppressed osteoclast formation in vivo, and exhibited antitumour activity, thus leading to increased weight‑bearing ability in mice with bone metastasis of lung cancer. Therefore, targeting the PI3K pathway may be a potential therapeutic strategy that prevents the structural skeletal damage associated with bone metastasis of lung cancer.
Collapse
Affiliation(s)
- Shengfei Wang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xiao Bao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, P.R. China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jianping Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, P.R. China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yongjun Wang
- Department of Orthopaedics and Traumatology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, P.R. China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Mingwei Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, P.R. China
| | - Jie Zhang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Caiola E, Brunelli L, Marabese M, Broggini M, Lupi M, Pastorelli R. Different metabolic responses to PI3K inhibition in NSCLC cells harboring wild-type and G12C mutant KRAS. Oncotarget 2018; 7:51462-51472. [PMID: 27283493 PMCID: PMC5239488 DOI: 10.18632/oncotarget.9849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/22/2016] [Indexed: 12/12/2022] Open
Abstract
KRAS mutations in non-small-cell lung cancer (NSCLC) patients are considered a negative predictive factor and indicate poor response to anticancer treatments. KRAS mutations lead to activation of the PI3K/akt/mTOR pathway, whose inhibition remains a challenging clinical target. Since the PI3K/akt/mTOR pathway and KRAS oncogene mutations all have roles in cancer cell metabolism, we investigated whether the activity of PI3K/akt/mTOR inhibitors (BEZ235 and BKM120) in cells harboring different KRAS status is related to their metabolic effect. Isogenic NSCLC cell clones expressing wild-type (WT) and mutated (G12C) KRAS were used to determine the response to BEZ235 and BKM120. Metabolomics analysis indicated the impairment of glutamine in KRAS-G12C and serine metabolism in KRAS-WT, after pharmacological blockade of the PI3K signaling, although the net effect on cell growth, cell cycle distribution and caspase activation was similar. PI3K inhibitors caused autophagy in KRAS-WT, but not in KRAS-G12C, where there was a striking decrease in ammonia production, probably a consequence of glutamine metabolism impairment. These findings lay the grounds for more effective therapeutic combinations possibly distinguishing wild-type and mutated KRAS cancer cells in NSCLC, exploiting their different metabolic responses to PI3K/akt/mTOR inhibitors.
Collapse
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Laura Brunelli
- Protein and Gene Biomarkers Unit, Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Monica Lupi
- Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Roberta Pastorelli
- Protein and Gene Biomarkers Unit, Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
10
|
Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev 2017; 59:93-101. [PMID: 28779636 DOI: 10.1016/j.ctrv.2017.07.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is an intracellular signaling pathway that has regulatory roles in cell survival, proliferation, and differentiation, and a critical role in tumorigenesis. In cancer, multiple studies have investigated the therapeutic targeting of the PI3K pathway, and multiple inhibitors targeting PI3K and its isoforms, protein kinase B/AKT, mammalian target of rapamycin (mTOR), and other pathway proteins have been developed. For the treatment of solid tumors, only allosteric mTOR inhibitors, such as everolimus and temsirolimus, are currently approved for clinical use. This review describes the PI3K inhibitors that have progressed from the laboratory to late-stage clinical trials, and discusses the challenges that have prevented other compounds from doing the same. Challenges to the therapeutic effectiveness of some PI3K inhibitors include the absence of reliable and effective biomarkers, their limited efficacy as single agents, insufficient development of rational therapeutic combinations, the use of schedules with a variety of off-target effects, and suboptimal therapeutic exposures. Therefore, with regard to PI3K inhibitors currently in late-stage clinical trials, the identification of appropriate biomarkers of efficacy and the development of optimal combination regimens and dosing schedules are likely to be important for graduation into clinical practice.
Collapse
Affiliation(s)
- Filip Janku
- MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Houston, TX, USA.
| |
Collapse
|
11
|
Bohnacker T, Prota AE, Beaufils F, Burke JE, Melone A, Inglis AJ, Rageot D, Sele AM, Cmiljanovic V, Cmiljanovic N, Bargsten K, Aher A, Akhmanova A, Díaz JF, Fabbro D, Zvelebil M, Williams RL, Steinmetz MO, Wymann MP. Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nat Commun 2017; 8:14683. [PMID: 28276440 PMCID: PMC5347140 DOI: 10.1038/ncomms14683] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
BKM120 (Buparlisib) is one of the most advanced phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of cancer, but it interferes as an off-target effect with microtubule polymerization. Here, we developed two chemical derivatives that differ from BKM120 by only one atom. We show that these minute changes separate the dual activity of BKM120 into discrete PI3K and tubulin inhibitors. Analysis of the compounds cellular growth arrest phenotypes and microtubule dynamics suggest that the antiproliferative activity of BKM120 is mainly due to microtubule-dependent cytotoxicity rather than through inhibition of PI3K. Crystal structures of BKM120 and derivatives in complex with tubulin and PI3K provide insights into the selective mode of action of this class of drugs. Our results raise concerns over BKM120's generally accepted mode of action, and provide a unique mechanistic basis for next-generation PI3K inhibitors with improved safety profiles and flexibility for use in combination therapies. Buparlisib/BKM120 is in phase 3 clinical trials as a phosphoinositide 3-kinase (PI3K) inhibitor. Here, Bohnacker et al. combine chemical biology and structural biology approaches to segregate BKM120's biological actions, and suggest that it causes mitotic arrest predominantly by binding microtubules and disrupting their dynamics.
Collapse
Affiliation(s)
- Thomas Bohnacker
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Florent Beaufils
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia BC V8W 2Y2, Canada
| | - Anna Melone
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Denise Rageot
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Alexander M Sele
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | | | - Katja Bargsten
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Amol Aher
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - J Fernando Díaz
- CIB Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | | | | | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Meng F, Wang F, Wang L, Wong SCC, Cho WCS, Chan LWC. MiR-30a-5p Overexpression May Overcome EGFR-Inhibitor Resistance through Regulating PI3K/AKT Signaling Pathway in Non-small Cell Lung Cancer Cell Lines. Front Genet 2016; 7:197. [PMID: 27895663 PMCID: PMC5108768 DOI: 10.3389/fgene.2016.00197] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is one of the most common deadly diseases worldwide, most of which is non-small cell lung cancer (NSCLC). The epidermal growth factor receptor (EGFR) mutant NSCLCs frequently respond to the EGFR tyrosine kinase inhibitors (EGFR-TKIs) treatment, such as Gefitinib and Erlotinib, but the development of acquired resistance limits the utility. Multiple resistance mechanisms have been explored, e.g., the activation of alternative tyrosine kinase receptors (TKRs) sharing similar downstream pathways to EGFR. MicroRNAs (miRNAs) are short, endogenous and non-coding RNA molecules, regulating the target gene expression. In this study, we explored the potential of miR-30a-5p in targeting the EGFR and insulin-like growth factor receptor-1 (IGF-1R) signaling pathways to overcome the drug resistance. IGF-1R is one of the tyrosine kinase receptors that share the same EGFR downstream molecules, including phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT). In this work, an in vitro study was designed using EGFR inhibitor (Gefitinib), IGF-1R inhibitor (NVP-AEW541), and miRNA mimics in two Gefitinib-resistant NSCLC cell lines, H460 and H1975. We found that the combination of EGFR and IGF-1R inhibitors significantly decreased the phosphorylated AKT (p-AKT) expression levels compared to the control group in these two cell lines. Knockdown of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) had the same effect with the dual inhibition of EGFR and IGF-1R to reduce the expression of p-AKT in the signaling pathway. Overexpression of miR-30a-5p significantly reduced the expression of the PI3K regulatory subunit (PIK3R2) to further induce cell apoptosis, and inhibit cell invasion and migration properties. Hence, miR-30a-5p may play vital roles in overcoming the acquired resistance to EGFR-TKIs, and provide useful information for establishing novel cancer treatment.
