1
|
Abughazaleh N, Smith H, Seerattan RA, Hart DA, Reimer RA, Herzog W. Development of shoulder osteoarthritis and bone lesions in female and male rats subjected to a high fat/sucrose diet. Sci Rep 2024; 14:25871. [PMID: 39468197 PMCID: PMC11519393 DOI: 10.1038/s41598-024-76703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Oligofructose prebiotic fiber supplementation has been reported to mitigate the effects of a high fat/high sucrose diet and reduce knee joint degeneration in male rats. However, few studies investigated the development of osteoarthritis and bone lesions as a function of sex and in joints other than the knee. This study was aimed at to quantifying the effect of a HFS diet and prebiotic fiber supplementation on shoulder joint health in male and female Sprague-Dawley rats. Rats were randomized into 6 groups: 2 groups fed a chow diet: Chow-Male n = 11, Chow-female n = 12; 2 groups fed a HFS diet: HFS-Male n = 11, HFS-Female n = 12; and 2 groups fed a prebiotic fiber supplement in addition to the HFS diet: Fiber-Male n = 6, Fiber- Female n = 12. After 12 weeks, shoulder joints were histologically assessed for OA. Body composition, serum lipid profile, insulin resistance and fecal microbiota were also assessed. Shoulders in male and female rats appear to be protected against degeneration when exposed to a HFS diet. Male rats developed bone lesions while females did not. Fiber supplementation was more effective in males than in females suggesting that fiber supplementation may have sex-specific effects on the gut microbiota.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Hannah Smith
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Bishop RC, Kemper AM, Clark LV, Wilkins PA, McCoy AM. Stability of Gastric Fluid and Fecal Microbial Populations in Healthy Horses under Pasture and Stable Conditions. Animals (Basel) 2024; 14:2979. [PMID: 39457909 PMCID: PMC11503871 DOI: 10.3390/ani14202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Equine gastrointestinal microbial communities vary across the gastrointestinal tract and in response to diet or disease. Understanding the composition and stability of gastric fluid microbiota in healthy horses is a prerequisite to understanding changes associated with the development of disease. The objective of this study was to describe microbial communities in the gastric fluid and feces of healthy horses longitudinally. Horses were maintained on pasture (6 weeks), stabled (5 weeks), then returned to pasture. A consistent forage diet was provided throughout. Native gastric fluid and feces were collected weekly for full-length 16S ribosomal DNA sequencing and microbial profiling analysis. Fewer taxa were identified in the gastric fluid (770) than in the feces (5284). Species richness and diversity were significantly different between sample types (p < 0.001), but not between housing locations (p = 0.3). There was a significant effect of housing and horse on the Bray-Curtis compositional diversity of gastric (p = 0.005; p = 0.009) and fecal (p = 0.001; p = 0.001) microbiota. When horses moved from pasture to stable, the relative proportions of gastric fluid Lactobacillaceae increased and Streptococcaceae decreased, while fecal Firmicutes increased and Bacteriodota decreased. Within each housing condition, there was no significant week-to-week variation in gastric (p = 0.9) or fecal (p = 0.09) microbiota. Overall, these findings support the maintenance of stable gastric and fecal microbial populations under each management condition, providing a basis for further investigation of gastric fluid microbiota in diseases of the foregut.
Collapse
Affiliation(s)
- Rebecca C. Bishop
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ann M. Kemper
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Lindsay V. Clark
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Pamela A. Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
3
|
Holm JB, Gajer P, Ravel J. SpeciateIT and vSpeciateDB: novel, fast, and accurate per sequence 16S rRNA gene taxonomic classification of vaginal microbiota. BMC Bioinformatics 2024; 25:313. [PMID: 39333850 PMCID: PMC11437924 DOI: 10.1186/s12859-024-05930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Clustering of sequences into operational taxonomic units (OTUs) and denoising methods are a mainstream stopgap to taxonomically classifying large numbers of 16S rRNA gene sequences. Environment-specific reference databases generally yield optimal taxonomic assignment. RESULTS We developed SpeciateIT, a novel taxonomic classification tool which rapidly and accurately classifies individual amplicon sequences ( https://github.com/Ravel-Laboratory/speciateIT ). We also present vSpeciateDB, a custom reference database for the taxonomic classification of 16S rRNA gene amplicon sequences from vaginal microbiota. We show that SpeciateIT requires minimal computational resources relative to other algorithms and, when combined with vSpeciateDB, affords accurate species level classification in an environment-specific manner. CONCLUSIONS Herein, two resources with new and practical importance are described. The novel classification algorithm, SpeciateIT, is based on 7th order Markov chain models and allows for fast and accurate per-sequence taxonomic assignments (as little as 10 min for 107 sequences). vSpeciateDB, a meticulously tailored reference database, stands as a vital and pragmatic contribution. Its significance lies in the superiority of this environment-specific database to provide more species-resolution over its universal counterparts.
Collapse
Affiliation(s)
- Johanna B Holm
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pawel Gajer
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Li W, Wang B, Liu N, Shi X, Yang M, Liu CQ. Microbial regulation on refractory dissolved organic matter in inland waters. WATER RESEARCH 2024; 262:122100. [PMID: 39042969 DOI: 10.1016/j.watres.2024.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
The production of refractory dissolved organic matter (RDOM) is complex and closely related to microbial consortia in aquatic ecosystems; however, it is still unclear how microorganisms regulate the production of RDOM and its molecular composition in inland waters. Therefore, we conducted a large-scale survey of inland waters and analyzed the optical and mass spectrometric characteristics of DOM, the microbial community and functional genes, as well as related environmental parameters, to understand the abovementioned issues. Here, the RDOM production was found mainly regulated by microbial (e.g., phylogeny and community assembly) rather than other environmental factors in inland waters. Biostatistical analyses and carbon isotopic evidence indicated that the successive microbial processing from labile DOM to RDOM (i.e., carboxyl-rich alicyclic molecules, CRAMs) was widely present in inland waters, involving the microbially mediated carbon skeleton turnover and heteroatom conversion. There was a significant empirical relationship between CRAMs and the ratio of Proteobacteria to Actinobacteria, highlighting the intraspecific interaction of bacteria more important than other microbial groups (i.e., archaea, eukaryotes, and fungi) for the RDOM production. This study demonstrated a fundamental role of microbial regulation in RDOM production within the inland waters, thereby facilitating future estimation of carbon sequestration potential in inland aquatic ecosystems.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, 300072, China.
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, 300072, China
| |
Collapse
|
5
|
Bishop RC, Migliorisi A, Holmes JR, Kemper AM, Band M, Austin S, Aldridge B, Wilkins PA. Microbial populations vary between the upper and lower respiratory tract, but not within biogeographic regions of the lung of healthy horses. J Equine Vet Sci 2024; 140:105141. [PMID: 38944129 DOI: 10.1016/j.jevs.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/01/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Understanding normal microbial populations within areas of the respiratory tract is essential, as variable regional conditions create different niches for microbial flora, and proliferation of commensal microbes likely contributes to clinical respiratory disease. The objective was to describe microbial population variability between respiratory tract locations in healthy horses. Samples were collected from four healthy adult horses by nasopharyngeal lavage (NPL), transtracheal aspirate (TTA), and bronchoalveolar lavage (BAL) of six distinct regions within the lung. Full-length 16S ribosomal DNA sequencing and microbial profiling analysis was performed. There was a large amount of diversity, with over 1797 ASVs identified, reduced to 94 taxa after tip agglomeration and prevalence filtering. Number of taxa and diversity were highly variable across horses, sample types, and BAL locations. Firmicutes, proteobacteria, and actinobacteria were the predominant phyla. There was a significant difference in richness (Chao1, p = 0.02) and phylogenetic diversity (FaithPD, p = 0.01) between NPL, TTA, and BAL. Sample type (p = 0.03) and horse (p = 0.005) contributed significantly to Bray-Curtis compositional diversity, while Weighted Unifrac metric was only affected by simplified sample type (NPL and TTA vs BAL, p = 0.04). There was no significant effect of BAL locations within the lung with alpha or beta diversity statistical tests. Overall findings support diverse microbial populations that were variable between upper and lower respiratory tract locations, but with no apparent difference in microbial populations of the six biogeographic regions of the lung, suggesting that BAL fluid obtained blindly by standard clinical techniques may be sufficient for future studies in healthy horses.
Collapse
Affiliation(s)
- Rebecca C Bishop
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.
| | | | - Jessica R Holmes
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - Ann M Kemper
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Mark Band
- Functional Genomics Unit, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA; Institute of Evolution, University of Haifa, Israel
| | - Scott Austin
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Pamela A Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
6
|
Jin H, Li L, Lu W, Zhang Z, Xing Y, Wu D. Identification of the regulatory roles of water qualities on the spatio-temporal dynamics of microbiota communities in the water and fish guts in the Heilongjiang River. Front Microbiol 2024; 15:1435360. [PMID: 39234540 PMCID: PMC11372393 DOI: 10.3389/fmicb.2024.1435360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The Heilongjiang River is one of the largest rivers in the cool temperate zone and has an abundant fish source. To date, the microbiota community in water samples and fish guts from the Heilongjiang River is still unclear. In the present study, water samples and fish guts were collected from four locations of the Heilongjiang River during both the dry season and the wet season to analyze the spatio-temporal dynamics of microbiota communities in the water environment and fish guts through 16s ribosome RNA sequencing. The water qualities showed seasonal changes in which the pH value, dissolved oxygen, and total dissolved solids were generally higher during the dry season, and the water temperature was higher during the wet season. RDA indicated that higher pH values, dissolved oxygen, and total dissolved solids promoted the formation of microbiota communities in the water samples of the dry season, while higher water temperature positively regulated the formation of microbiota communities in the water samples of the wet season. LEFSe identified five biomarkers with the most abundant difference at the genus level, of which TM7a was upregulated in the water samples of the dry season, and SM1A02, Rheinheimera, Gemmatimonas, and Vogesella were upregulated in the water samples of the wet season. Pearson analysis revealed that higher pH values and dissolved oxygen positively regulated the formation of TM7a and negatively regulated the formation of SM1A02, Rheinheimera, Gemmatimonas, and Vogesella (p < 0.05), while higher water temperature had the opposite regulatory roles in the formation of these biomarkers. The relative abundance of microbiota diversity in fish guts varies greatly between different fish species, even if the fishes were collected from the same water source, indicating that dietary habits and fish species may be key factors, affecting the formation and construction of microbiome community in fish gut. P. glenii, P. lagowskii, G. cynocephalus, and L. waleckii were the main fish resources, which were collected and identified from at least six sample points. RDA indicated that the microbiota in the water environment regulated the formation of microbiota community in the guts of G. cynocephalus and L. waleckii and had limited regulated effects on P. glenii and P. lagowskii. The present study identified the regulatory effects of water qualities on the formation of microbiota communities in the water samples and fish guts, providing valuable evidence for the protection of fish resources in the Heilongjiang River.
