1
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
2
|
Rolt A, Talley DC, Park SB, Hu Z, Dulcey A, Ma C, Irvin P, Leek M, Wang AQ, Stachulski AV, Xu X, Southall N, Ferrer M, Liang TJ, Marugan JJ. Discovery and Optimization of a 4-Aminopiperidine Scaffold for Inhibition of Hepatitis C Virus Assembly. J Med Chem 2021; 64:9431-9443. [PMID: 34184537 DOI: 10.1021/acs.jmedchem.1c00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The majority of FDA-approved HCV therapeutics target the viral replicative machinery. An automated high-throughput phenotypic screen identified several small molecules as potent inhibitors of hepatitis C virus replication. Here, we disclose the discovery and optimization of a 4-aminopiperidine (4AP) scaffold targeting the assembly stages of the HCV life cycle. The original screening hit (1) demonstrates efficacy in the HCVcc assay but does not show potency prior to or during viral replication. Colocalization and infectivity studies indicate that the 4AP chemotype inhibits the assembly and release of infectious HCV. Compound 1 acts synergistically with FDA-approved direct-acting antiviral compounds Telaprevir and Daclatasvir, as well as broad spectrum antivirals Ribavirin and cyclosporin A. Following an SAR campaign, several derivatives of the 4AP series have been identified with increased potency against HCV, reduced in vitro toxicity, as well as improved in vitro and in vivo ADME properties.
Collapse
Affiliation(s)
- Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Daniel C Talley
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Andrés Dulcey
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Christopher Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Parker Irvin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Madeleine Leek
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Amy Q Wang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Andrew V Stachulski
- The Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Xin Xu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Noel Southall
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Marc Ferrer
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Juan J Marugan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Keil T, Liu D, Lloyd M, Coombs W, Moffat J, Visalli R. DNA Encapsidation and Capsid Assembly Are Underexploited Antiviral Targets for the Treatment of Herpesviruses. Front Microbiol 2020; 11:1862. [PMID: 32903425 PMCID: PMC7434925 DOI: 10.3389/fmicb.2020.01862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Although there are effective nucleoside analogs to treat HSV, VZV, and HCMV disease, herpesvirus infections continue to contribute to significant morbidity and mortality. Acyclovir is the drug of choice for HSV encephalopathy, yet there is an estimated 6-19% mortality rate with half of the survivors experiencing moderate to severe chronic neurological deficits. For VZV, current treatments are inadequate to prevent acute and persistent pain due to zoster. Treatment of HCMV with GCV requires close monitoring particularly in patients with impaired renal function and there are no approved treatments for congenital HCMV infections. New therapeutic options to control cytomegalovirus reactivation in bone marrow and stem cell transplant patients are needed to improve patient outcome. No successful chemotherapeutic options are available for EBV, HHV-6, 7, and 8. Drug resistance is a concern for HCMV, HSV, and VZV since approved drugs share common mechanisms of action. Targeting DNA encapsidation or capsid assembly provide additional options for the development of non-nucleoside, small molecule anti-herpesviral drugs.
Collapse
Affiliation(s)
- Tara Keil
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Dongmei Liu
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Megan Lloyd
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Wanda Coombs
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Jennifer Moffat
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, United States
| | - Robert Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| |
Collapse
|
5
|
Park SB, Boyer A, Hu Z, Le D, Liang TJ. Discovery and characterization of a novel HCV inhibitor targeting the late stage of HCV life cycle. Antivir Ther 2019; 24:371-381. [PMID: 30880685 PMCID: PMC11542171 DOI: 10.3851/imp3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Currently approved anti-HCV drugs, the direct-acting antivirals (DAAs), are highly effective and target the viral RNA replication stage of the HCV life cycle. Due to high mutation rate of HCV, drug resistant variants can arise during DAA monotherapy. Thus, a combination of DAAs is necessary to achieve a high response rate. Novel HCV inhibitors targeting the HCV late stage such as assembly and release may further improve combination therapy with the DAAs. Here we characterize one late stage-targeting candidate compound, 6-(4-chloro-3-methylphenoxy)-pyridin-3-amine (MLS000833705). METHODS We treated HCV-infected cells with MLS000833705 and other HCV inhibitors and examined HCV RNA and infectious titres. We evaluated the colocalization of HCV core and lipid droplets by confocal microscopy. We performed HCV core-proteinase K digestion assay and several lipid assays to study the mechanism of MLS000833705. RESULTS We showed that MLS000833705 decreased extracellular HCV RNA levels more than intracellular HCV RNA levels in HCV infectious cell culture. Similarly, MLS000833705 reduced infectious HCV titres substantially more in the culture supernatant than intracellularly. Confocal microscopy showed that MLS000833705 did not affect the colocalization of HCV core protein with cellular lipid droplets where HCV assembles. HCV core-proteinase K digestion assay showed that MLS000833705 inhibited the envelopment of HCV capsid. CONCLUSIONS Our study demonstrates that MLS000833705 is a late-stage HCV inhibitor targeting HCV morphogenesis and maturation. Therefore, MLS000833705 can be used as a molecular probe to study HCV maturation and secretion and possibly guide development of a new class of HCV antivirals.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Boyer
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
Mottin M, Borba JVVB, Braga RC, Torres PHM, Martini MC, Proenca-Modena JL, Judice CC, Costa FTM, Ekins S, Perryman AL, Horta Andrade C. The A-Z of Zika drug discovery. Drug Discov Today 2018; 23:1833-1847. [PMID: 29935345 PMCID: PMC7108251 DOI: 10.1016/j.drudis.2018.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond.