Collapse
Affiliation(s)
- Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - Fengfeng Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - Lili Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| |
Collapse
|
13
|
Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, Corchado JM, Al Ashwal H. Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Comput Biol Med 2016; 77:102-15. [PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 01/03/2023]
Abstract
Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
Collapse
Affiliation(s)
- Weng Howe Chan
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Safaai Deris
- Faculty of Creative Technology & Heritage, Universiti Malaysia Kelantan, Locked Bag 01, Bachok, 16300 Kota Bharu, Kelantan, Malaysia
| | - Nazar Zaki
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| | - Shahreen Kasim
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Malaysia
| | - Sigeru Omatu
- Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Juan Manuel Corchado
- Biomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
14
|
Safety and Efficacy of Buparlisib (BKM120) in Patients with PI3K Pathway-Activated Non-Small Cell Lung Cancer: Results from the Phase II BASALT-1 Study. J Thorac Oncol 2016; 10:1319-1327. [PMID: 26098748 DOI: 10.1097/jto.0000000000000607] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The phosphatidylinositol 3-kinase (PI3K) pathway promotes tumor growth and treatment resistance in non-small cell lung cancer (NSCLC). The aim of the open-label, two-stage, Phase II study BASALT-1 (NCT01820325) was to investigate the pan-PI3K inhibitor buparlisib (BKM120) in patients with PI3K pathway-activated, relapsed NSCLC. METHODS After prescreening for PI3K pathway activation, patients with PI3K pathway-activated, metastatic, squamous or nonsquamous NSCLC, who had relapsed after prior systemic antineoplastic therapy, were enrolled. In Stage 1, patients received single-agent buparlisib (100 mg/day). A futility analysis was performed independently in each histology group, based on the 12-week progression-free survival rate for the first 30 patients treated in each group being less than 50%. Exploratory biomarker analyses were performed in archival tissue samples and circulating tumor DNA (ctDNA). RESULTS Of 1242 prescreened patients, 13.5% exhibited PI3K pathway activation. As of June 5, 2014, 63 patients (30 squamous and 33 nonsquamous) were treated in Stage 1. The 12-week progression-free survival rates were 23.3% (95% confidence interval: 9.9-42.3) and 20.0% (95% confidence interval: 7.7-38.6) in the squamous and nonsquamous groups, respectively. Stage 2 was therefore not initiated in either group. PI3K pathway mutations in ctDNA were more concordant with metastatic tissue than with primary biopsies. CONCLUSIONS Despite preselecting patients for targeted treatment, BASALT-1 did not meet its primary objective during Stage 1. PI3K pathway activation can be detected using ctDNA, but may not be the main oncogenic driver in NSCLC. Combinations of PI3K inhibitors with other agents may demonstrate greater efficacy than monotherapy.
Collapse
|
15
|
Zhang LD, Liu Z, Liu H, Ran DM, Guo JH, Jiang B, Wu YL, Gao FH. Oridonin enhances the anticancer activity of NVP-BEZ235 against neuroblastoma cells in vitro and in vivo through autophagy. Int J Oncol 2016; 49:657-65. [PMID: 27278249 DOI: 10.3892/ijo.2016.3557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/09/2016] [Indexed: 11/06/2022] Open
Abstract
The aberrant activation of PI3K/Akt/mTOR signaling pathway plays an important role in the oncogenesis, prognosis and chemotherapy resistance of neuroblastoma. However, NVP-BEZ235, a potent dual PI3K and mTOR inhibitor have not shown beneficial effects on neuroblastoma especially in terms of apoptosis induction as a single agent. We therefore attempted to explore an effective combination regimen to enhance the anticancer activity of NVP-BEZ235. Interestingly, we found that oridonin, a natural biologically active compound extracted from the Chinese medicinal herb Rabdosia rubescens, combined with NVP-BEZ235 markedly induced apoptosis of neuroblastoma cells. Notably, the synergistic activation of the apoptotic pathway was accompanied with enhanced autophagy as evidenced by significant decreased p62 expression as well as upregulated conversion of LC3-II. Suppression of the Beclin-1, a core component of the autophagy machinery, by means of shRNA resulted in diminished synergistic antitumor effect. Furthermore, the co-treatment with oridonin and NVP-BEZ235 was also much more effective than either agent alone in inhibiting the growth of neuroblastoma xenografts and in inducing tumor cells apoptosis. Taken together, our results suggest that the combination of NVP-BEZ235 and oridonin is a novel and potential strategy for neuroblastoma therapy.
Collapse
Affiliation(s)
- Li-Di Zhang
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhen Liu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hua Liu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Dong-Mei Ran
- Department of Pathology, The Sixth People's Hospital of Zhengzhou City, Zhengzhou, Henan 450015, P.R. China
| | - Jia-Hui Guo
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Bin Jiang
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
16
|
Shingu T, Holmes L, Henry V, Wang Q, Latha K, Gururaj AE, Gibson LA, Doucette T, Lang FF, Rao G, Yuan L, Sulman EP, Farrell NP, Priebe W, Hess KR, Wang YA, Hu J, Bögler O. Suppression of RAF/MEK or PI3K synergizes cytotoxicity of receptor tyrosine kinase inhibitors in glioma tumor-initiating cells. J Transl Med 2016; 14:46. [PMID: 26861698 PMCID: PMC4746796 DOI: 10.1186/s12967-016-0803-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022] Open
Abstract
Background The majority of glioblastomas have aberrant receptor tyrosine kinase (RTK)/RAS/phosphoinositide 3 kinase (PI3K) signaling pathways and malignant glioma cells are thought to be addicted to these signaling pathways for their survival and proliferation. However, recent studies suggest that monotherapies or inappropriate combination therapies using the molecular targeted drugs have limited efficacy possibly because of tumor heterogeneities, signaling redundancy and crosstalk in intracellular signaling network, indicating necessity of rationale and methods for efficient personalized combination treatments. Here, we evaluated the growth of colonies obtained from glioma tumor-initiating cells (GICs) derived from glioma sphere culture (GSC) in agarose and examined the effects of combination treatments on GICs using targeted drugs that affect the signaling pathways to which most glioma cells are addicted. Methods Human GICs were cultured in agarose and treated with inhibitors of RTKs, non-receptor kinases or transcription factors. The colony number and volume were analyzed using a colony counter, and Chou-Talalay combination indices were evaluated. Autophagy and apoptosis were also analyzed. Phosphorylation of proteins was evaluated by reverse phase protein array and immunoblotting. Results Increases of colony number and volume in agarose correlated with the Gompertz function. GICs showed diverse drug sensitivity, but inhibitions of RTK and RAF/MEK or PI3K by combinations such as EGFR inhibitor and MEK inhibitor, sorafenib and U0126, erlotinib and BKM120, and EGFR inhibitor and sorafenib showed synergy in different subtypes of GICs. Combination of erlotinib and sorafenib, synergistic in GSC11, induced apoptosis and autophagic cell death associated with suppressed Akt and ERK signaling pathways and decreased nuclear PKM2 and β-catenin in vitro, and tended to improve survival of nude mice bearing GSC11 brain tumor. Reverse phase protein array analysis of the synergistic treatment indicated involvement of not only MEK and PI3K signaling pathways but also others associated with glucose metabolism, fatty acid metabolism, gene transcription, histone methylation, iron transport, stress response, cell cycle, and apoptosis. Conclusion Inhibiting RTK and RAF/MEK or PI3K could induce synergistic cytotoxicity but personalization is necessary. Examining colonies in agarose initiated by GICs from each patient may be useful for drug sensitivity testing in personalized cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0803-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takashi Shingu
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Lindsay Holmes
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Baylor College of Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, USA.
| | - Verlene Henry
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Qianghu Wang
- Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA. .,Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Khatri Latha
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Anupama E Gururaj
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Laura A Gibson
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Tiffany Doucette
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Liang Yuan
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, 901 West Franklin Street, Richmond, VA, 23284-9005, USA.