Collapse
Affiliation(s)
- Hongyu Jin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Lei Li
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Wanqiao Lu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Zepeng Zhang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Yue Xing
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| | - Di Wu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in Heilongjiang River Basin, Ministry of Agriculture and Rural Affairs, Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, China
- National Agricultural Experimental Station for Fishery Resources and Environment in Fuyuan, Harbin, China
| |
Collapse
|
7
|
Vaasjo E, Stothart MR, Black SR, Poissant J, Whiteside DP. The impact of management on the fecal microbiome of endangered greater sage-grouse ( Centrocercus urophasianus) in a zoo-based conservation program. CONSERVATION PHYSIOLOGY 2024; 12:coae052. [PMID: 39113731 PMCID: PMC11304599 DOI: 10.1093/conphys/coae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Greater sage-grouse (Centrocercus urophasianus) are a critically endangered species in Canada with fewer than 140 individuals remaining on native habitats in southern Alberta and Saskatchewan. In 2014, the Wilder Institute/Calgary Zoo initiated North America's only zoo-based conservation breeding program for this species to bolster declining wild populations through conservation reintroductions. Within the managed population of sage-grouse, morbidity and mortality have primarily been associated with intestinal bacterial infections. As a preliminary study to assess the gastrointestinal health of this species in managed care, the fecal bacterial microbiome of adult and juvenile captive sage-grouse was characterized with 16S rRNA sequencing. The composition of the microbiome at the phylum level in greater sage-grouse is consistent with previous studies of the avian microbiome, with Bacillota as the most abundant phyla, and Actinomycetota, Bacteroidota and Pseudomonadota also being highly abundant. Antibiotic use and sex did not have a significant impact on the diversity or composition of the microbiome, but the management of juvenile sage-grouse did influence the development of the microbiome. Juveniles that were raised outdoors under maternal care developed a microbiome much more similar to adults when compared to chicks that were incubated and hand-raised. The local environment and parental care appear to be important factors influencing the diversity and composition of the gastrointestinal microbiome in this species.
Collapse
Affiliation(s)
- Emma Vaasjo
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Animal Health Department, Wilder Institute/Calgary Zoo, 1300 Zoo Rd NE, Calgary, AB T2E 7V6, Canada
| | - Mason R Stothart
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Sandra R Black
- Animal Health Department, Wilder Institute/Calgary Zoo, 1300 Zoo Rd NE, Calgary, AB T2E 7V6, Canada
| | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Douglas P Whiteside
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Animal Health Department, Wilder Institute/Calgary Zoo, 1300 Zoo Rd NE, Calgary, AB T2E 7V6, Canada
| |
Collapse
|
8
|
Jia P, Tian M, Zhang B, Wu X, He X, Zhang W. Habitat changes due to glacial freezing and melting reshape microbial networks. ENVIRONMENT INTERNATIONAL 2024; 189:108788. [PMID: 38838490 DOI: 10.1016/j.envint.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The phenomenon of glacial freezing and thawing involves microbial sequestration, release, and colonization, which has the potential to impact ecosystem functioning through changes in microbial diversity and interactions. In this study, we examined the structural features of microbial communities of the Dongkemadi glacier, including bacteria, fungi, and archaea, in four distinct glacial environments (snow, ice, meltwater, and frontier soil). The sequestration, release, and colonization of glacial microbes have been found to significantly impact the diversity and structure of glacial microbial communities, as well as the complexity of microbial networks. Specifically, the complexity of bacterial networks has been observed to increase in a sequential manner during these processes. Utilizing the Inter-Domain Ecological Network approach, researchers have further explored the cross-trophic interactions among bacteria, fungi, and archaea. The complexity of the bacteria-fungi-archaea network exhibited a sequential increase due to the processes of sequestration, release, and colonization of glacial microbes. The release and colonization of glacial microbes led to a shift in the role of archaea as key species within the network. Additionally, our findings suggest that the hierarchical interactions among various microorganisms contributed to the heightened complexity of the bacteria-fungi-archaea network. The primary constituents of the glacial microbial ecosystem are unclassified species associated with the Polaromonas. It is noteworthy that various key species in glacial ecosystems are influenced by the distinct environmental factors. Moreover, our findings suggest that key species are not significantly depleted in response to abrupt alterations in individual environmental factors, shedding light on the dynamics of microbial cross-trophic interactions within glacial ecosystems.
Collapse
Affiliation(s)
- Puchao Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiukun Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo He
- Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Tanggula Mountain Cryosphere and Environment Observation and Research Station of Tibet Autonomous Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
9
|
Rivera Rosas DE, Geraldi NR, Glud RN, Oguri K, Haond SA, Duarte CM. A sedimentary DNA record of the Atacama Trench reveals biodiversity changes in the most productive marine ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17412. [PMID: 39044634 DOI: 10.1111/gcb.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
The hadopelagic environment remains highly understudied due to the inherent difficulties in sampling at these depths. The use of sediment environmental DNA (eDNA) can overcome some of these restrictions as settled and preserved DNA represent an archive of the biological communities. We use sediment eDNA to assess changes in the community within one of the world's most productive open-ocean ecosystems: the Atacama Trench. The ecosystems around the Atacama Trench have been intensively fished and are affected by climate oscillations, but the understanding of potential impacts on the marine community is limited. We sampled five sites using sediment cores at water depths from 2400 to ~8000 m. The chronologies of the sedimentary record were determined using 210Pbex. Environmental DNA was extracted from core slices and metabarcoding was used to identify the eukaryote community using two separate primer pairs for different sections of the 18S rRNA gene (V9 and V7) effectively targeting pelagic taxa. The reconstructed communities were similar among markers and mainly composed of chordates and members of the Chromista kingdom. Alpha diversity was estimated for all sites in intervals of 15 years (from 1842 to 2018), showing a severe drop in biodiversity from 1970 to 1985 that aligns with one of the strongest known El Niño events and extensive fishing efforts during the time. We find a direct impact of sea surface temperature on the community composition over time. Fish and cnidarian read abundance was examined separately to determine whether fishing had a direct impact, but no direct relation was found. These results demonstrate that sediment eDNA can be a valuable emerging tool providing insight in historical perspectives on ecosystem developments. This study constitutes an important step toward an improved understanding of the importance of environmental and anthropogenic drivers in affecting open and deep ocean communities.
Collapse
Affiliation(s)
- Diego Elihú Rivera Rosas
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ronnie N Glud
- Danish Center for Hadal Research (HADAL) and Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
- Tokyo University of Marine Science and Technology, Tokyo, Japan
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense M, Denmark
| | - Kazumasa Oguri
- Danish Center for Hadal Research (HADAL) and Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sophie A Haond
- UMR MARBEC, University of Montpellier, IRD, Ifremer, CNRS, Sète, France
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Saleem F, Atrache R, Jiang JL, Tran KL, Li E, Paschos A, Edge TA, Schellhorn HE. Characterization of Taxonomic and Functional Dynamics Associated with Harmful Algal Bloom Formation in Recreational Water Ecosystems. Toxins (Basel) 2024; 16:263. [PMID: 38922157 PMCID: PMC11209277 DOI: 10.3390/toxins16060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Harmful algal bloom (HAB) formation leads to the eutrophication of water ecosystems and may render recreational lakes unsuitable for human use. We evaluated the applicability and comparison of metabarcoding, metagenomics, qPCR, and ELISA-based methods for cyanobacteria/cyanotoxin detection in bloom and non-bloom sites for the Great Lakes region. DNA sequencing-based methods robustly identified differences between bloom and non-bloom samples (e.g., the relative prominence of Anabaena and Planktothrix). Shotgun sequencing strategies also identified the enrichment of metabolic genes typical of cyanobacteria in bloom samples, though toxin genes were not detected, suggesting deeper sequencing or PCR methods may be needed to detect low-abundance toxin genes. PCR and ELISA indicated microcystin levels and microcystin gene copies were significantly more abundant in bloom sites. However, not all bloom samples were positive for microcystin, possibly due to bloom development by non-toxin-producing species. Additionally, microcystin levels were significantly correlated (positively) with microcystin gene copy number but not with total cyanobacterial 16S gene copies. In summary, next-generation sequencing-based methods can identify specific taxonomic and functional targets, which can be used for absolute quantification methods (qPCR and ELISA) to augment conventional water monitoring strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Herb E. Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON L8S 4L8, Canada; (F.S.); (R.A.); (J.L.J.); (K.L.T.); (E.L.); (A.P.); (T.A.E.)
| |
Collapse
|
11
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Holm JB, Gajer P, Ravel J. SpeciateIT and vSpeciateDB: Novel, fast and accurate per sequence 16S rRNA gene taxonomic classification of vaginal microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590089. [PMID: 38712229 PMCID: PMC11071307 DOI: 10.1101/2024.04.18.590089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Clustering of sequences into operational taxonomic units (OTUs) and denoising methods are a mainstream stopgap to taxonomically classifying large numbers of 16S rRNA gene sequences. We developed speciateIT, a novel taxonomic classification tool which rapidly and accurately classifies individual amplicon sequences (https://github.com/Ravel-Laboratory/speciateIT). Environment-specific reference databases generally yield optimal taxonomic assignment. To this end, we also present vSpeciateDB, a custom reference database for the taxonomic classification of 16S rRNA gene amplicon sequences from vaginal microbiota. We show that speciateIT requires minimal computational resources relative to other algorithms and, when combined with vSpeciateDB, affords accurate species level classification in an environment-specific manner.