Collapse
Affiliation(s)
- Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Joyce V V B Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Pedro H M Torres
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Matheus C Martini
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Carla C Judice
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Alexander L Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil; Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil.
| |
Collapse
|
8
|
Quintero-Gil C, Parra-Suescún J, Lopez-Herrera A, Orduz S. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. Virusdisease 2017; 28:281-288. [PMID: 29291214 DOI: 10.1007/s13337-017-0383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is considered the main etiological agent that causes acute hepatitis. It is estimated that 20 million cases occur annually worldwide, reaching mortality rates of 28% in pregnant women. To date, available treatments and vaccines have not been entirely effective. In this study, six antiviral peptides derived from the sequences of porcine Beta-Defensin-2 and bacteriocins Nisin and Subtilosin were generate using in silico tools in order to propose new antiviral agents. Through the use of molecular docking, interactions between the HEV capsid protein and the six new antiviral peptide candidates were evaluated. A peptide of 15 residues derived from Subtilosin showed the best docking energy (-7.0 kcal/mol) with the capsid protein. This is the first report to our knowledge involving a non-well study viral protein interacting with peptides susceptibles to being synthesized, and that could be subsequently evaluated in vitro; moreover, this study provide novel information on the nature of the dimerization pocket of the HEV capsid protein, and could help to understand the first steps in the viral replication cycle, needed for the virus entry to the host cell.
Collapse
Affiliation(s)
- Carolina Quintero-Gil
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Jaime Parra-Suescún
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Albeiro Lopez-Herrera
- Facultad de Ciencias Agrarias, Grupo Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| | - Sergio Orduz
- Escuela de Biociencias, Grupo Biología Funcional, Universidad Nacional de Colombia, Sede Medellín, Calle 59A # 63-20, Medellín, Colombia
| |
Collapse
|
9
|
Jittavisutthikul S, Seesuay W, Thanongsaksrikul J, Thueng-in K, Srimanote P, Werner RG, Chaicumpa W. Human Transbodies to HCV NS3/4A Protease Inhibit Viral Replication and Restore Host Innate Immunity. Front Immunol 2016; 7:318. [PMID: 27617013 PMCID: PMC4999588 DOI: 10.3389/fimmu.2016.00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
A safe and effective direct acting anti-hepatitis C virus (HCV) agent is still needed. In this study, human single chain variable fragments of antibody (scFvs) that bound to HCV NS3/4A protein were produced by phage display technology. The engineered scFvs were linked to nonaarginines (R9) for making them cell penetrable. HCV-RNA-transfected Huh7 cells treated with the transbodies produced from four different transformed E. coli clones had reduced HCV-RNA inside the cells and in the cell spent media, as well as fewer HCV foci in the cell monolayer compared to the transfected cells in culture medium alone. The transbodies-treated transfected cells also had up-expression of the genes coding for the host innate immune response, including TRIF, TRAF3, IRF3, IL-28B, and IFN-β. Computerized homology modeling and intermolecular docking predicted that the effective transbodies interacted with several critical residues of the NS3/4A protease, including those that form catalytic triads, oxyanion loop, and S1 and S6 pockets, as well as a zinc-binding site. Although insight into molecular mechanisms of the transbodies need further laboratory investigation, it can be deduced from the current data that the transbodies blocked the HCV NS3/4A protease activities, leading to the HCV replication inhibition and restoration of the virally suppressed host innate immunity. The engineered antibodies should be tested further for treatment of HCV infection either alone, in combination with current therapeutics, or in a mixture with their cognates specific to other HCV proteins.