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Yaoqi A Wang
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Jian Hu
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.
| | - Oliver Bögler
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,The University of Texas M. D. Anderson Cancer Center, 7007 Bertner Ave., Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Chang WA, Hung JY, Tsai YM, Hsu YL, Chiang HH, Chou SH, Huang MS, Kuo PL. Laricitrin suppresses increased benzo(a)pyrene-induced lung tumor-associated monocyte-derived dendritic cell cancer progression. Oncol Lett 2016; 11:1783-1790. [PMID: 26998077 DOI: 10.3892/ol.2016.4153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/13/2016] [Indexed: 01/03/2023] Open
Abstract
Benzo(a)pyrene (BaP) stimulates lung cancer cells, promoting monocyte-derived dendritic cells to secrete soluble factors, including heparin binding-epidermal growth factor and C-X-C motif chemokine 5. The secretions from monocyte-derived dendritic cells stimulate the progression of lung cancer cells, including the migration and invasion of cells. To the best of our knowledge, these secretions remain unknown, and require additional study. The present study identified that treatment with BaP-H1395-tumor-associated dendritic cell-conditioned medium had the most marked effect on cell migration and invasion. This result may be associated with the female gender, stage 2 adenocarcinoma or mutation of the proto-oncogene B-Raf (BRAF), according to the cell line background. Laricitrin, a dietary flavonoid derivative present in grapes and red wine, suppresses certain factors and decreases the progression of lung cancer cells that are promoted by BaP in the lung cancer tumor microenvironment. The results of the present study suggest that prolonged exposure to BaP exacerbates lung cancer, particularly in female lung cancer patients with the BRAF mutation, but that laricitrin may ameliorate this effect.
Collapse
Affiliation(s)
- Wei-An Chang
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan, R.O.C
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hung-Hsing Chiang
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Shah-Hwa Chou
- Division of Chest Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan, R.O.C
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C
| |
Collapse
|
18
|
1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE-2Z cells. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0950-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Suppression of esophageal tumor growth and chemoresistance by directly targeting the PI3K/AKT pathway. Oncotarget 2015; 5:11576-87. [PMID: 25344912 PMCID: PMC4294385 DOI: 10.18632/oncotarget.2596] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022] Open
Abstract
Esophageal cancer is the sixth most common cause of cancer-related deaths worldwide. Novel therapeutic intervention is urgently needed for this deadly disease. The functional role of PI3K/AKT pathway in esophageal cancer is little known. In this study, our results from 49 pairs of human esophageal tumor and normal specimens demonstrated that AKT was constitutively active in the majority (75.5%) of esophageal tumors compared with corresponding normal tissues. Inhibition of the PI3K/AKT pathway with specific inhibitors, wortmannin and LY294002, significantly reduced Bcl-xL expression, induced caspase-3-dependent apoptosis, and repressed cell proliferation and tumor growth in vitro and in vivo without obvious toxic effects. Moreover, significantly higher expression level of p-AKT was observed in fluorouracil (5-FU)-resistant esophageal cancer cells. Inactivation of PI3K/AKT pathway markedly increased the sensitivity and even reversed acquired resistance of esophageal cancer cells to chemotherapeutic drugs in vitro. More importantly, the resistance of tumor xenografts derived from esophageal cancer cells with acquired 5-FU resistance to chemotherapeutic drugs was significantly abrogated by wortmannin treatment in animals. In summary, our data support PI3K/AKT as a valid therapeutic target and strongly suggest that PI3K/AKT inhibitors used in conjunction with conventional chemotherapy may be a potentially useful therapeutic strategy in treating esophageal cancer patients.
Collapse
|
20
|
Jin H, Qiao F, Wang Y, Xu Y, Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep 2015; 34:2782-9. [PMID: 26351877 DOI: 10.3892/or.2015.4258] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
Abstract
Curcumin is the main active ingredient extracted from the traditional Chinese medicine, turmeric, which acts against non-small cell lung cancer cell (NSCLC), lowers blood pressure, is anti-inflammatory, choleretic, and exerts anti‑oxidant effects, without any obvious toxicity in the long term. The aim of the present study was to investigate whether the anticancer effect of curcumin inhibited cell proliferation and induced apoptosis of human NSCLC through the upregulation of microRNA‑192-5p (miR-192-5p) and suppression of the PI3K/Akt signaling pathway. In the present study, treatment with curcumin inhibited cell proliferation, induced cell apoptosis and increased the caspase-3 activity of A549 cells. The results also showed that, miR-192-5p relative expression of NCL-H460 cells was relatively lower than that of A549 cells, which was higher, with that of BEAS-2E cells being the highest. miR-192-5p mimics suppressed cell proliferation and increased cell apoptosis of A549 cells. However, anti-miR-192-5p mimics increased cell proliferation and inhibited cell apoptosis of A549 cells. Curcumin treatment effectively increased the relative miR‑192-5p expression and suppressed the PI3K/Akt signaling pathway. miR-192-5p mimics enhanced the effect of curcumin on cell viability and apoptosis and suppressed the PI3K/Akt signaling pathway in A549 cells. Anti-miR-192-5p mimics reversed the effect of curcumin on A549 cells and PI3K/Akt expression. Collectively, our findings suggested that curcumin inhibited cell proliferation and induced apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Hai Jin
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Fan Qiao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yan Wang
- Center Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yongdong Xu
- Department of Thoracic Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, P.R. China
| | - Yan Shang
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
21
|
The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines. Tumour Biol 2015; 36:9339-45. [PMID: 26108998 DOI: 10.1007/s13277-015-3671-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/15/2015] [Indexed: 01/29/2023] Open
Abstract
KRAS mutations are found in 15-25 % of patients with lung adenocarcinoma, and they lead to constitutive activation of KRAS signaling pathway that results in sustained cell proliferation. Currently, there are no direct anti-KRAS therapies available. Therefore, it is rational to target the downstream molecules of KRAS signaling pathway, which are mitogen-activated protein kinase (MAPK) signaling pathway (RAF-MEK-ERK) and PI3K pathway (PI3K-AKT-mTOR). Here, we examined the inhibition of both these pathways alone and in combination and analyzed the anti-proliferative and apoptotic events in KRAS mutant NSCLC cell lines, A549 and Calu-1. Cytotoxicity was determined by MTT assay after the cells were treated with LY294002 (PI3K inhibitor), U0126 (MEK inhibitor), and RAD001 (mTOR inhibitor) for 24 and 48 h. The expression levels of p-ERK, ERK, AKT, p-AKT, p53, cyclinD1, c-myc, p27(kip1), BAX, BIM, and GAPDH were detected by western blot after 6 and 24 h treatment. Although PI3K/mTOR inhibition is more effective in cytotoxicity in A549 and Calu-1 cells, MEK/mTOR inhibition markedly decreases cell proliferation protein marker expressions. Our data show that combined targeting of MEK and PI3K-AKT with mTOR is a better option than single agents alone for KRAS mutant NSCLC, thus opening the possibility of a beneficial treatment strategy in the future.
Collapse
|
22
|
To C, Ringelberg CS, Royce DB, Williams CR, Risingsong R, Sporn MB, Liby KT. Dimethyl fumarate and the oleanane triterpenoids, CDDO-imidazolide and CDDO-methyl ester, both activate the Nrf2 pathway but have opposite effects in the A/J model of lung carcinogenesis. Carcinogenesis 2015; 36:769-81. [PMID: 25939751 DOI: 10.1093/carcin/bgv061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2022] Open
Abstract
Lung cancer accounts for the highest number of cancer-related deaths in the USA, highlighting the need for better prevention and therapy. Activation of the Nrf2 pathway detoxifies harmful insults and reduces oxidative stress, thus preventing carcinogenesis in various preclinical models. However, constitutive activation of the Nrf2 pathway has been detected in numerous cancers, which confers a survival advantage to tumor cells and a poor prognosis. In our study, we compared the effects of two clinically relevant classes of Nrf2 activators, dimethyl fumarate (DMF) and the synthetic oleanane triterpenoids, CDDO-imidazolide (CDDO-Im) and CDDO-methyl ester (CDDO-Me) in RAW 264.7 mouse macrophage-like cells, in VC1 lung cancer cells and in the A/J model of lung cancer. Although the triterpenoids and DMF both activated the Nrf2 pathway, CDDO-Im and CDDO-Me were markedly more potent than DMF. All of these drugs reduced the production of reactive oxygen species and inhibited nitric oxide production in RAW264.7 cells, but the triterpenoids were 100 times more potent than DMF in these assays. Microarray analysis revealed that only 52 of 99 Nrf2-target genes were induced by all three compounds, and each drug regulated a unique subset of Nrf2 genes. These drugs also altered the expression of other genes important in lung cancer independent of Nrf2. Although all three compounds enhanced the phosphorylation of CREB, only DMF increased the phosphorylation of Akt. CDDO-Me, at either 12.5 or 50mg/kg of diet, was the most effective drug in our lung cancer mouse model. Specifically, CDDO-Me significantly reduced the average tumor number, size and burden compared with the control group (P < 0.05). Additionally, 52% of the tumors in the control group were high-grade tumors compared with only 14% in the CDDO-Me group. Though less potent, CDDO-Im had similar activity as CDDO-Me. In contrast, 61-63% of the tumors in the DMF groups (400-1200mg/kg diet) were high-grade tumors compared with 52% for the controls (P < 0.05). Additionally, DMF significantly increased the average number of tumors compared with the controls (P < 0.05). Thus, in contrast to the triterpenoids, which effectively reduced pathogenesis in A/J mice, DMF enhanced the severity of lung carcinogenesis in these mice. Collectively, these results suggest that although CDDO-Im, CDDO-Me and DMF all activate the Nrf2 pathway, they target distinct genes and signaling pathways, resulting in opposite effects for the prevention of experimental lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karen T Liby
- Department of Pharmacology, Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
23
|
Richer AL, Friel JM, Carson VM, Inge LJ, Whitsett TG. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2015; 8:63-79. [PMID: 25897257 PMCID: PMC4397718 DOI: 10.2147/pgpm.s52845] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC). A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR) have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer.