Collapse
Affiliation(s)
- Johanna B Holm
- Department of Microbiology & Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Pawel Gajer
- Department of Microbiology & Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Jacques Ravel
- Department of Microbiology & Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| |
Collapse
|
13
|
Ma X, Li Z, Cai L, Xiao M, He F, Liu Z, Chen D, Wang Y, Shen L, Gu Y. Analysis of fungal diversity in the gut feces of wild takin ( Budorcas taxicolor). Front Microbiol 2024; 15:1364486. [PMID: 38699479 PMCID: PMC11063333 DOI: 10.3389/fmicb.2024.1364486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Mei Xiao
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Fang He
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Limin Shen
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Xian WD, Chen J, Zheng Z, Ding J, Xi Y, Zhang Y, Qu W, Tang C, Li C, Liu X, Li W, Wang J. Water masses influence the variation of microbial communities in the Yangtze River Estuary and its adjacent waters. Front Microbiol 2024; 15:1367062. [PMID: 38572235 PMCID: PMC10987813 DOI: 10.3389/fmicb.2024.1367062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses.
Collapse
Affiliation(s)
- Wen-Dong Xian
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jinhui Chen
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Zheng Zheng
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Junjie Ding
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yinli Xi
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yiying Zhang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Chunyu Tang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Changlin Li
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wei Li
- College of Science, Shantou University, Shantou, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
15
|
Yang M, Liu N, Wang B, Li Y, Li W, Shi X, Yue X, Liu CQ. Stepwise degradation of organic matters driven by microbial interactions in China΄s coastal wetlands: Evidence from carbon isotope analysis. WATER RESEARCH 2024; 250:121062. [PMID: 38157604 DOI: 10.1016/j.watres.2023.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The microbial "unseen majority" as drivers of carbon cycle represent a significant source of uncertain climate change. To comprehend the resilience of life forms on Earth to climate change, it is crucial to incorporate knowledge of intricate microbial interactions and their impact to carbon transformation. Combined with carbon stable isotope analysis and high-throughput sequencing technology, the underlying mechanism of microbial interactions for organic carbon degradation has been elucidated. Niche differentiation enabled archaea to coexist with bacteria mainly in a cooperative manner. Bacteria composed of specialists preferred to degrade lighter carbon, while archaea were capable of utilizing heavier carbon. Microbial resource-dependent interactions drove stepwise degradation of organic matter. Bacterial cooperation directly facilitated the degradation of algae-dominated particulate organic carbon, while competitive feeding of archaea caused by resource scarcity significantly promoted the mineralization of heavier particulate organic carbon and then the release of dissolved inorganic carbon. Meanwhile, archaea functioned as a primary decomposer and collaborated with bacteria in the gradual degradation of dissolved organic carbon. This study emphasized microbial interactions driving carbon cycle and provided new perspectives for incorporating microorganisms into carbon biogeochemical models.
Collapse
Affiliation(s)
- Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Yajun Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xinrui Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Xian WD, Ding J, Chen J, Qu W, Cao P, Tang C, Liu X, Zhang Y, Li JL, Wang P, Li WJ, Wang J. Distinct Assembly Processes Structure Planktonic Bacterial Communities Among Near- and Offshore Ecosystems in the Yangtze River Estuary. MICROBIAL ECOLOGY 2024; 87:42. [PMID: 38356037 PMCID: PMC11385042 DOI: 10.1007/s00248-024-02350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
The estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions. We collected 90 samples of surface, middle, and bottom water from 16 sampling stations and performed 16S rRNA gene amplicon analysis along with environmental factor measurements. The results unveiled that the nearshore communities demonstrated significantly greater species richness and Chao1 indices compared to the offshore communities. In contrast, the nearshore communities had lower values of Shannon and Simpson indices. When compared to the FLB, the PAB exhibit a higher level of biodiversity and abundance. However, no distinct alpha and beta diversity differences were observed between the bottom, middle, and surface water layers. The community assembly analysis indicated that nearshore communities are predominantly shaped by deterministic processes, particularly due to heterogeneous selection of PAB; In contrast, offshore communities are governed more by stochastic processes, largely due to homogenizing dispersal of FLB. Consequently, the findings of this study demonstrate that nearshore and PAB communities exhibit higher levels of species diversity, while stochastic and deterministic processes exert distinct influences on communities among near- and offshore regions. This study further sheds new light on our understanding of the mechanisms governing bacterial communities in estuarine ecosystems.
Collapse
Affiliation(s)
- Wen-Dong Xian
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Junjie Ding
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jinhui Chen
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Wu Qu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Pinglin Cao
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Chunyu Tang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Xuezhu Liu
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Yiying Zhang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jianxin Wang
- Marine Microorganism Ecological & Application Lab, Zhejiang Ocean University, Haida South Rd No. 1, Dinghai, Zhoushan, 316000, China.
| |
Collapse
|
17
|
Cuevas M, Francisco I, Díaz-González F, Diaz M, Quatrini R, Beamud G, Pedrozo F, Temporetti P. Nutrient structure dynamics and microbial communities at the water-sediment interface in an extremely acidic lake in northern Patagonia. Front Microbiol 2024; 15:1335978. [PMID: 38410393 PMCID: PMC10895001 DOI: 10.3389/fmicb.2024.1335978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Lake Caviahue (37° 50 'S and 71° 06' W; Patagonia, Argentina) is an extreme case of a glacial, naturally acidic, aquatic environment (pH ~ 3). Knowledge of the bacterial communities in the water column of this lake, is incipient, with a basal quantification of the bacterioplankton abundance distribution in the North and South Basins of Lake Caviahue, and the described the presence of sulfur and iron oxidizing bacteria in the lake sediments. The role that bacterioplankton plays in nutrient utilization and recycling in this environment, especially in the phosphorus cycle, has not been studied. In this work, we explore this aspect in further depth by assessing the diversity of pelagic, littoral and sediment bacteria, using state of the art molecular methods and identifying the differences and commonalties in the composition of the cognate communities. Also, we investigate the interactions between the sediments of Lake Caviahue and the microbial communities present in both sediments, pore water and the water column, to comprehend the ecological relationships driving nutrient structure and fluxes, with a special focus on carbon, nitrogen, and phosphorus. Two major environmental patterns were observed: (a) one distinguishing the surface water samples due to temperature, Fe2+, and electrical conductivity, and (b) another distinguishing winter and summer samples due to the high pH and increasing concentrations of N-NH4+, DOC and SO42-, from autumn and spring samples with high soluble reactive phosphorus (SRP) and iron concentrations. The largest bacterial abundance was found in autumn, alongside higher levels of dissolved phosphorus, iron forms, and increased conductivity. The highest values of bacterial biomass were found in the bottom strata of the lake, which is also where the greatest diversity in microbial communities was found. The experiments using continuous flow column microcosms showed that microbial growth over time, in both the test and control columns, was accompanied by a decrease in the concentration of dissolved nutrients (SRP and N-NH4+), providing proof that sediment microorganisms are active and contribute significantly to nutrient utilization/mobilization.
Collapse
Affiliation(s)
- Mayra Cuevas
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Issotta Francisco
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Department of Molecular Genetics and Microbiology, School of Biological Sciences, P. Universidad Católica de Chile, Santiago, Chile
| | - Fernando Díaz-González
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mónica Diaz
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Fernando Pedrozo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), Centro Regional Universitario Bariloche-UNComahue, CCT-Patagonia Norte, CONICET, San Carlos de Bariloche, Argentina
| |
Collapse
|
18
|
Barko P, Nguyen-Edquilang J, Williams DA, Gal A. Fecal microbiome composition and diversity of cryopreserved canine stool at different duration and storage conditions. PLoS One 2024; 19:e0294730. [PMID: 38324560 PMCID: PMC10849402 DOI: 10.1371/journal.pone.0294730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024] Open
Abstract
Fresh-frozen stool banks intended for humans with gastrointestinal and metabolic disorders have been recently established and there are ongoing efforts to establish the first veterinary fresh-frozen stool bank. Fresh frozen stored feces provide an advantage of increased availability and accessibility to high-quality optimal donor fecal material. The stability of frozen canine feces regarding fecal microbiome composition and diversity has not been reported in dogs, providing the basis for this study. We hypothesized that fecal microbial composition and diversity of healthy dogs would remain stable when stored at -20°C and -80°C for up to 12 months compared to baseline samples evaluated before freezing. Stool samples were collected from 20 apparently healthy dogs, manually homogenized, cryopreserved in 20% glycerol and aliquoted, frozen in liquid nitrogen and stored at -20°C or -80°C for 3, 6, 9, and 12 months. At baseline and after period of storage, aliquots were thawed and treated with propidium monoazide before fecal DNA extraction. Following long-read 16S-rRNA amplicon sequencing, bacterial community composition and diversity were compared among treatment groups. We demonstrated that fresh-frozen canine stools collected from 20 apparently healthy dogs could be stored for up to 12 months at -80°C with minimal change in microbial community composition and diversity and that storage at -80°C is superior to storage at -20°C. We also found that differences between dogs had the largest effect on community composition and diversity. Relative abundances of certain bacterial taxa, including those known to be short-chain fatty acid producers, varied significantly with specific storage temperatures and duration. Further work is required to ascertain whether fecal donor material that differs in bacterial community composition and diversity across storage conditions and duration could lead to differences in clinical efficacy for specific clinical indications of fecal microbiota transplantation.
Collapse
Affiliation(s)
- Patrick Barko
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Julie Nguyen-Edquilang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - David A. Williams
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
19
|
Geraldi NR, Krause-Jensen D, Ørberg SB, Frühe L, Sejr MK, Hansen JLS, Lund-Hansen L, Duarte CM. Environmental drivers of Arctic communities based on metabarcoding of marine sediment eDNA. Proc Biol Sci 2024; 291:20231614. [PMID: 38264782 PMCID: PMC10806441 DOI: 10.1098/rspb.2023.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.