Collapse
Affiliation(s)
- Surasak Jittavisutthikul
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Kanyarat Thueng-in
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima Province, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Rolf G. Werner
- Industrial Technology, Faculty of Science, University of Tuebingen, Tuebingen, Germany
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| |
Collapse
|
10
|
Morgnanesi D, Heinrichs EJ, Mele AR, Wilkinson S, Zhou S, Kulp JL. A computational chemistry perspective on the current status and future direction of hepatitis B antiviral drug discovery. Antiviral Res 2015; 123:204-15. [PMID: 26477294 DOI: 10.1016/j.antiviral.2015.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/02/2015] [Accepted: 10/11/2015] [Indexed: 12/11/2022]
Abstract
Computational chemical biology, applied to research on hepatitis B virus (HBV), has two major branches: bioinformatics (statistical models) and first-principle methods (molecular physics). While bioinformatics focuses on statistical tools and biological databases, molecular physics uses mathematics and chemical theory to study the interactions of biomolecules. Three computational techniques most commonly used in HBV research are homology modeling, molecular docking, and molecular dynamics. Homology modeling is a computational simulation to predict protein structure and has been used to construct conformers of the viral polymerase (reverse transcriptase domain and RNase H domain) and the HBV X protein. Molecular docking is used to predict the most likely orientation of a ligand when it is bound to a protein, as well as determining an energy score of the docked conformation. Molecular dynamics is a simulation that analyzes biomolecule motions and determines conformation and stability patterns. All of these modeling techniques have aided in the understanding of resistance mutations on HBV non-nucleos(t)ide reverse-transcriptase inhibitor binding. Finally, bioinformatics can be used to study the DNA and RNA protein sequences of viruses to both analyze drug resistance and to genotype the viral genomes. Overall, with these techniques, and others, computational chemical biology is becoming more and more necessary in hepatitis B research. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Dante Morgnanesi
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Eric J Heinrichs
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Anthony R Mele
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Sean Wilkinson
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Suzanne Zhou
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - John L Kulp
- Department of Chemistry, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA.
| |
Collapse
|
11
|
Abstract
Chronic hepatitis C virus (HCV) infection results in a progressive disease that may end in cirrhosis and, eventually, in hepatocellular carcinoma. In the last several years, tremendous progress has been made in understanding the HCV life cycle and in the development of small molecule compounds for the treatment of chronic hepatitis C. Nevertheless, the complete understanding of HCV assembly and particle release as well as the detailed characterization and structure of HCV particles is still missing. One of the most important events in the HCV assembly is the nucleocapsid formation which is driven by the core protein, that can oligomerize upon interaction with viral RNA, and is orchestrated by viral and host proteins. Despite a growing number of new factors involved in HCV assembly process, we do not know the three-dimensional structure of the core protein or its topology in the nucleocapsid. Since the core protein contains a hydrophobic C-terminal domain responsible for the binding to cellular membranes, the assembly pathway of HCV virions might proceed via coassembly at endoplasmic reticulum membranes. Recently, new mechanisms involving viral proteins and host factors in HCV particle formation and egress have been described. The present review aims to summarize the advances in our understanding of HCV assembly with an emphasis on the core protein as a structural component of virus particles that possesses the ability to interact with a variety of cellular components and is potentially an attractive target for the development of a novel class of anti-HCV agents.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Department of Immunology and Microbial Science, IMM-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | | |
Collapse
|
12
|
Branilović MG, Tomić S. Computational study of the structural plasticity and the ligand binding affinity of the IRES subdomain IIa. MOLECULAR BIOSYSTEMS 2014; 10:3272-9. [PMID: 25308715 DOI: 10.1039/c4mb00469h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The internal ribosome entry site (IRES) of hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. In order to fulfil its role in HCV translation initiation its subdomain IIa should adopt an L-shaped conformation. However, according to the present knowledge, the bent topology of IIa would prevent the progression of the ribosome from initiation to productive translation. In order to be released from the ribosome, IIa should transform from the bended to an extended form. With the purpose to study the plasticity and stability of the IRES subdomain IIa we performed detailed molecular dynamics (MD) simulations of the ligand free RNA and its (native and mutated) complexes with the potential HCV inhibitors. We have shown that upon ligand removal conformation of the IIa subdomain changed from an extended into an L-shaped one during several tens of ns. Differently, binding of the benzimidazole translation inhibitors locked IIa in the extended conformation. On the other hand, the newly discovered translation inhibitor diaminopiperidine (DAP), in agreement with the experimentally based assumptions, stabilized IIa RNA in the bent conformation during MD simulations. Apparently the efficient locking of subdomain IIa in one form is one of the requirements the HCV RNA targeting drugs should fulfil.
Collapse
Affiliation(s)
- Marina Grabar Branilović
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, HR 10002 Zagreb, P.O.B. 180, Croatia.
| | | |
Collapse
|
13
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
14
|
Bush CO, Pokrovskii MV, Saito R, Morganelli P, Canales E, Clarke MO, Lazerwith SE, Golde J, Reid BG, Babaoglu K, Pagratis N, Zhong W, Delaney WE, Paulson MS, Beran RKF. A small-molecule inhibitor of hepatitis C virus infectivity. Antimicrob Agents Chemother 2013; 58:386-96. [PMID: 24165192 PMCID: PMC3910743 DOI: 10.1128/aac.02083-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023] Open
Abstract
One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs with low-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures.