Collapse
Affiliation(s)
- Amanda L Richer
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jacqueline M Friel
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vashti M Carson
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Landon J Inge
- Norton Thoracic Institute, St Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Timothy G Whitsett
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
24
|
Sun Z, Li Q, Zhang S, Chen J, Huang L, Ren J, Chang Y, Liang Y, Wu G. NVP-BEZ235 overcomes gefitinib-acquired resistance by down-regulating PI3K/AKT/mTOR phosphorylation. Onco Targets Ther 2015; 8:269-77. [PMID: 25674002 PMCID: PMC4321659 DOI: 10.2147/ott.s62128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Patients harboring activating mutations in epidermal growth factor receptors (EGFR) are particularly sensitive to EGFR tyrosine kinase inhibitors (TKIs). However, most patients develop an acquired resistance after a period of about 10 months. This study focuses on the therapeutic effect of NVP-BEZ235, a dual inhibitor of phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR), in gefitinib-resistant non-small cell lung cancer. Methods H1975 cell line was validated as a gefitinib-resistant cell model by the nucleotide-sequence analysis. We used the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to detect the growth of H1975 cell line in vitro. H1975 cells’ migration was detected by the migration assay. Xenograft models were used to investigate the growth of gefitinib-resistant non-small cell lung cancer in vivo. Western blot and immunohistochemical analysis were used to investigate the level of PI3K/protein kinase B(AKT)/mTOR signaling pathway proteins. Results We show that NVP-BEZ235 effectively inhibited the growth of H1975 cells in vivo as well as in vitro. Similarly, H1975 cell migration was reduced by NVP-BEZ235. Further experiments revealed that NVP-BEZ235 attenuated the phosphorylation of PI3K/AKT/mTOR signaling pathway proteins. Conclusion Taken together, we suggest that NVP-BEZ235 inhibits gefitinib-resistant tumor growth by downregulating PI3K/AKT/mTOR phosphorylation.
Collapse
Affiliation(s)
- Zhihua Sun
- Oncology department, Xiangyang central Hospital, Xiangyang, Hubei, People's Republic of China
| | - Qiuhui Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lili Huang
- Radiation Oncology Department, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yichen Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
25
|
Lattanzio L, Tonissi F, Monteverde M, Vivenza D, Russi E, Milano G, Merlano M, Lo Nigro C. Treatment effect of buparlisib, cetuximab and irradiation in wild-type or PI3KCA-mutated head and neck cancer cell lines. Invest New Drugs 2015; 33:310-20. [PMID: 25603975 DOI: 10.1007/s10637-015-0210-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022]
Abstract
Introduction In complement to anti-EGFR therapy, the targeting of PI3K/AKT/mTOR signaling pathway is of particular interest in the management of Head and Neck Squamous Cell Carcinoma (HNSCC). Here, we assess the effects of PI3K inhibition combined with anti-EGFR monoclonal antibody cetuximab and/or irradiation (RT). Material and methods Anti-proliferative effects of the combination of buparlisib (a specific PI3K inhibitor), cetuximab and RT was determined in two HNSCC cell lines (CAL33, PI3KCA H1047R-mutated and CAL27, PI3KCA wild-type). We examined biochemical factors related to proliferation, apoptosis (caspases), DNA repair (ERCC1, XRCC1) and the PI3K pathway (pEGFR/EGFR, pAKT/AKT, p-p70, p4EBP1). Results The best synergistic combined treatment in inhibiting cell proliferation was sequence 2 (cetuximab followed by buparlisib) in both cell lines. Addition of RT increased sequence 2 anti-proliferative effect only in CAL27. Data on protein expression indicated a possible activation of mTORC2 complex and caspases proteins in CAL27 not seen in CAL33. In CAL33, the synergistic anti-proliferative effect of the two drugs may derive from the higher sensitivity of mutated cells to PI3K targeting. Conclusions Our study demonstrates a synergistic effect of cetuximab followed by buparlisib in both PI3KCA wild-type and mutated cells, even with different intracellular signaling cross-talk depending on mutational status.
Collapse
Affiliation(s)
- Laura Lattanzio
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce University Hospital, Via Carle 25, 12100, Cuneo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun Z, Wang Z, Liu X, Wang D. New development of inhibitors targeting the PI3K/AKT/mTOR pathway in personalized treatment of non-small-cell lung cancer. Anticancer Drugs 2015; 26:1-14. [PMID: 25304988 DOI: 10.1097/cad.0000000000000172] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC) is the most common pathological type of lung cancer, divided into squamous cell carcinoma and adenocarcinoma. Despite better techniques of surgery and improvement in adjuvant and neoadjuvant therapy, the median survival of advanced NSCLC is only 8-10 months. With increased understanding of molecular alternations in NSCLC, considerable efforts have focused on the development of personalized molecular-targeted therapies. The PI3K/AKT/mTOR pathway regulates tumor development, growth, and proliferation of NSCLC. Various novel inhibitors targeting this pathway have been identified in preclinical studies or clinical trials. Some genetic alternations may be considered sensitive or resistant biomarkers to these inhibitors. Sometimes, upregulation of RTK and the downstream PI3K pathway or upregulation of the ERK pathway by compensatory feedback reactivation in response to these inhibitors also lead to drug resistance. Therefore, combination therapy of these inhibitors and other targeted inhibitors such as EGFR-TKI or MEK inhibitors according to genetic status and categories of inhibitors is required to enhance the efficacy of these inhibitors. Here, we reviewed the genetic status of the PI3K/AKT/mTOR pathway in NSCLC and the novel inhibitors targeting this pathway in preclinical or clinical studies, exploring the possible genetic alternations related to different inhibitors and the means to enhance the antitumor effect in NSCLC.