Collapse
Affiliation(s)
- Nathan R. Geraldi
- Red Sea Research Center (RSRC) and Computational Biosciences Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Sarah B. Ørberg
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Larissa Frühe
- Red Sea Research Center (RSRC) and Computational Biosciences Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mikael K. Sejr
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Lars Lund-Hansen
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carlos M. Duarte
- Red Sea Research Center (RSRC) and Computational Biosciences Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Tiwari N, Santhiya D, Sharma JG. Significance of landfill microbial communities in biodegradation of polyethylene and nylon 6,6 microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132786. [PMID: 37871442 DOI: 10.1016/j.jhazmat.2023.132786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Plastic pollution, particularly microplastics, poses a significant environmental challenge. This study aimed to address the urgent need for sustainable solutions to manage plastic waste. The degradation of polyethylene microplastics (PEMPs) and nylon 6,6 microplastics (NMPs) were investigated using bacterial culture isolates, isolated from a municipal landfill site and identified through 16 S rDNA as well as metagenomics techniques.The study demonstrated for the first time along with degradation mechanism. The isolates identified as Achromobacter xylosoxidans and mixed culture species in dominance of Pulmonis sp. were used to degrade PEMPs and NMPs. Achromobacter xylosoxidans reduced microplastic's dry weight by 26.7% (PEMPs) and 21.3% (NMPs) in 40 days, while the mixed culture achieved weight reductions of 19.3% (PEMPs) and 20% (NMPs). The release of enzymes, laccase and peroxidases revealed C-C bond cleavage and reduced polymer chain length. The thermal studies (TGA and DSC) revealed changes in the thermal stability and transition characteristics of microplastics. The structural alterations on PEMPs and NMPs were recorded by FTIR analysis. Byproducts such as alkanes, esters, aromatic compounds and carboxylic acids released were identified by GC-MS. These results suggest the effectiveness of bacterial isolates in degrading PEMPs and NMPs, with potential for sustainable plastic waste management solutions.
Collapse
Affiliation(s)
- Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Delhi, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
21
|
Sun ZB, Hu YF, Song HJ, Cong SB, Wang L. Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms. Life (Basel) 2023; 14:58. [PMID: 38255673 PMCID: PMC10820413 DOI: 10.3390/life14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Pink bollworms severely affect the production of cotton. The method currently used for pink bollworm control is the planting of Bt (Bacillus thuringiensis) protein-expressing transgenic cotton. However, pink bollworms can develop strong resistance to Bt proteins in transgenic cotton because of the large planting area and long planting time of this crop, which severely affects the control of pink bollworms. Intestinal microorganisms play very important roles in insect growth, development and Bt resistance. However, the effect of intestinal microorganisms on pink bollworm Bt resistance is still unclear. The current study aimed to analyze the effect of intestinal microorganisms on the Bt resistance of pink bollworms. Intestinal microorganisms associated with Bt resistance were initially screened through Illumina MiSeq sequencing and analysis. The results showed that feeding with a mixture of gentamicin, Cry1Ac and an artificial diet could significantly increase the mortality of pink bollworm larvae compared with feeding with of a mixture of Cry1Ac and an artificial diet or an artificial diet alone. The microbial diversity, community structure and composition of the pink bollworm larval intestine were significantly influenced by feeding with a mixture of gentamicin, Cry1Ac and an artificial diet. Several intestinal bacteria with significantly altered abundances after treatment with gentamicin were preliminarily screened as potential resources for addressing Bt toxicity. This study provides useful strategies for addressing the Bt resistance of pink bollworms.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ya-Feng Hu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Han-Jian Song
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Sheng-Bo Cong
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
22
|
Menard J, Bagheri S, Menon S, Yu YT, Goodman LB. Noninvasive sampling of the small intestinal chyme for microbiome, metabolome and antimicrobial resistance genes in dogs, a proof of concept. Anim Microbiome 2023; 5:64. [PMID: 38104116 PMCID: PMC10725013 DOI: 10.1186/s42523-023-00286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. RESULTS Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83-77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray-Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. CONCLUSIONS The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Sahar Bagheri
- International Microbiome Center, Snyder Institute for Chronic Diseases, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Y Tina Yu
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Dai W, Zhang Z, Dong Y, He L, Xue Q, Lin Z. Acute Salinity Stress Disrupts Gut Microbiota Homeostasis and Reduces Network Connectivity and Cooperation in Razor Clam Sinonovacula constricta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1147-1157. [PMID: 37943354 DOI: 10.1007/s10126-023-10267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Accumulating evidence demonstrates that it is of great importance to maintain a stable and functional gut microbial community for host's growth and health. However, gut microenvironment is constantly affected by diverse environmental factors. Salinity can cause stress, including hypersaline or hyposaline stress to aquatic species, thereby affecting their growth conditions. Razor clam (Sinonovacula constricta), an economically important bivalve species, inhabits in intertidal and estuarine zones and constantly experiences salinity stress. Yet little is known about how and to what extent clam gut microbiota is affected by salinity stress, while this knowledge is fundamental for clam aquaculture health management. To address this concern, this study compared the temporal differences of gut bacterial signatures and community assembly of S. constricta under normal salinity (NS), low salinity (LS), and high salinity (HS) conditions. Acute salinity stress affected the compositions, structures, and functional potentials of clam gut microbial community, of which salinity stress, hours post stress, and their interaction respectively constrained 7.6%, 16.4%, and 7.9% of community variation. Phylogenetic bin-based null model result revealed that the gut bacterial assembly of three salinity groups seemed to be largely driven by stochastic processes. Network analysis indicated that gut bacterial interspecies interaction exhibited less connected and lower cooperative activity under the conditions of LS and HS compared with NS. Notably, some pathogenic bacteria, including Vibrio and Pseudoalteromonas, were identified as keystone taxa of gut microbial networks in LS and HS groups. Above findings suggest that the clams under LS and HS conditions might be at a higher risk of developing disease. Our findings enhance the mechanism understanding of gut microbial assembly in S. constricta under abiotic factor challenge, which has important implications for clam health control from a microbial ecological perspective.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zijuan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yinghui Dong
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lin He
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
24
|
Arya P, Kaur M, Chosyang S, Kushwaha N, Singh B. Decrypting Skin Microbiome in Psoriasis: Current Status. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2023; 8:166-178. [PMID: 39301472 PMCID: PMC11361554 DOI: 10.1177/24755303231194293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Psoriasis is an autoimmune, chronic, inflammatory skin condition of multifactorial etiology. Recent studies in human skin microbiome research have revealed the dysbiosis in lesional skin of psoriatic patients, as well as have established the association of dysbiosis in the elicitation of inflammatory response of psoriatic skin. Objective The present review aimed to recapitulate the insights of psoriasis lesional skin microbiome studies published in the last 2 decades, and to determine the most important bacterial genera that can be deployed as psoriatic skin microbial signature for therapeutic intervention. Methods To achieve the stated objectives, full-text analysis of literature selected through systematic search of digital literature databases has been carried out following PRISMA guidelines. Results Literature analysis suggests differential abundance of specific bacterial genera in the lesional psoriatic skin (LPS) compared to normal skin (NS) of psoriasis patients and skin from healthy subjects. These bacterial genera collectively can be utilized as potential biomarker for constructing lesional psoriatic skin specific microbial signature, and to explore the role of bacterial species in maintaining the skin homeostasis. The analysis further revealed that multiple bacterial species instead of a single bacterial species is important for understanding the psoriasis etiogenesis. Furthermore, decreased microbiome stability and increased diversity might have role in the exacerbation of lesions on skin of psoriatic patients. Conclusion Considering the importance of human skin microbiome dysbiosis in psoriasis, research efforts should be carried out to develop new therapeutic measures in addition to current therapies by exploiting the human and host-skin-associated microbial genomic and metabolomic knowledge.
Collapse
Affiliation(s)
- Preeti Arya
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Manpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Stanzin Chosyang
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neelam Kushwaha
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Balvinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Aizi T, Lijuan L, Lihua L, Wei L, Jiamei Q. Comparative analysis of microbial community structure in different times of Panax ginseng Rhizosphere microbiome and soil properties under larch forest. BMC Genom Data 2023; 24:51. [PMID: 37710149 PMCID: PMC10500862 DOI: 10.1186/s12863-023-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Panax ginseng cultivated under the forest is popular because its shape and effective ingredients are similar to wild ginseng. The growth of P. ginseng in the larch forest is generally better than in the broad-leaved forest, and the incidence rate of diseases is low. Therefore, the selection of forest species is one of the basic factors in the successful cropping of P. ginseng. METHODS Illumina HiSeq high-throughput sequencing was used to analyze the 16S rRNA/ITS gene sequence of P. ginseng rhizosphere soil under larch forest to study the rhizosphere microbiome's diversity and community composition structure. RESULTS The species classification and richness of rhizosphere bacterial and fungal communities in the same-aged P. ginseng were similar. Consistent with the soil system of commonly cultivated crops, Proteobacteria, Actinobacteriota, Acidobacteriota, Verrucomicrobiota, Chloroflexi, and Basidiomycota, Ascomycota were the dominant phylum of bacteria and fungi, respectively. Compared with the soil without planting P. ginseng, the diversity of microorganisms and community structure of continuous planting for 2 years, 5 years, and 18 years of P. ginseng rhizosphere soil had little change. The accumulation levels of Ilyonectria, Fusarium, Gibberella, and Cylindrocarpon were not significantly increased with planting P. ginseng and the increased age of cropping P. ginseng. CONCLUSIONS The results of this study showed that the soil function of the larch forest was good, which provided a theoretical basis for the land selection and soil improvement of cultivating P. ginseng under the larch forest.