Collapse
|
15
|
Lassmann B, Arumugaswami V, Chew KW, Lewis MJ. A new system to measure and compare hepatitis C virus replication capacity using full-length, replication competent viruses. J Virol Methods 2013; 194:82-8. [PMID: 23973740 DOI: 10.1016/j.jviromet.2013.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022]
Abstract
Measuring the in vitro replication capacity of viruses is an important tool for assessing the effects of selective pressure of immune responses and drug therapy. Measuring hepatitis C virus (HCV) replication capacity utilizing primarily sub-genomic reporter constructs is limited. To overcome some of these limitations a quantitative reverse transcriptase PCR (RT-qPCR) was designed to measure simultaneously the growth rate of 2 whole genome HCV variants under identical culture conditions. The assay demonstrates 100% specificity of detection of each variant and a linear detection range from 200 to 2×10(8) copies. The system was validated using a panel of HCV mutants, including the NS3 protease inhibitor drug resistance mutants R155K and T54A. The creation of a unique sequence tag results in highly sensitive and specific discrimination of parental JFH-FNX and modified clones using distinct probes in a RT-qPCR allowing for comparison of the effect of drug resistance or immune escape mutations on HCV replication. This system has advantages over existing methods both by permitting direct comparison of the replication capacity of fully replication-competent HCV mutants under identical culture conditions and by measuring effects on replication capacity due to mutations affecting all stages of the viral life cycle including entry and egress.
Collapse
Affiliation(s)
- Britta Lassmann
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Koutsoudakis G, Forns X, Pérez-Del-Pulgar S. [The molecular biology of hepatitis C virus]. GASTROENTEROLOGIA Y HEPATOLOGIA 2013; 36:280-93. [PMID: 23490024 DOI: 10.1016/j.gastrohep.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Since the discovery of the hepatitis C virus (HCV), a plethora of experimental models have evolved, allowing the virus's life cycle and the pathogenesis of associated liver diseases to be investigated. These models range from inoculation of cultured cells with serum from patients with hepatitis C to the use of surrogate models for the study of specific stages of the HCV life cycle: retroviral pseudoparticles for the study of HCV entry, replicons for the study of HCV replication, and the HCV cell culture model, which reproduces the entire life cycle (replication and production of infectious particles). The use of these tools has been and remains crucial to identify potential therapeutic targets in the different stages of the virus's life cycle and to screen new antiviral drugs. A clear example is the recent approval of two viral protease inhibitors (boceprevir and telaprevir) in combination with pegylated interferon and ribavirin for the treatment of chronic hepatitis C. This review analyzes the advances made in the molecular biology of HCV and highlights possible candidates as therapeutic targets for the treatment of HCV infection.
Collapse
Affiliation(s)
- George Koutsoudakis
- Servicio de Hepatología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, España
| | | | | |
Collapse
|
17
|
Phase diagrams map the properties of antiviral agents directed against hepatitis B virus core assembly. Antimicrob Agents Chemother 2012. [PMID: 23208717 DOI: 10.1128/aac.01766-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Assembly effectors are small molecules that induce inappropriate virus capsid assembly to antiviral effect. To identify attributes of hepatitis B virus (HBV) assembly effectors, assembly reaction products (normal capsid, noncapsid polymer, intermediates, and free dimeric core protein) were quantified in the presence of three experimental effectors: HAP12, HAP13, and AT-130. Effectors bound stoichiometrically to capsid protein polymers, but not free protein. Thermodynamic and kinetic effects, not aberrant assembly, correlate with maximal antiviral activity.
Collapse
|
18
|
Chatel-Chaix L, Germain MA, Götte M, Lamarre D. Direct-acting and host-targeting HCV inhibitors: current and future directions. Curr Opin Virol 2012; 2:588-98. [PMID: 22959589 DOI: 10.1016/j.coviro.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 02/07/2023]
Abstract
The inclusion of NS3 protease inhibitors to the interferon-containing standard of care improved sustained viral response rates in hepatitis C virus (HCV) infected patients. However, there is still an unmet medical need as this drug regimen is poorly tolerated and lacks efficacy, especially in difficult-to-treat patients. Intense drug discovery and development efforts have focused on direct-acting antivirals (DAA) that target NS3 protease, NS5B polymerase and the NS5A protein. DAA combinations are currently assessed in clinical trials. Alternative antivirals have emerged that target host machineries co-opted by HCV. Finally, continuous and better understanding of HCV biology allows speculating on the value of novel classes of DAA required in future personalized all-oral interferon-free combination therapy and for supporting global disease eradication.
Collapse
Affiliation(s)
- Laurent Chatel-Chaix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|