Collapse
Affiliation(s)
- Zhenguo Sun
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | |
Collapse
|
27
|
Zhou Y, Zhu LB, Peng AF, Wang TF, Long XH, Gao S, Zhou RP, Liu ZL. LY294002 inhibits the malignant phenotype of osteosarcoma cells by modulating the phosphatidylinositol 3‑kinase/Akt/fatty acid synthase signaling pathway in vitro. Mol Med Rep 2014; 11:1352-7. [PMID: 25351625 DOI: 10.3892/mmr.2014.2787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that fatty acid synthase (FASN) is crucial in the carcinogenesis of various types of tumor. In addition, the phosphatidylinositol 3‑kinase (PI3K)/Akt signaling pathway, which is closely associated with cellular metabolism, affects cancer biology. However, whether the malignant phenotype of osteosarcoma (OS) cells is regulated by the PI3K/Akt/FASN signaling pathway and how the PI3K family specific inhibitor, 2‑(4‑morpholinyl)‑8‑phenyl‑chromone (LY294002) affects the malignant phenotype of OS cells remains to be elucidated. In the present study, U2‑OS and MG‑63 cells were treated with LY294002 and subsequently western blot analysis was used to examine Akt, p‑Akt and FASN protein expression. Additionally, FASN mRNA was detected by reverse transcription quantitative polymerase chain reaction. MTT and fluorescence‑activated cell sorting assays were used to assess proliferation and apoptosis. Migration and invasion were investigated using wound healing and transwell invasion assays. The results demonstrated that LY294002 suppressed the PI3K/Akt/FASN signaling pathway. However, the malignant phenotypes of OS cells mentioned above were significantly inhibited. The present results indicated that LY294002 inhibits the malignant phenotype of OS cells via modulation of the PI3K/Akt/FASN signaling pathway in vitro and may be a new therapeutic strategy for the management of OS.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liang Bo Zhu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ai Fen Peng
- College of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Fang Wang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song Gao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Ping Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Cheng H, Ballman K, Vassilakopoulou M, Dueck AC, Reinholz MM, Tenner K, Gralow J, Hudis C, Davidson NE, Fountzilas G, McCullough AE, Chen B, Psyrri A, Rimm DL, Perez EA. EGFR expression is associated with decreased benefit from trastuzumab in the NCCTG N9831 (Alliance) trial. Br J Cancer 2014; 111:1065-71. [PMID: 25117817 PMCID: PMC4453859 DOI: 10.1038/bjc.2014.442] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/23/2014] [Accepted: 07/13/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) has been hypothesised to modulate the effectiveness of anti-HER2 therapy. We used a standardised, quantitative immunofluorescence assay and a novel EGFR antibody to evaluate the correlation between EGFR expression and clinical outcome in the North Central Cancer Treatment Group (NCCTG) N9831 trial. METHODS Tissue microarrays were constructed that allowed analysis of 1365 patients randomly assigned to receive chemotherapy alone (Arm A), sequential trastuzumab after chemotherapy (Arm B) and chemotherapy with concurrent trastuzumab (Arm C). Measurement of EGFR was performed using the EGFR antibody, D38B1, on the fluorescence-based AQUA platform. The result was validated using an independent retrospective metastatic breast cancer cohort (n=130). RESULTS Epidermal growth factor receptor assessed as a continuous (logarithmic transformed) variable shows an association with disease-free survival in Arm C (P=0.009) but not in Arm A or B. High EGFR expression was associated with worse outcome (Hazard ratio (HR)=2.15; 95% CI 1.28-3.60, P=0.004). Validation in a Greek metastatic breast cancer cohort showed an HR associated with high EGFR expression of 1.92 (P=0.0073). CONCLUSIONS High expression of EGFR appears to be associated with decreased benefit from adjuvant concurrent trastuzumab. Since other treatment options exist for HER2-driven tumours, further validation of these data may select patients for alternative or additive therapy.
Collapse
Affiliation(s)
- H Cheng
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street BML116, New Haven, CT 06520, USA
| | - K Ballman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - M Vassilakopoulou
- Department of Medical Oncology, Pitie-Salpetriere Hospital, 83 Boulevard de l'Hôpital, 75013 Paris, France
| | - A C Dueck
- Section of Biostatistics, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - M M Reinholz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - K Tenner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - J Gralow
- Department of Medical Oncology, University of Washington/Seattle Cancer Care Alliance, 825 Eastlake Avenue East, Seattle, WA 98109, USA
| | - C Hudis
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 8, New York, NY 10065, USA
| | - N E Davidson
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute and UPMC Cancer Center, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - G Fountzilas
- Department of Medical Oncology, Papageorgiou General Hospital, Aristotle University of Thessaloniki School of Medicine, Efkarpia Peripheral Road Stavroupoli, 56429 Thessaloniki, Greece
- Hellenic Cooperative Oncology Group (HeCOG), Laskaridou 1, 11524 Athens, Greece
| | - A E McCullough
- Anatomic Pathology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ 85259, USA
| | - B Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - A Psyrri
- Hellenic Cooperative Oncology Group (HeCOG), Laskaridou 1, 11524 Athens, Greece
- Second Department of Internal Medicine Propaedeutic, Oncology Section, Attikon University Hospital, University of Athens Medical School, 1 Rimini Street, Haidari, 12462 Athens, Greece
| | - D L Rimm
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street BML116, New Haven, CT 06520, USA
| | - E A Perez
- Department of Hematology/Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
29
|
Pavlakis K, Bobos M, Batistatou A, Kotoula V, Eleftheraki AG, Stofas A, Timotheadou E, Pentheroudakis G, Psyrri A, Koutras A, Pectasides D, Papakostas P, Razis E, Christodoulou C, Kalogeras KT, Fountzilas G. p85 protein expression is associated with poor survival in HER2-positive patients with advanced breast cancer treated with trastuzumab. Pathol Oncol Res 2014; 21:273-82. [PMID: 25098276 DOI: 10.1007/s12253-014-9818-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/25/2014] [Indexed: 12/24/2022]
Abstract
To investigate the immunohistochemical expression of p85 in a cohort of trastuzumab-treated HER2-positive and HER2-negative metastatic breast cancer patients. The medical records of all patients with metastatic breast cancer treated with trastuzumab-based regimens between 1998 and 2010 were reviewed and clinical information was obtained. Formalin-fixed paraffin-embedded tumor tissue samples with adequate material were retrospectively collected from 183 patients. Samples were evaluated by immunohistochemistry for p85, estrogen receptors (ER), progesterone receptors (PgR), HER2, Ki67, PTEN and phosphorylated Akt (S473 and T308). HER2 status was studied by fluorescence in situ hybridization, as well. PIK3CA mutational status was also evaluated. Median follow-up for all patients was 72 months. Central re-evaluation for HER2 revealed only 111 HER2-positive cases, with the remaining 72 patients being HER2-negative. Median survival was longer in HER2-positive patients (50.7 months) compared to HER2-negative patients (36.6 months) both treated with trastuzumab, but this difference has not reached significance (p = 0.068). In total, 62% of the patients were found positive for p85, however the p85 protein was not found to be differentially expressed in HER2-positive versus HER2-negative cases. There were no significant associations between protein expression of p85 and any of the markers under study, or with time to progression. Positive p85 protein expression was however associated with poor survival in trastuzumab-treated HER2-positive patients. In our cohort of trastuzumab-treated HER2-positive breast cancer patients, positive p85 protein expression appears to be a prognostic factor of poor survival and, if validated, might have important implications in the treatment of such patients.
Collapse
Affiliation(s)
- Kitty Pavlakis
- Pathology Department, Athens University Medical School, Athens, Greece,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol 2014; 90:197-207. [DOI: 10.1016/j.bcp.2014.05.011] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|
31
|
Zhou W, An G, Wei P, Chen W. Significance of p85 expression as a prognostic factor for patients with breast cancer. Oncol Lett 2014; 8:1657-1661. [PMID: 25202386 PMCID: PMC4156169 DOI: 10.3892/ol.2014.2359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/19/2014] [Indexed: 01/16/2023] Open
Abstract
p85, the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), functions in the pathogenesis and progression of human breast cancers. Previous studies have observed that p85 isoforms may correlate with cancer cell proliferation. In the present study, immunohistochemical staining of p85 was performed in 126 primary breast cancers. The association between the expression levels of p85 with clinicopathological variables, subtypes and prognosis was studied. The breast cancer specimens were divided into three subgroups according to the expression levels of p85 protein. High p85 protein expression was significantly correlated with tumor grade, vascular invasion and recurrence and/or metastasis (P<0.05). Increased p85 protein expression was associated with the human epidermal growth factor receptor 2-positive and triple-negative breast cancers (P=0.008). Patients with higher p85 protein expression levels showed shorter disease-free survival and overall survival times as compared with those with lower expression levels of p85 (P<0.001). Cox proportional-hazards analysis showed that p85 protein expression was not an independent prognostic factor. Further large-scale studies are required to evaluate the significance of p85 protein expression as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Weiwei Zhou
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Ping Wei
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wenming Chen
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
32
|
Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Cancer Treat Rev 2014; 40:980-9. [PMID: 25037117 DOI: 10.1016/j.ctrv.2014.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/29/2014] [Accepted: 06/08/2014] [Indexed: 01/19/2023]
Abstract
Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included.