Collapse
Affiliation(s)
- Tong Aizi
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Lijuan
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Lihua
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Liu Wei
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China
| | - Qin Jiamei
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, 134002, China.
| |
Collapse
|
26
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Luedde T, Loosen SH. Peripheral blood CD3+HLADR+ cells and associated gut microbiome species predict response and overall survival to immune checkpoint blockade. Front Immunol 2023; 14:1206953. [PMID: 37705980 PMCID: PMC10495594 DOI: 10.3389/fimmu.2023.1206953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023] Open
Abstract
Background The search for biomarkers to identify ideal candidates for immune checkpoint inhibitor (ICI) therapy is fundamental. In this study, we analyze peripheral blood CD3+HLADR+ cells (activated T-cells) as a novel biomarker for ICI therapy and how its association to certain gut microbiome species can indicate individual treatment outcomes. Methods Flow cytometry analysis of peripheral mononuclear blood cells (PBMCs) was performed on n=70 patients undergoing ICI therapy for solid malignancies to quantify HLA-DR on circulating CD3+ cells. 16s-rRNA sequencing of stool samples was performed on n=37 patients to assess relative abundance of gut microbiota. Results Patients with a higher frequency of CD3+HLADR+ cells before treatment initiation showed a significantly reduced tumor response and overall survival (OS), a worst response and experienced less toxicities to ICI therapy. As such, patients with a frequency of CD3+HLADR+ cells above an ideal cut-off value of 18.55% had a median OS of only 132 days compared to 569 days for patients below. Patients with increasing CD3+HLADR+ cell counts during therapy had a significantly improved OS. An immune signature score comprising CD3+HLADR+ cells and the neutrophil-lymphocyte ratio (NLR) was highly significant for predicting OS before and during therapy. When allied to the relative abundance of microbiota from the Burkholderiales order and the species Bacteroides vulgatus, two immune-microbial scores revealed a promising predictive and prognostic power. Conclusion We identify the frequencies and dynamics of CD3+HLADR+ cells as an easily accessible prognostic marker to predict outcome to ICIs, and how these could be associated with immune modulating microbiome species. Two unprecedented immune-microbial scores comprising CD3+HLADR+, NLR and relative abundance of gut bacteria from the Burkhorderiales order or Bacteroides vulgatus species could accurately predict OS to immune checkpoint blockade.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim H. Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| |
Collapse
|
27
|
Sarmiento KR, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory and the gut: why taller people tend to harbor more diverse gut microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552554. [PMID: 37609334 PMCID: PMC10441360 DOI: 10.1101/2023.08.08.552554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size and gut microbiome alpha-diversity. This observation mirrors commonly observed species area relationships (SAR) in many other ecosystems. Here, we show a similar scaling relationship between human height and gut microbiome alpha-diversity across two large, independent cohorts, controlling for a wide range of relevant covariates, such as body mass index, age, sex, and bowel movement frequency. Island Biogeography Theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for these positive SARs. Using an individual-based model of IBT adapted to the gut, we demonstrate that increasing the length of a flow-through ecosystem is associated with increased species diversity. We delve into the possible clinical implications of these SARs in the American Gut Cohort. Consistent with prior observations that lower alpha-diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship appeared to be mediated by alpha-diversity. We also observed that vegetable consumption mitigated this risk increase, also by mediation through alpha-diversity. In summary, we find that body size and gut microbiome diversity show a robust positive association, that this macroecological scaling relationship is related to CDI risk, and that greater vegetable intake can mitigate this effect.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
| | | | - Kenneth J. Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
- Department of Biological Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Xin Y, Zhang J, Lu T, Wei Y, Shen P. Response of prokaryotic, eukaryotic and algal communities to heavy rainfall in a reservoir supplied with reclaimed water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117394. [PMID: 36774902 DOI: 10.1016/j.jenvman.2023.117394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The global climate change made the heavy rainfall happen more frequently, and the non-point source pollution caused by it would exacerbate the risk to the water ecological environment. In this study, we took a reservoir (Shahe reservoir, Beijing, China) supplied with reclaimed water as an exapmle to investigate how spatiotemporal changes in the quantity and diversity of prokaryotic, eukaryotic, and algal communities respond to heavy rainfall. Results showed that heavy rainfall could directly impact the composition of the prokaryotic community by introducing amounts of runoff closely associated bacterium especially for the human potential pathogens such as Aliarcobacter, Aeromonas and Pseudomonas in the Shahe reservoir area. While the eukaryotic community was rather stable, and the development and changes in algal communities occurred in the last few days after heavy rainfall. The microbial source tracking through FEAST indicated that Nansha river (S) was the major contributor to the development of all the three concerned communities in the reservoir. The co-occurrence analysis showed that the modules with the highest cumulative abundance in each community were all strongly and positively connected with Chl-a, pH, turbidity, COD and TOC, but negatively correlated with NO3-N (p < 0.01). The network analysis showed that the eukaryotes played a key role in the interaction network among the three communities, and were more likely to interact with algae and prokaryotes. It was suggested that the controlling of human potential pathogens associated with prokaryotic community should be emphasized at the beginning of the heavy rainfall, but the prevention of the eutrophication bloom should be another focus after the heavy rainfall. This study provided valuable information concerning the role of heavy rainfall on the water ecological environment from the perspective of microbial community.
Collapse
Affiliation(s)
- Yuan Xin
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530005, Guangxi, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tiedong Lu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agriculture Sciences, Nanning 530007, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, Nanning 530005, Guangxi, China.
| |
Collapse
|
29
|
Li W, Liu N, Li J, Wang B, Shi X, Liang X, Yang M, Xu S, Liu CQ. Chemodiversity of Dissolved Organic Matter Is Governed by Microbial Biogeography in Inland Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7753-7763. [PMID: 37163365 DOI: 10.1021/acs.est.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) is crucial for the carbon biogeochemical cycle and has a close link with microbiome in aquatic ecosystems; however, the causal relationship between DOM and microbial diversity in inland waters is not very clear so far. Therefore, a national survey of China's inland waters was conducted, and the DOM chemical composition and microbial community composition were determined by Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to clarify the abovementioned question. Here, we found that DOM chemodiversity was governed by microbial community assembly in inland waters, not vice versa. Under the control of microbial biogeography, DOM chemodiversity showed a clear geographical distribution difference. Water DOM chemodiversity was mainly constrained by bacterial and archaeal community composition, whereas sediment DOM chemodiversity was mainly controlled by eukaryotic and fungal community composition. In addition, the sediment DOM chemical composition was also affected by the interaction of different microbial groups between waters and sediments. The study is the first to clarify the causal relationship and proposes a microbial regulatory mechanism on the geographical distribution pattern of DOM chemodiversity, thus further deepening the understanding of the DOM biogeochemical cycle.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianfeng Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| |
Collapse
|
30
|
Simons AL, Theroux S, Osborne M, Nuzhdin S, Mazor R, Steele J. Zeta diversity patterns in metabarcoded lotic algal assemblages as a tool for bioassessment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2812. [PMID: 36708145 DOI: 10.1002/eap.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Assessments of the ecological health of algal assemblages in streams typically focus on measures of their local diversity and classify individuals by morphotaxonomy. Such assemblages are often connected through various ecological processes, such as dispersal, and may be more accurately assessed as components of regional-, rather than local-scale assemblages. With recent declines in the costs of sequencing and computation, it has also become increasingly feasible to use metabarcoding to more accurately classify algal species and perform regional-scale bioassessments. Recently, zeta diversity has been explored as a novel method of constructing regional bioassessments for groups of streams. Here, we model the use of zeta diversity to investigate whether stream health can be determined by the landscape diversity of algal assemblages. We also compare the use of DNA metabarcoding and morphotaxonomy classifications in these zeta diversity-based bioassessments of regional stream health. From 96 stream samples in California, we used various orders of zeta diversity to construct models of biotic integrity for multiple assemblages of diatoms, as well as hybrid assemblages of diatoms in combination with soft-bodied algae, using taxonomy data generated with both DNA sequencing as well as traditional morphotaxonomic approaches. We compared our ability to evaluate the ecological health of streams with the performance of multiple algal indices of biological condition. Our zeta diversity-based models of regional biotic integrity were more strongly correlated with existing indices for algal assemblages classified using metabarcoding compared to morphotaxonomy. Metabarcoding for diatoms and hybrid algal assemblages involved rbcL and 18S V9 primers, respectively. Importantly, we also found that these algal assemblages, independent of the classification method, are more likely to be assembled under a process of niche differentiation rather than stochastically. Taken together, these results suggest the potential for zeta diversity patterns of algal assemblages classified using metabarcoding to inform stream bioassessments.
Collapse
Affiliation(s)
- Ariel Levi Simons
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Susanna Theroux
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Melisa Osborne
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Sergey Nuzhdin
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Raphael Mazor
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Joshua Steele
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| |
Collapse
|
31
|
Alonso L, Pommier T, Simon L, Maucourt F, Doré J, Dubost A, Trân Van V, Minard G, Valiente Moro C, Douady CJ, Moënne‐Loccoz Y. Microbiome analysis in Lascaux Cave in relation to black stain alterations of rock surfaces and collembola. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:80-91. [PMID: 36424842 PMCID: PMC10103860 DOI: 10.1111/1758-2229.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 05/20/2023]
Abstract
Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.
Collapse
Affiliation(s)
- Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNAVilleurbanneFrance
| | - Flavien Maucourt
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Jeanne Doré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Van Trân Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| | - Christophe J. Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNAVilleurbanneFrance
| | - Yvan Moënne‐Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie MicrobienneVilleurbanneFrance
| |
Collapse
|
32
|
Wang W, Cheng X, Song Y, Wang H, Wu M, Ma L, Lu X, Liu X, Tuovinen OH. Elevated antimony concentration stimulates rare taxa of potential autotrophic bacteria in the Xikuangshan groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161105. [PMID: 36566853 DOI: 10.1016/j.scitotenv.2022.161105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microbial communities composed of few abundant and many rare species are widely involved in the biogeochemical cycles of elements. Yet little is known about the ecological roles of rare taxa in antimony (Sb) contaminated groundwater. Groundwater samples were collected along an Sb concentration gradient in the Xikuangshan antimony mine area and subjected to high through-put sequencing of 16S rRNA genes to investigate the bacterial communities. Results suggested that both abundant and rare sub-communities were dominated by Betaproteobacteria, Gammaproteobacteria, and Alphaproteobacteria, whereas rare sub-communities showed higher alpha-diversities. Multivariate analysis showed that both the abundant and rare taxa were under the stress of Sb, but the impact on rare taxa was greater. Nitrate explained a large part for the variation of the abundant sub-communities, indicating the critical role of nitrate for their activities under anoxic conditions. In contrast, bicarbonate significantly impacted rare sub-communities, suggesting their potential autotrophic characteristics. To further explore the role of rare taxa in the communities and the mechanism of affecting the community composition, a network was constructed to display the co-occurrence pattern of bacterial communities. The rare taxa contributed most of the network nodes and served as keystone species to maintain the stability of community. Abiotic factors (mainly Sb and pH) and bacterial interspecific interactions (interactions between keystone species and other bacterial groups) jointly affect the community dynamics. Functional prediction was performed to further reveal the ecological function of rare taxa in the Sb-disturbed groundwater environment. The results indicated that the rare taxa harbored much more diverse functions than their abundant counterparts. Notably, elevated Sb concentration promoted some potential autotrophic functions in rare taxa such as the oxidation of S-, N-, and Fe(II)-compounds. These results offer new insights into the roles of rare species in elemental cycles in the Sb-impacted groundwater.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaolu Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
33
|
Burks DJ, Pusadkar V, Azad RK. POSMM: an efficient alignment-free metagenomic profiler that complements alignment-based profiling. ENVIRONMENTAL MICROBIOME 2023; 18:16. [PMID: 36890583 PMCID: PMC9993663 DOI: 10.1186/s40793-023-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
We present here POSMM (pronounced 'Possum'), Python-Optimized Standard Markov Model classifier, which is a new incarnation of the Markov model approach to metagenomic sequence analysis. Built on the top of a rapid Markov model based classification algorithm SMM, POSMM reintroduces high sensitivity associated with alignment-free taxonomic classifiers to probe whole genome or metagenome datasets of increasingly prohibitive sizes. Logistic regression models generated and optimized using the Python sklearn library, transform Markov model probabilities to scores suitable for thresholding. Featuring a dynamic database-free approach, models are generated directly from genome fasta files per run, making POSMM a valuable accompaniment to many other programs. By combining POSMM with ultrafast classifiers such as Kraken2, their complementary strengths can be leveraged to produce higher overall accuracy in metagenomic sequence classification than by either as a standalone classifier. POSMM is a user-friendly and highly adaptable tool designed for broad use by the metagenome scientific community.
Collapse
Affiliation(s)
- David J Burks
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Vaidehi Pusadkar
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
34
|
Dai W, Ye J, Xue Q, Liu S, Xu H, Liu M, Lin Z. Changes in Bacterial Communities of Kumamoto Oyster Larvae During Their Early Development and Following Vibrio Infection Resulting in a Mass Mortality Event. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:30-44. [PMID: 36370246 DOI: 10.1007/s10126-022-10178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Vibrio and Ostreid herpesvirus 1 are responsible for mass mortalities of oyster larvae in hatcheries. Relevant works have focused on their relationships with the disease when larval mortality occurs. On the contrary, little is known about how the resident microbiota in oyster larvae responds to Vibrio-infected disease causing mortality as the disease progressed, whereas this knowledge is fundamental to unveil the etiology of the disease. Here, we analyzed the temporal succession of the microbiome of Kumamoto oyster (Crassostrea sikamea) larvae during their early development, accompanied by a Vibrio-caused mortality event that occurred at the post D-stage of larval development in a shellfish hatchery in Ningbo, China, on June 2020. The main causative agent of larval mortality was attributable to Vibrio infection, which was confirmed by linearly increased Vibrio abundance over disease progression. Larval bacterial communities dramatically changed over host development and disease progression, as highlighted by reduced α-diversity and less diverse core taxa when the disease occurred. Null model and phylogenetic-based mean nearest taxon distance analyses showed that the relative importance of deterministic processes governing larval bacterial assembly initially increased over host development, whereas this dominance was depleted over disease progression. Furthermore, we screened the disease-discriminatory taxa with a significant change in their relative abundances, which could be indicative of disease progression. In addition, network analysis revealed that disease occurrence remodeled the co-occurrence patterns and niche characteristics of larval microbiota. Our findings demonstrate that the dysbiosis of resident bacterial communities and the shift of microecological mechanisms in the larval microbiome may contribute to mortality during oyster early development.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
35
|
DNA metabarcoding reveals compositional and functional differences in fungal communities among Amazonian canga formations. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
John DV, Purushottam M. Metagenomic data reveals microbiome characteristics of culture-negative brain abscess samples. Data Brief 2023; 46:108893. [PMID: 36710917 PMCID: PMC9876821 DOI: 10.1016/j.dib.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
A brain abscess is a focal collection of pus in the brain parenchyma surrounded by a well-vascularized collagenous capsule in response to an infection. The microbiome of brain abscesses has been shown to be polymicrobial, dominated by uncultivable and anaerobic organisms of odontogenic origin. The data provided in this article includes the sequences of bacterial 16S rRNA gene from three culture-negative brain abscess samples suspected to have poly-microbial aetiology based on Sanger sequencing. DNA was extracted from brain abscess samples, and targeted-metagenomics sequencing was done by amplifying the full-length bacterial 16S rRNA followed by a nested PCR for V3-V4 regions using universal and specific primers. The barcoded amplicons were sequenced on Illumina MiSeq V2 instrument to generate 0.5M, 250bp paired-end reads/sample. The total sequencing reads were 455966, 345746, and 438658 for samples P32, P49, and P8, respectively. Bioinformatics tools such as FLASH, VSEARCH, and QIIME1 were used to process the reads generated for Operational Taxonomic Unit analysis (OTU). Bacterial species belonging to phyla Firmicutes, Bacteroidetes, and Fusobacteria were abundant in samples P49 and P8, which are mainly anaerobic and microaerophilic bacteria. These are typical of the human oral/gut microbiota and are implicated in brain abscess formation. Sample P32 showed the abundance of bacterial species belonging to phyla Proteobacteria and Actinobacteria, which are commonly found in the environment. Raw data files are available at the Sequence Read Archive (SRA), National Center for Biotechnology Information (NCBI), and data information can be found at the BioProject, PRJNA785100 under the accession numbers SRX13271109, SRX13271110, SRX13295897. The data shows the microbiome constitution, including several anaerobic and unculturable bacterial species from culture-negative brain abscess samples. This dataset will be useful for future research on comparative genomics and management of patients with culture-negative brain abscesses.
Collapse
Affiliation(s)
- Daisy Vanitha John
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India,Corresponding author.
| | - Meera Purushottam
- Molecular Genetics Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| |
Collapse
|
37
|
Alonso L, Pommier T, Abrouk D, Hugoni M, Tran Van V, Minard G, Valiente Moro C, Moënne-Loccoz Y. Microbiome Analysis of New, Insidious Cave Wall Alterations in the Apse of Lascaux Cave. Microorganisms 2022; 10:2449. [PMID: 36557702 PMCID: PMC9785961 DOI: 10.3390/microorganisms10122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Lascaux Cave is a UNESCO site that was closed to the public following wall surface alterations. Most black stains that had formed on wall surface are stable or receding, but a new type of alteration visually quite different (termed dark zones) developed in Lascaux's Apse room in the last 15 years. Here, we tested the hypothesis that dark zones displayed a different microbial community than black stains previously documented in the same room, using metabarcoding (MiSeq sequencing). Indeed, dark zones, black stains and neighboring unstained parts displayed distinct microbial communities. However, similarly to what was observed in black stains, pigmented fungi such as Ochroconis (now Scolecobasidium) were more abundant and the bacteria Pseudomonas less abundant in dark zones than in unstained parts. The collembola Folsomia candida, which can disseminate microorganisms involved in black stain development, was also present on dark zones. Illumina sequencing evidenced Ochroconis (Scolecobasidium) in all collembola samples from dark zones, as in collembola from black stains. This study shows that the microbial properties of dark zones are peculiar, yet dark zones display a number of microbial resemblances with black stains, which suggests a possible role of collembola in promoting these two types of microbial alterations on wall surfaces.
Collapse
Affiliation(s)
- Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
- Univ Lyon, INSA Lyon, CNRS, UMR5240 Microbiologie Adaptation et Pathogénie, F-69621 Villeurbanne, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR5557 Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
38
|
Li W, Wang B, Liu N, Yang M, Liu CQ, Xu S. River damming enhances ecological functional stability of planktonic microorganisms. Front Microbiol 2022; 13:1049120. [PMID: 36532475 PMCID: PMC9749135 DOI: 10.3389/fmicb.2022.1049120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2023] Open
Abstract
Planktonic microorganisms play an important role in maintaining the ecological functions in aquatic ecosystems, but how their structure and function interrelate and respond to environmental changes is still not very clear. Damming interrupts the river continuum and alters river nutrient biogeochemical cycling and biological succession. Considering that river damming decreases the irregular hydrological fluctuation, we hypothesized that it can enhance the ecological functional stability (EFS) of planktonic microorganisms. Therefore, the community composition of planktonic bacteria and archaea, functional genes related to carbon, nitrogen, sulfur, and phosphorus cycling, and relevant environmental factors of four cascade reservoirs in the Pearl River, Southern China, were investigated to understand the impact of damming on microbial community structure and function and verify the above hypothesis. Here, the ratio of function to taxa (F:T) based on Euclidean distance matrix analysis was first proposed to characterize the microbial EFS; the smaller the ratio, the more stable the ecological functions. The results showed that the reservoirs created by river damming had seasonal thermal and chemical stratifications with an increasing hydraulic retention time, which significantly changed the microbial structure and function. The river microbial F:T was significantly higher than that of the reservoirs, indicating that river damming enhances the EFS of the planktonic microorganisms. Structural equation modeling demonstrated that water temperature was an important factor influencing the relationship between the microbial structure and function and thus affected their EFS. In addition, reservoir hydraulic load was found a main factor regulating the seasonal difference in microbial EFS among the reservoirs. This study will help to deepen the understanding of the relationship between microbial structure and function and provide a theoretical basis of assessing the ecological function change after the construction of river damming.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| |
Collapse
|
39
|
Zito A, Rigon T, Dunson DB. Inferring taxonomic placement from
DNA
barcoding aiding in discovery of new taxa. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Alessandro Zito
- Department of Statistical Science Duke University Durham North Carolina USA
| | - Tommaso Rigon
- Department of Economics, Management and Statistics University of Milano‐Bicocca Milan Italy
| | - David B. Dunson
- Department of Statistical Science Duke University Durham North Carolina USA
| |
Collapse
|
40
|
Spehlmann ME, Dhotre DP, Schmiedel N, Chavan N, Bang C, Rangrez AY. Dataset of ileum bacterial diversity in mice after heart failure due to pressure overload. Data Brief 2022; 44:108498. [PMID: 35966944 PMCID: PMC9363940 DOI: 10.1016/j.dib.2022.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
We recently reported the correlation of gut bacterial diversity with heart failure using a mouse model of heart failure due to pressure overload induced by transverse aortic constriction (TAC). We found that gut the bacterial diversity is significantly altered and is directly correlated to the severity of heart failure (Heart Failure Severity Closely Correlates with Intestinal Dysbiosis and Subsequent Metabolomic Alterations (Spehlmann, 2022). In addition, stool samples that were collected for the gut microbial diversity analysis, we dissected ileum from the mice after 42 days of TAC. The total DNA was extracted to identify the bacterial diversity resided in ileum using 16S rRNA gene amplicon shotgun sequencing and downstream bioinformatics analysis to determine if it is correlated to the heart failure.