Collapse
|
33
|
Yang Y, Liu L, Zhang Y, Guan H, Wu J, Zhu X, Yuan J, Li M. MiR-503 targets PI3K p85 and IKK-β and suppresses progression of non-small cell lung cancer. Int J Cancer 2014; 135:1531-42. [PMID: 24550137 DOI: 10.1002/ijc.28799] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 11/08/2022]
Abstract
A microRNA usually has the ability to coordinately repress multiple target genes and therefore are associated with many pathological conditions such as human cancer. Our understanding of the biological roles of microRNAs in lung cancer, however, remains incomplete. In this study, we identified miR-503 as a tumor-suppressive microRNA in human non-small cell lung carcinoma (NSCLC), whose expression level correlates inversely with overall survival in NSCLC patients. Ectopic expression of miR-503 suppressed tumor cell proliferation and metastasis-related traits in vitro as well as in vivo, supporting a anti-cancer role of the microRNA in NSCLC progression. Mechanistic study revealed that oncogenic PI3K p85 and IKK-β were direct targets of miR-503. Overexpression of either PI3K p85 or IKK-β partially restored the malignant properties of NSCLC cells in the presence of miR-503. Taken together, our data demonstrate miR-503 inhibits the malignant phenotype of NSCLC by targeting PI3K p85 and IKK-β and might play a suppressive role in the pathogenesis of NSCLC, thus providing new insights in developing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cumberbatch M, Tang X, Beran G, Eckersley S, Wang X, Ellston RPA, Dearden S, Cosulich S, Smith PD, Behrens C, Kim ES, Su X, Fan S, Gray N, Blowers DP, Wistuba II, Womack C. Identification of a subset of human non-small cell lung cancer patients with high PI3Kβ and low PTEN expression, more prevalent in squamous cell carcinoma. Clin Cancer Res 2013; 20:595-603. [PMID: 24284056 DOI: 10.1158/1078-0432.ccr-13-1638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The phosphoinositide 3-kinase (PI3K) pathway is a major oncogenic signaling pathway and an attractive target for therapeutic intervention. Signaling through the PI3K pathway is moderated by the tumor suppressor PTEN, which is deficient or mutated in many human cancers. Molecular characterization of the PI3K signaling network has not been well defined in lung cancer; in particular, the role of PI3Kβ and its relation to PTEN in non-small cell lung cancer NSCLC remain unclear. EXPERIMENTAL DESIGN Antibodies directed against PI3Kβ and PTEN were validated and used to examine, by immunohistochemistry, expression in 240 NSCLC resection tissues [tissue microarray (TMA) set 1]. Preliminary observations were extended to an independent set of tissues (TMA set 2) comprising 820 NSCLC patient samples analyzed in a separate laboratory applying the same validated antibodies and staining protocols. The staining intensities for PI3Kβ and PTEN were explored and colocalization of these markers in individual tumor cores were correlated. RESULTS PI3Kβ expression was elevated significantly in squamous cell carcinomas (SCC) compared with adenocarcinomas. In contrast, PTEN loss was greater in SCC than in adenocarcinoma. Detailed correlative analyses of individual patient samples revealed a significantly greater proportion of SCC in TMA set 1 with higher PI3Kβ and lower PTEN expression when compared with adenocarcinoma. These findings were reinforced following independent analyses of TMA set 2. CONCLUSIONS We identify for the first time a subset of NSCLC more prevalent in SCC, with elevated expression of PI3Kβ accompanied by a reduction/loss of PTEN, for whom selective PI3Kβ inhibitors may be predicted to achieve greater clinical benefit.
Collapse
Affiliation(s)
- Marie Cumberbatch
- Authors' Affiliations: AstraZeneca R&D; Former AstraZeneca, Macclesfield, Cheshire, United Kingdom; Departments of Translational Molecular Pathology and Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; AstraZeneca, Asia and Emerging Markets iMed, Shanghai, China; Novartis Institutes for BioMedical Research, Basel, Switzerland; and Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Holzer TR, Fulford AD, Nedderman DM, Umberger TS, Hozak RR, Joshi A, Melemed SA, Benjamin LE, Plowman GD, Schade AE, Ackermann BL, Konrad RJ, Nasir A. Tumor cell expression of vascular endothelial growth factor receptor 2 is an adverse prognostic factor in patients with squamous cell carcinoma of the lung. PLoS One 2013; 8:e80292. [PMID: 24244672 PMCID: PMC3828187 DOI: 10.1371/journal.pone.0080292] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
A robust immunohistochemical (IHC) assay for VEGFR2 was developed to investigate its utility for patient tailoring in clinical trials. The sensitivity, specificity, and selectivity of the IHC assay were established by siRNA knockdown, immunoblotting, mass spectrometry, and pre-absorption experiments. Characterization of the assay included screening a panel of multiple human cancer tissues and an independent cohort of non-small cell lung carcinoma (NSCLC, n = 118) characterized by TTF-1, p63, CK5/6, and CK7 IHC. VEGFR2 immunoreactivity was interpreted qualitatively (VEGFR2 positive/negative) in blood vessels and by semi-quantitative evaluation using H-scores in tumor cells (0-300). Associations were determined among combinations of VEGFR2 expression in blood vessels and tumor cells, and clinico-pathologic characteristics (age, sex, race, histologic subtype, disease stage) and overall survival using Kaplan-Meier analyses and appropriate statistical models. VEGFR2 expression both in blood vessels and in tumor cells in carcinomas of the lung, cervix, larynx, breast, and others was demonstrated. In the validation cohort, 99/118 (83.9%) NSCLC tissues expressed VEGFR2 in the blood vessels and 46/118 (39.0%) showed high tumor cell positivity (H-score ≥10). Vascular and tumor cell expression were inversely correlated (p = 0.0175). High tumor cell expression of VEGFR2 was associated with a 3.7-fold reduction in median overall survival in lung squamous-cell carcinoma (SCC, n = 25, p = 0.0134). The inverse correlation between vascular and tumor cell expression of VEGFR2 and the adverse prognosis associated with high VEGFR2 expression in immunohistochemically characterized pulmonary SCC are new findings with potential therapeutic implications. The robustness of this novel IHC assay will support further evaluation of its utility for patient tailoring in clinical trials of antiangiogenic agents.
Collapse
Affiliation(s)
- Timothy R. Holzer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Angie D. Fulford
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Drew M. Nedderman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Tara S. Umberger
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Rebecca R. Hozak
- Oncology Statistics-Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Adarsh Joshi
- Oncology Statistics-Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Symantha A. Melemed
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Laura E. Benjamin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Gregory D. Plowman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Andrew E. Schade
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Bradley L. Ackermann
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Aejaz Nasir
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Thomas A, Mahantshetty U, Kannan S, Deodhar K, Shrivastava SK, Kumar-Sinha C, Mulherkar R. Expression profiling of cervical cancers in Indian women at different stages to identify gene signatures during progression of the disease. Cancer Med 2013; 2:836-48. [PMID: 24403257 PMCID: PMC3892388 DOI: 10.1002/cam4.152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022] Open
Abstract
Cervical cancer is the second most common cancer among women worldwide, with developing countries accounting for >80% of the disease burden. Although in the West, active screening has been instrumental in reducing the incidence of cervical cancer, disease management is hampered due to lack of biomarkers for disease progression and defined therapeutic targets. Here we carried out gene expression profiling of 29 cervical cancer tissues from Indian women, spanning International Federation of Gynaecology and Obstetrics (FIGO) stages of the disease from early lesion (IA and IIA) to progressive stages (IIB and IIIA–B), and identified distinct gene expression signatures. Overall, metabolic pathways, pathways in cancer and signaling pathways were found to be significantly upregulated, while focal adhesion, cytokine–cytokine receptor interaction and WNT signaling were downregulated. Additionally, we identified candidate biomarkers of disease progression such as SPP1, proliferating cell nuclear antigen (PCNA), STK17A, and DUSP1 among others that were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in the samples used for microarray studies as well in an independent set of 34 additional samples. Integrative analysis of our results with other cervical cancer profiling studies could facilitate the development of multiplex diagnostic markers of cervical cancer progression.