Collapse
|
41
|
Pal Y, Mayilraj S, Krishnamurthi S. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Lett Appl Microbiol 2022; 75:1433-1448. [PMID: 35972393 DOI: 10.1111/lam.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Environmental contamination by hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX), the two most widely used compounds for military operations, is a long-standing problem at the manufacturing and decommissioning plants. Since explosives contamination has previously been shown to favour the growth of specific bacterial communities, the present study attempts to identify the specialist bacterial communities and their potential functional and metabolic roles by using amplicon targeted and whole-metagenome sequencing approaches (WMS) in samples collected from two distinct explosives manufacturing sites. We hypothesize that the community structure and functional attributes of bacterial population are substantially altered by the concentration of explosives and physicochemical conditions. The results highlight the predominance of Planctomycetes in contrast to previous reports from similar habitats. The detailed phylogenetic analysis revealed the presence of OTU's related to bacterial members known for their explosives degradation. Further, the functional and metabolic analyses highlighted the abundance of putative genes and unidentified taxa possibly associated with xenobiotic biodegradation. Our findings suggest that microbial species capable of utilizing explosives as a carbon, energy, or electron source are favoured by certain selective pressures based on the prevailing physicochemical and geographical conditions.
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036.,Director of Research, Bentoli AgriNutrition, India Pvt Ltd., 3F2, Third Floor, Front Block, Metro Tower, Building No.115, Poonamallee, High Road, Chennai, - 600 084
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| |
Collapse
|
42
|
Guo M, Zhang Z, Lu J, Wang D, Yan Y, Zhang S, Yu X, Su S, Yuan L, Li Z, Zhang B. Differences in Supragingival Microbiome in Patients with and without Full-Crown Prostheses. Dent J (Basel) 2022; 10:dj10080152. [PMID: 36005250 PMCID: PMC9406617 DOI: 10.3390/dj10080152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: To characterize the microflora profile of supragingival biofilm in patients with and without full-crown prostheses. Methods: Plaque samples of full-crown prostheses and teeth in patients with porcelain-fused-to-metal crowns, all-ceramic crowns, and no prostheses were collected (three patients per group), using 16S rRNA high-throughput sequencing technology to conduct DNA sequencing on the samples and using Qiime, R, and PICRUSt2 software to perform bioinformatics analyses and functional analyses on sequencing data. Results: In total, 110,209 valid sequences were obtained in the experiment, corresponding to 11 phyla and 120 genera. The predominant species shared by the three groups were phyla Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria and genera Rothia, Porphyromonas, Prevotella, Streptococcus, Veillonella, Leptotrichia, Neisseria, Citrobacter, and Pseudomonas. The species-difference analysis showed that genus Hameophilus significantly increased after the patient wore the dental prosthesis. Compared with the no-prosthesis samples, the functional analysis showed that cell motility increased in the samples from full-crown prostheses, while replication and repair, and translation decreased. Conclusions: This study reveals the changes in the oral microbial community of patients with full-crown prostheses, which could provide insights regarding the safety of materials for long-term use in the oral cavity.
Collapse
Affiliation(s)
- Manli Guo
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730000, China
| | - Zhidong Zhang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jiyuan Lu
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Di Wang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yimin Yan
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shen Zhang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xin Yu
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Songhua Su
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Yuan
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zhige Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
- Hospital of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Baoping Zhang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
- Hospital of Stomatology Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel./Fax: +86-931-8915051
| |
Collapse
|
43
|
Hsieh YP, Hung YM, Tsai MH, Lai LC, Chuang EY. 16S-ITGDB: An Integrated Database for Improving Species Classification of Prokaryotic 16S Ribosomal RNA Sequences. FRONTIERS IN BIOINFORMATICS 2022; 2:905489. [PMID: 36304264 PMCID: PMC9580931 DOI: 10.3389/fbinf.2022.905489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Analyzing 16S ribosomal RNA (rRNA) sequences allows researchers to elucidate the prokaryotic composition of an environment. In recent years, third-generation sequencing technology has provided opportunities for researchers to perform full-length sequence analysis of bacterial 16S rRNA. RDP, SILVA, and Greengenes are the most widely used 16S rRNA databases. Many 16S rRNA classifiers have used these databases as a reference for taxonomic assignment tasks. However, some of the prokaryotic taxonomies only exist in one of the three databases. Furthermore, Greengenes and SILVA include a considerable number of taxonomies that do not have the resolution to the species level, which has limited the classifiers’ performance. In order to improve the accuracy of taxonomic assignment at the species level for full-length 16S rRNA sequences, we manually curated the three databases and removed the sequences that did not have a species name. We then established a taxonomy-based integrated database by considering both taxonomies and sequences from all three 16S rRNA databases and validated it by a mock community. Results showed that our taxonomy-based integrated database had improved taxonomic resolution to the species level. The integrated database and the related datasets are available at https://github.com/yphsieh/ItgDB.
Collapse
Affiliation(s)
- Yu-Peng Hsieh
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuan-Mao Hung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Eric Y. Chuang, ; Liang-Chuan Lai,
| | - Eric Y. Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- College of Biomedical Engineering, China Medical University, Taichung, Taiwan
- *Correspondence: Eric Y. Chuang, ; Liang-Chuan Lai,
| |
Collapse
|
44
|
Dai W, Ye J, Liu S, Chang G, Xu H, Lin Z, Xue Q. Bacterial Community Dynamics in Kumamoto Oyster Crassostrea sikamea Hatchery During Larval Development. Front Microbiol 2022; 13:933941. [PMID: 35903470 PMCID: PMC9315157 DOI: 10.3389/fmicb.2022.933941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that microbes colonized in early life stages have a long-term effect on animal wellbeing in later life stages. Related research is still limited in aquatic animals, particularly in bivalve mollusks. In this study, we analyzed the dynamics of the bacterial composition of the pelagic larval stages (fertilized egg, trochophore, D-stage, veliger, and pediveliger) and the sessile postlarval stage (spat) of Kumamoto oyster (Crassostrea sikamea) and their relationships with the rearing water bacterioplankton in a hatchery by using Illumina sequencing of bacterial 16S rRNA gene. Both bacterioplankton and larval bacterial communities changed greatly over larval development, and the two communities remarkably differed (r = 0.956, P < 0.001), as highlighted by the differences in the dominant taxa and bacterial diversity. Ecological processes of larval bacterial communities were measured by abundance-unweighted and abundance-weighted standardized effect sizes of the mean nearest taxon distance (ses.MNTD). The unweighted ses.MNTD analysis revealed that the deterministic process constrained the larval bacterial assembly, whereas the weighted ses.MNTD analysis showed that larval bacterial composition was initially governed by stochasticity and then gradually by determinism in the later stages. SourceTracker analysis revealed that the larval bacteria were primarily derived from an internal source, mainly from larvae at the present stage. Additionally, the abundances of larval bacterial-mediated functional pathways that were involved in the amino acid, energy, lipid and carbohydrate metabolisms significantly altered with the larval development. These findings suggest that bacteria assemble into distinct communities in larvae and rearing water in the hatchery system, and the dynamics of bacterial community composition in larvae is likely associated with larval developmental stages.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Guangqiu Chang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- *Correspondence: Qinggang Xue
| |
Collapse
|
45
|
Chakoory O, Comtet-Marre S, Peyret P. RiboTaxa: combined approaches for rRNA genes taxonomic resolution down to the species level from metagenomics data revealing novelties. NAR Genom Bioinform 2022; 4:lqac070. [PMID: 36159175 PMCID: PMC9492272 DOI: 10.1093/nargab/lqac070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Metagenomic classifiers are widely used for the taxonomic profiling of metagenomics data and estimation of taxa relative abundance. Small subunit rRNA genes are a gold standard for phylogenetic resolution of microbiota, although the power of this marker comes down to its use as full-length. We aimed at identifying the tools that can efficiently lead to taxonomic resolution down to the species level. To reach this goal, we benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, reference-targeted assemblers and taxonomic classifiers. We then compiled the best tools (BBTools, FastQC, SortMeRNA, MetaRib, EMIRGE, VSEARCH, BBMap and QIIME 2’s Sklearn classifier) to build a pipeline called RiboTaxa. Using metagenomics datasets, RiboTaxa gave the best results compared to other tools (i.e. Kraken2, Centrifuge, METAXA2, phyloFlash, SPINGO, BLCA, MEGAN) with precise taxonomic identification and relative abundance description without false positive detection (F-measure of 100% and 83.7% at genus level and species level, respectively). Using real datasets from various environments (i.e. ocean, soil, human gut) and from different approaches (e.g. metagenomics and gene capture by hybridization), RiboTaxa revealed microbial novelties not discerned by current bioinformatics analysis opening new biological perspectives in human and environmental health.