Collapse
Affiliation(s)
- Asha Thomas
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Yuan H, Lu S. [Research status on targeted therapy for squamous cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2013; 16:559-63. [PMID: 24113011 PMCID: PMC6015175 DOI: 10.3779/j.issn.1009-3419.2013.10.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With the research of driver mutations, targeted therapy for lung cancer has made a great progress. Compared with lung adenocarcinoma, treatment of squamous cell lung cancer (SCC) has been far behind. While targeted therapies have improved outcomes for patients with lung adenocarcinoma, such as EGFR-TKIs, EML4-ALK inhibitors, molecularly targeted drugs are poorly active for SCC. SCC currently lacks therapeutically exploitable genetic alterations. These observations emphasize the need for new driver mutations and "druggable" targets in SCC patients. Combining with the research in recent years, this review will discuss the research status in targeted therapy for SCC.
Collapse
Affiliation(s)
- Hong Yuan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
38
|
Xiong F, Jiang M, Huang Z, Chen M, Chen K, Zhou J, Yin L, Tang Y, Wang M, Ye L, Zhan Z, Duan J, Fu H, Zhang X. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AKT pathway in human lung cancer A549 cells. Integr Cancer Ther 2013; 13:152-60. [PMID: 24105357 DOI: 10.1177/1534735413503544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIM OF THE STUDY In recent years, the incidence of lung cancer, as well as the mortality rate from this disease, has increased. Moreover, because of acquired drug resistance and adverse side effects, the effectiveness of current therapeutics used for the treatment of lung cancer has decreased significantly. Chinese medicine has been shown to have significant antitumor effects and is increasingly being used for the treatment of cancer. However, as the mechanisms of action for many Chinese medicines are undefined, the application of Chinese medicine for the treatment of cancer is limited. The formula tested has been used clinically by the China National Traditional Chinese Medicine Master, Professor Zhonging Zhou for treatment of cancer. In this article, we examine the efficacy of Ke formula in the treatment of non-small cell lung cancer and elucidate its mechanism of action. METHODS A Balb/c nude mouse xenograft model using A549 cells was previously established. The mice were randomly divided into normal, mock, Ke, cisplatin (DDP), and co-formulated (Ke + DDP) groups. After 15 days of drug administration, the animals were sacrificed, body weight and tumor volume were recorded, and the tumor-inhibiting rate was calculated. A cancer pathway finder polymerase chain reaction array was used to monitor the expression of 88 genes in tumor tissue samples. The potential antiproliferation mechanism was also investigated by Western blot analysis. RESULTS Ke formula minimized chemotherapy-related weight loss in tumor-bearing mice without exhibiting distinct toxicity. Ke formula also inhibited tumor growth, which was associated with the downregulation of genes in the PI3K/AKT, MAPK, and WNT/β-catenin pathways. The results from Western blot analyses further indicated that Ke blocked the cell cycle progression at the G1/S phase and induced apoptosis mainly via the PI3K/AKT pathway. CONCLUSION Ke formula inhibits tumor growth in an A549 xenograft mouse model with no obvious side effects. Moreover, Ke exhibits synergistic antitumor effects when combined with DDP. The mechanism of action of Ke is to induce cell cycle arrest and apoptosis by suppressing the PI3K/AKT pathway. Further research will be required to determine the mechanism of action behind the synergistic effect of Ke and DDP.
Collapse
Affiliation(s)
- Fei Xiong
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cagle PT, Allen TC, Olsen RJ. Lung Cancer Biomarkers: Present Status and Future Developments. Arch Pathol Lab Med 2013; 137:1191-8. [DOI: 10.5858/arpa.2013-0319-cr] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The publication of the “Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology” has now provided a guideline for biomarker testing for first-generation lung cancer tyrosine kinase inhibitors. Biomarker testing has forever altered the role of pathologists in the management of patients with lung cancer. Current, unresolved issues in the precision medicine of lung cancer will be addressed by the development of new biomarker tests, new drugs, and new test technologies and by improvement in the cost to benefit ratio of biomarker testing.
Collapse
Affiliation(s)
- Philip T. Cagle
- From the Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, and the Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York (Drs Cagle and Olsen); and
- the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen)
| | - Timothy Craig Allen
- From the Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, and the Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York (Drs Cagle and Olsen); and
- the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen)
| | - Randall J. Olsen
- From the Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, and the Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York (Drs Cagle and Olsen); and
- the Department of Pathology, The University of Texas Health Science Center at Tyler (Dr Allen)
| |
Collapse
|
40
|
Vollbrecht C, König K, Heukamp L, Büttner R, Odenthal M. [Molecular pathology of the lungs. New perspectives by next generation sequencing]. DER PATHOLOGE 2013; 34:16-24. [PMID: 23389825 DOI: 10.1007/s00292-012-1704-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lung cancer is one of the most frequent malignancies in the western world. Its frequent association with a wide spectrum of mutations in genes encoding various signal transducers that are often linked to therapy response, emphasizes the obvious need for improved, fast and highly efficient approaches in molecular pathology. Comprehensive analyses of the mutation status of progression and therapy relevant genes can be performed by the novel sequencing forms named next generation sequencing (NGS) providing extremely high capacities for ultra-deep sequence analyses. The 454 pyrosequencing method, the sequencing by synthesis and the semiconductor sequencing platform are now available for parallel sequencing approaches of multitudinous target genes linked to multiple tumor DNA applications. The "one molecule, one clone, one read" principle by the NGS approaches supplies not only information on allele frequencies and mutation rates but also has the advantage of a very sensitive detection of low frequency variants.
Collapse
Affiliation(s)
- C Vollbrecht
- Institut für Pathologie, Universitätsklinik zu Köln, Kerpener Str. 62, 50924, Köln, Deutschland
| | | | | | | | | |
Collapse
|
41
|
Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G, Ricci F, Tazzari PL, Pagliaro P, McCubrey JA, Capitani S. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2013; 28:739-48. [PMID: 23892718 DOI: 10.1038/leu.2013.226] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/11/2013] [Accepted: 07/19/2013] [Indexed: 02/07/2023]
Abstract
B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.
Collapse
Affiliation(s)
- L M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A Cani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - A M Martelli
- 1] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy [2] Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - C Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - C Junghanss
- University of Rostock, Division of Medicine, Department of Hematology/Oncology/Palliative Medicine, Rostock, Germany
| | - G Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F Ricci
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P L Tazzari
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - P Pagliaro
- Immunohematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - S Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
42
|
Zang C, Eucker J, Liu H, Coordes A, Lenarz M, Possinger K, Scholz CW. Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma. Leuk Lymphoma 2013; 55:425-34. [PMID: 23721513 DOI: 10.3109/10428194.2013.806800] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent aggressive lymphoma, with a great demand for novel treatments for relapsing and refractory disease. Constitutive activation of the phosphatidyl-inositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is often detected in this lymphoma. Inhibition of this signaling cascade with the pan-class I PI3K inhibitor NVP-BKM120 decreased cell proliferation and increased apoptotic cell death. DLBCL proliferation was further decreased if NVP-BKM120-induced autophagy was blocked. Treatment with NVP-BKM120 was associated with an increase of the pro-apoptotic BH3-only proteins Puma and Bim and down-regulation of the anti-apoptotic Bcl-xL and Mcl-1. Translation of Bcl-xL and Mcl-1 is facilitated by cap-dependent mRNA translation, a process that was partially inhibited by NVP-BKM120. Overall, we demonstrated here the potential of NVP-BKM120 for the treatment of DLBCL.
Collapse
|
43
|
Genotype directed therapy in murine mismatch repair deficient tumors. PLoS One 2013; 8:e68817. [PMID: 23935891 PMCID: PMC3720855 DOI: 10.1371/journal.pone.0068817] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 06/04/2013] [Indexed: 01/12/2023] Open
Abstract
The PI3K/AKT/mTOR pathway has frequently been found activated in human tumors. We show that in addition to Wnt signaling dysfunction, the PI3K/AKT/mTOR pathway is often upregulated in mouse Msh2(-/-) initiated intestinal tumors. NVP-BEZ235 is a dual PI3K/mTOR inhibitor toxic to many cancer cell lines and currently involved in clinical trials. We have treated two mouse models involving Msh2 that develop small intestinal and/or colonic tumors with NVP-BEZ235, and a subset of animals with NVP-BEZ235 and MEK inhibitor ADZ4266. The disease phenotype has been followed with pathology, (18)F FDG PET imaging, and endoscopy. Intestinal adenocarcinomas are significantly decreased in multiplicity by both drug regimens. The majority of tumors treated with combined therapy regress significantly, while a small number of highly progressed tumors persist. We have examined PTEN, AKT, MEK 1&2, MAPK, S6K, mTOR, PDPK1, and Cyclin D1 and find variable alterations that include downregulation of PTEN, upregulation of AKT and changes in its phosphorylated forms, upregulation of pMEK 1&2, p42p44MAPK, pS6K, and Cyclin D1. Apoptosis has been found intact in some tumors and not in others. Our data indicate that NVP-BEZ235 alone and in combination with ADZ4266 are effective in treating a proportion of colorectal cancers, but that highly progressed resistant tumors grow in the presence of the drugs. Pathways upregulated in some resistant tumors also include PDPK1, suggesting that metabolic inhibitors may also be useful in treating these tumors.
Collapse
|
44
|
Herzog A, Bian Y, Broek RV, Hall B, Coupar J, Cheng H, Sowers AL, Cook JD, Mitchell JB, Chen Z, Kulkarni AB, VanWaes C. PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res 2013; 19:3808-19. [PMID: 23640975 PMCID: PMC3715575 DOI: 10.1158/1078-0432.ccr-12-2716] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K/mTOR-targeted agents. EXPERIMENTAL DESIGN In this preclinical study, PI3K/Akt/mTOR signaling was characterized in nine HNSCC (UM-SCC) cell lines and human oral keratinocytes. We investigated the molecular and anticancer effects of dual PI3K/mTOR inhibitor PF-04691502(PF-502) in UM-SCC expressing PIK3CA with decreased wild-type TP53, mutant TP53-/+ mutantTGFBR2, and in HNSCC of a conditional Pten/Tgfbr1 double knockout mouse model displaying PI3K/Akt/mTOR activation. RESULTS UM-SCC showed increased PIK3CA expression and Akt/mTOR activation, and PF-502 inhibited PI3K/mTORC1/2 targets. In human HNSCC expressing PIK3CA and decreased wtTP53 and p73, PF-502 reciprocally enhanced TP53/p73 expression and growth inhibition, which was partially reversible by p53 inhibitor pifithrin-α. Most UM-SCC with wtTP53 exhibited a lower IC50 than those with mtTP53 status. PF-502 blocked growth in G0-G1 and increased apoptotic sub-G0 DNA. PF-502 suppressed tumorigenesis and showed combinatorial activity with radiation in a wild-type TP53 UM-SCC xenograft model. PF-502 also significantly delayed HNSCC tumorigenesis and prolonged survival of Pten/Tgfbr1-deficient mice. Significant inhibition of p-Akt, p-4EBP1, p-S6, and Ki67, as well as increased p53 and TUNEL were observed in tumor specimens. CONCLUSIONS PI3K-mTOR inhibition can enhance TP53/p73 expression and significantly inhibit tumor growth alone or when combined with radiation in HNSCC with wild-type TP53. PIK3CA, TP53/p73, PTEN, and TGF-β alterations are potential modifiers of response and merit investigation in future clinical trials with PI3K-mTOR inhibitors.
Collapse
Affiliation(s)
- Amanda Herzog
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
- HHMI-NIH Research Scholars Program/NIH Medical Research Scholars Program
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
- HHMI-NIH Research Scholars Program/NIH Medical Research Scholars Program
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD
| | - Jamie Coupar
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | | | - John D. Cook
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - James B. Mitchell
- Radiation Biology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD
| | - Carter VanWaes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH
| |
Collapse
|
45
|
TRIGKA ELENIANDRIANA, LEVIDOU GEORGIA, SAETTA ANGELICAA, CHATZIANDREOU ILENIA, TOMOS PERIKLIS, THALASSINOS NIKOLAOS, ANASTASIOU NIKOLAOS, SPARTALIS ELEFTHERIOS, KAVANTZAS NIKOLAOS, PATSOURIS EFSTRATIOS, KORKOLOPOULOU PENELOPE. A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer: Correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features. Oncol Rep 2013; 30:623-36. [DOI: 10.3892/or.2013.2512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/08/2013] [Indexed: 11/06/2022] Open
|
46
|
|
47
|
Yu S, Wang Y, Li J, Hao X, Wang B, Wang Z, Zhang X, Shi Y. Gefitinib versus erlotinib as salvage treatment for lung adenocarcinoma patients who benefited from the initial gefitinib: A retrospective study. Thorac Cancer 2013; 4:109-116. [PMID: 28920190 DOI: 10.1111/j.1759-7714.2012.00152.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The optimal strategy was not established for patients who initially responded to gefitinib although re-administration of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been proven to be an option. Gefitinib and erlotinib were compared as salvage treatment after gefitinib failure. METHODS Thirty-eight lung adenocarcinoma patients were analyzed retrospectively as they received the second EGFR-TKIs treatment with either gefitinib or erlotinib. All of them had obtained disease control from initial gefitinib. Sixteen patients received gefitinib (G-G group) and 22 patients received erlotinib (G-E group). RESULTS Of all patients, progress free survival (PFS) and overall survival (OS) were three and 12 months, respectively, and the disease controlled rate (DCR) of the second EGFR-TKIs treatment was 52.6%. One patient (6.3%) had partial remission (PR) and 10 (62.5%) had stable disease (SD), in the G-G group, whereas, three (13.6%) had PR and six (27.2%) had SD, in the G-E group. There was no statistical significance observed, although the DCR in the G-G group was higher than that in G-E group (68.8% vs. 40.8%, P= 0.09). Adverse events of both gefitinib and erlotinib were mild and administered. The median PFS and OS in G-G and G-E groups were similar (PFS four vs. three months; OS 22 vs. 12 months). In multivariate analysis, patients with SD in initial gefitinib treatment had significantly longer OS (P= 0.04). CONCLUSIONS Gefitinib as well as erlotinib could be an option for patients who benefited from prior gefitinib treatment. Patients with SD in initial gefitinib obtained a significantly longer OS than those with PR.
Collapse
Affiliation(s)
- Shufei Yu
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junling Li
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wang
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziping Wang
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangru Zhang
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. PI3K Inhibitors as Novel Cancer Therapies: Implications for Cardiovascular Medicine. J Card Fail 2013; 19:268-82. [DOI: 10.1016/j.cardfail.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 01/09/2023]
|
49
|
Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget 2013; 3:811-23. [PMID: 22885370 PMCID: PMC3478458 DOI: 10.18632/oncotarget.579] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic effects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU-63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.
Collapse
|
50
|
Cagle PT, Allen TC. Lung cancer genotype-based therapy and predictive biomarkers: present and future. Arch Pathol Lab Med 2013. [PMID: 23194040 DOI: 10.5858/arpa.2012-0508-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The advent of genotype-based therapy and predictive biomarkers for lung cancer has thrust the pathologist into the front lines of precision medicine for this deadly disease. OBJECTIVE To provide the clinical background, current status, and future perspectives of molecular targeted therapy for lung cancer patients, including the pivotal participation of the pathologist. DATA SOURCES Data were obtained from review of the pertinent peer-reviewed literature. CONCLUSIONS First-generation tyrosine kinase inhibitors have produced clinical response in a limited number of non-small cell lung cancers demonstrated to have activating mutations of epidermal growth factor receptor or anaplastic lymphoma kinase rearrangements with fusion partners. Patients treated with first-generation tyrosine kinase inhibitors develop acquired resistance to their therapy. Ongoing investigations of second-generation tyrosine kinase inhibitors and new druggable targets as well as the development of next-generation genotyping and new antibodies for immunohistochemistry promise to significantly expand the pathologist's already crucial role in precision medicine of lung cancer.
Collapse
Affiliation(s)
- Philip T Cagle
- Department of Pathology & Genomic Medicine, The Methodist Hospital, Houston, Texas, USA.
| | | |
Collapse
|