Collapse
Affiliation(s)
- Oshma Chakoory
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS , F-63000 Clermont-Ferrand, France
| |
Collapse
|
46
|
Wang S, Wang S, Li M, Su Y, Sun Z, Ma H. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches' broom disease. BMC PLANT BIOLOGY 2022; 22:291. [PMID: 35701735 PMCID: PMC9199210 DOI: 10.1186/s12870-022-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nerium indicum Mill. is an ornamental plant that is found in parks, riversides, lakesides, and scenic areas in China and other parts of the world. Our recent survey indicated the prevalence of witches' broom disease (WBD) in Guangdong, China. To find out the possible defense strategies against WBD, we performed a MiSeq based ITS sequencing to identify the possible casual organism, then did a de novo transcriptome sequencing and metabolome profiling in the phloem and stem tip of N. indicum plants suffering from WBD compared to healthy ones. RESULTS The survey showed that Wengyuen county and Zengcheng district had the highest disease incidence rates. The most prevalent microbial species in the diseased tissues was Cophinforma mamane. The transcriptome sequencing resulted in the identification of 191,224 unigenes of which 142,396 could be annotated. There were 19,031 and 13,284 differentially expressed genes (DEGs) between diseased phloem (NOWP) and healthy phloem (NOHP), and diseased stem (NOWS) and healthy stem (NOHS), respectively. The DEGs were enriched in MAPK-signaling (plant), plant-pathogen interaction, plant-hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, linoleic acid and α-linoleic acid metabolism pathways. Particularly, we found that N. indicum plants activated the phytohormone signaling, MAPK-signaling cascade, defense related proteins, and the biosynthesis of phenylpropanoids and flavonoids as defense responses to the pathogenic infection. The metabolome profiling identified 586 metabolites of which 386 and 324 metabolites were differentially accumulated in NOHP vs NOWP and NOHS and NOWS, respectively. The differential accumulation of metabolites related to phytohormone signaling, linoleic acid metabolism, phenylpropanoid and flavonoid biosynthesis, nicotinate and nicotinamide metabolism, and citrate cycle was observed, indicating the role of these pathways in defense responses against the pathogenic infection. CONCLUSION Our results showed that Guangdong province has a high incidence of WBD in most of the surveyed areas. C. mamane is suspected to be the causing pathogen of WBD in N. indicum. N. indicum initiated the MAPK-signaling cascade and phytohormone signaling, leading to the activation of pathogen-associated molecular patterns and hypersensitive response. Furthermore, N. indicum accumulated high concentrations of phenolic acids, coumarins and lignans, and flavonoids under WBD. These results provide scientific tools for the formulation of control strategies of WBD in N. indicum.
Collapse
Affiliation(s)
- Shengjie Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Shengkun Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Ming Li
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yuhang Su
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhan Sun
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Haibin Ma
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
47
|
Abdelhafiz Y, Fernandes JMO, Donati C, Pindo M, Kiron V. Intergenerational Transfer of Persistent Bacterial Communities in Female Nile Tilapia. Front Microbiol 2022; 13:879990. [PMID: 35655994 PMCID: PMC9152445 DOI: 10.3389/fmicb.2022.879990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Resident microbial communities that can support various host functions play a key role in their development and health. In fishes, microbial symbionts are vertically transferred from the parents to their progeny. Such transfer of microbes in mouthbrooder fish species has not been reported yet. Here, we employed Nile tilapia (Oreochromis niloticus) to investigate the vertical transmission of microbes across generations using a 16S rRNA amplicon sequencing approach, based on the presence of bacteria in different generations. Our analysis revealed that the core microbiome in the buccal cavity and posterior intestine of parents shapes the gut microbiome of the progeny across generations. We speculate that the route of this transmission is via the buccal cavity. The identified core microbiome bacteria, namely Nocardioides, Propionibacterium, and Sphingomonas have been reported to play an essential role in the health and development of offspring. These core microbiome members could have specific functions in fish, similar to mammals.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
48
|
Hasegawa T, Kakuta M, Yamaguchi R, Sato N, Mikami T, Murashita K, Nakaji S, Itoh K, Imoto S. Impact of salivary and pancreatic amylase gene copy numbers on diabetes, obesity, and functional profiles of microbiome in Northern Japanese population. Sci Rep 2022; 12:7628. [PMID: 35538098 PMCID: PMC9090785 DOI: 10.1038/s41598-022-11730-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Amylase genes reside in a structurally complex locus, and their copy numbers vary greatly, and several studies have reported their association with obesity. The mechanism of this effect was partially explained by changes in the oral and gut microbiome compositions; however, a detailed mechanism has been unclarified. In this study, we showed their association with diabetes in addition to obesity, and further discovered a plausible mechanism of this association based on the function of commensal bacteria. First, we confirmed that the amylase copy number in the population tends to be larger than that reported in other studies and that there is a positive association between obesity and diabetes (p = 1.89E-2 and 8.63E-3). Second, we identified that relative abundance of some genus level microbiome, Capnocytophaga, Dialister, and previously reported bacteria, were significantly associated with amylase copy numbers. Finally, through functional gene-set analysis using shotgun sequencing, we observed that the abundance of genes in the Acarbose pathway in the gut microbiome was significantly decreased with an increase in the amylase copy number (p-value = 5.80E-4). Our findings can partly explain the mechanism underlying obesity and diabetes in populations with high amylase copy numbers.
Collapse
Affiliation(s)
- Takanori Hasegawa
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Masanori Kakuta
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Rui Yamaguchi
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Koichi Murashita
- COI Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Seiya Imoto
- Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
49
|
Li L, Peng C, Yang Z, He Y, Liang M, Cao H, Qiu Q, Song J, Su Y, Gong B. Microbial communities in swamps of four mangrove reserves driven by interactions between physicochemical properties and microbe in the North Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37582-37597. [PMID: 35066825 DOI: 10.1007/s11356-021-18134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mangroves are distributed in coastal and estuarine regions and are characterized as a sink for terrestrial pollution. It is believed that complex interactions between environmental factors and microbial communities exist in mangrove swamps. However, little is known about environment-microbe interactions. There is a need to clarify some important environmental factors shaping microbial communities and how environmental factors interact with microbial assemblages in mangrove swamps. In the present study, physicochemical and microbial characteristics in four mangrove reserves (named ZZW, Qin, Bei, and GQ) in the North Beibu Gulf were determined. The interactions between environmental factors and microbial assemblages were analyzed with statistical methods in addition to CCA and RDA. Higher concentrations of sulfate (SO42--S) and Fe but lower concentrations of total phosphorus (TP) and NO3--N were detected in ZZW and Qin. Nutrient elements (NO3--N, NH4+-N, organic matter (OM), SO42--S, Fe, and TP) were more important than heavy metals for determining the microbial assemblages, and NO3--N was the most important factor. NO3--N, SO42--S, TP, and Fe formed a significant co-occurrence network in conjunction with some bacterial taxa, most of which were Proteobacteria. Notably, comparatively elevated amounts of sulfate-reducing bacteria (Desulfatibacillum, Desulfomonile, and Desulfatiglans) and sulfur-oxidizing bacteria (Thioprofundum and Thiohalophilus) were found in ZZW and Qin. The co-occurrence network suggested that some bacteria involved in sulfate reduction and sulfur oxidation drive the transformation of P and N, resulting in the reduction of P and N in mangrove swamps. Through the additional utilization of multivariate regression tree (MRT) and co-occurrence network analysis, our research provides a new perspective for understanding the interactions between environmental factors and microbial communities in mangroves.
Collapse
Affiliation(s)
- Lu Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zicong Yang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yu He
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Meng Liang
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Hongmin Cao
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Qinghua Qiu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
50
|
Kioukis A, Pourjam M, Neuhaus K, Lagkouvardos I. Taxonomy Informed Clustering, an Optimized Method for Purer and More Informative Clusters in Diversity Analysis and Microbiome Profiling. FRONTIERS IN BIOINFORMATICS 2022; 2:864597. [PMID: 36304326 PMCID: PMC9580952 DOI: 10.3389/fbinf.2022.864597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial diversity is often analyzed using 16S rRNA gene amplicon sequencing. Commonly, sequences are clustered based on similarity cutoffs to obtain groups reflecting molecular species, genera, or families. Due to the amount of the generated sequencing data, greedy algorithms are preferred for their time efficiency. Such algorithms rely only on pairwise sequence similarities. Thus, sometimes sequences with diverse phylogenetic background are clustered together. In contrast, taxonomic classifiers use position specific taxonomic information in assigning a probable taxonomy to a given sequence. Here we introduce Taxonomy Informed Clustering (TIC), a novel approach that utilizes classifier-assigned taxonomy to restrict clustering to only those sequences that share the same taxonomic path. Based on this concept, we offer a complete and automated pipeline for processing of 16S rRNA amplicon datasets in diversity analyses. First, raw reads are processed to form denoised amplicons. Next, the denoised amplicons are taxonomically classified. Finally, the TIC algorithm progressively assigning clusters at molecular species, genus and family levels. TIC outperforms greedy clustering algorithms like USEARCH and VSEARCH in terms of clusters’ purity and entropy, when using data from the Living Tree Project as test samples. Furthermore, we applied TIC on a dataset containing all Bifidobacteriaceae-classified sequences from the IMNGS database. Here, TIC identified evidence for 1000s of novel molecular genera and species. These results highlight the straightforward application of the TIC pipeline and superior results compared to former methods in diversity studies. The pipeline is freely available at: https://github.com/Lagkouvardos/TIC.
Collapse
Affiliation(s)
| | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL – Institute for Food & Health, Technical University Munich, Freising, Germany
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- *Correspondence: Ilias Lagkouvardos,
| |
Collapse
|