1
|
Font-Porterias N, García-Fernández C, Aizpurua-Iraola J, Comas D, Torrents D, de Cid R, Calafell F. Sequence diversity of the uniparentally transmitted portions of the genome in the resident population of Catalonia. Forensic Sci Int Genet 2022; 61:102783. [DOI: 10.1016/j.fsigen.2022.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
2
|
Flores-Bello A, Bauduer F, Salaberria J, Oyharçabal B, Calafell F, Bertranpetit J, Quintana-Murci L, Comas D. Genetic origins, singularity, and heterogeneity of Basques. Curr Biol 2021; 31:2167-2177.e4. [DOI: 10.1016/j.cub.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
|
3
|
García Ó, Alonso S, Huber N, Bodner M, Parson W. Forensically relevant phylogeographic evaluation of mitogenome variation in the Basque Country. Forensic Sci Int Genet 2020; 46:102260. [PMID: 32062111 DOI: 10.1016/j.fsigen.2020.102260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/26/2019] [Accepted: 02/01/2020] [Indexed: 11/19/2022]
Abstract
The Basque Country has been the focus of population (genetic) and evolutionary studies for decades, as it represents an interesting evolutionary feature: it is the only European country where a non-Indo-European language is still spoken today and, for which there are no known living or extinct relatives. Early studies that were based on anatomical and serological methods, along with subsequent molecular genetic investigations, contain controversial interpretations of their data. Additionally, the analysis of mitochondrial DNA, which is maternally inherited and thus suitable for the examination of the maternal phylogeny of the population, was the focus of some studies. Early mtDNA studies were however restricted to the information provided by the control region or its hypervariable segments only. These are known to harbour little phylogenetic information, particularly for haplogroup H that is dominant in Westeurasian populations including the Basques. Later studies analysed complete mitogenome sequences. Their information content is however limited, either because the number of samples was low, or because these studies only considered particular haplogroups. In this study we present the full mitogenome sequences of 178 autochthonous Basque individuals that were carefully selected based on their familial descent and discuss the observed phylogenetic signals in the light of earlier published findings. We confirm the presence of Basque-specific mtDNA lineages and extend the knowledge of these lineages by providing data on their distribution in comparison to other Basque and non-Basque populations. This dataset improves our understanding of the Basque mtDNA phylogeny and serves as a high-quality dataset that is provided via EMPOP for forensic genetic purposes.
Collapse
Affiliation(s)
- Óscar García
- Forensic Science Unit, Forensic Genetics Section, Basque Country Police, Erandio (Bizkaia), Spain.
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Spain.
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
4
|
Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Neolithic expansions. Sci Rep 2019; 9:14751. [PMID: 31611588 PMCID: PMC6791841 DOI: 10.1038/s41598-019-48596-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/21/2019] [Indexed: 01/05/2023] Open
Abstract
Of particular significance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages first reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA findings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defined by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found.
Collapse
|
5
|
Gómez-Carballa A, Pardo-Seco J, Brandini S, Achilli A, Perego UA, Coble MD, Diegoli TM, Álvarez-Iglesias V, Martinón-Torres F, Olivieri A, Torroni A, Salas A. The peopling of South America and the trans-Andean gene flow of the first settlers. Genome Res 2018; 28:767-779. [PMID: 29735605 PMCID: PMC5991523 DOI: 10.1101/gr.234674.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022]
Abstract
Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Ugo A Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Michael D Coble
- Applied Genetics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Toni M Diegoli
- Office of the Chief Scientist, Defense Forensic Science Center, Ft. Gillem, Georgia 30297, USA.,Analytical Services, Incorporated, Arlington, Virginia 22201, USA
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| |
Collapse
|
6
|
García O, Ajuriagerra J, Alday A, Alonso S, Pérez J, Soto A, Uriarte I, Yurrebaso I. Frequencies of the precision ID ancestry panel markers in Basques using the Ion Torrent PGM TM platform. Forensic Sci Int Genet 2017; 31:e1-e4. [DOI: 10.1016/j.fsigen.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/03/2017] [Accepted: 09/08/2017] [Indexed: 01/13/2023]
|
7
|
Palencia-Madrid L, Cardoso S, Keyser C, López-Quintana JC, Guenaga-Lizasu A, de Pancorbo MM. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula. Eur J Hum Genet 2017; 25:631-636. [PMID: 28272540 DOI: 10.1038/ejhg.2017.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/09/2022] Open
Abstract
The Basque population inhabits the Franco-Cantabrian region in southwest Europe where Palaeolithic human groups took refuge during the Last Glacial Maximum. Basques have been an isolated population, largely considered as one of the most ancient European populations and it is possible that they maintained some pre-Neolithic genetic characteristics. This work shows the results of mitochondrial DNA analysis of seven ancient human remains from the Cave of Santimamiñe in the Basque Country dated from Mesolithic to the Late Roman period. In addition, we compared these data with those obtained from a modern sample of Basque population, 158 individuals that nowadays inhabits next to the cave. The results support the hypothesis that Iberians might have been less affected by the Neolithic mitochondrial lineages carried from the Near East than populations of Central Europe and revealed the unexpected presence of prehistoric maternal lineages such as U5a2a and U3a in the Basque region. Comparison between ancient and current population samples upholds the hypothesis of continuity of the maternal lineages in the area of the Franco-Cantabrian region.
Collapse
Affiliation(s)
- Leire Palencia-Madrid
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Cardoso
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Christine Keyser
- Laboratoire AMIS, CNRS, UMR 5288, Institut de Médecine Légale, Université de Strasbourg, Strasbourg, France
| | | | | | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Phylogenetic and population-based approaches to mitogenome variation do not support association with male infertility. J Hum Genet 2016; 62:361-371. [PMID: 27904151 DOI: 10.1038/jhg.2016.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/08/2022]
Abstract
Infertility has a complex multifactorial etiology and a high prevalence worldwide. Several studies have pointed to variation in the mitochondrial DNA (mtDNA) molecule as a factor responsible for the different disease phenotypes related to infertility. We analyzed 53 mitogenomes of infertile males from Galicia (northwest Spain), and these haplotypes were meta-analyzed phylogenetically with 43 previously reported from Portugal. Taking advantage of the large amount of information available, we additionally carried out association tests between patient mtDNA single-nucleotide polymorphisms (mtSNPs) and haplogroups against Iberian matched controls retrieved from The 1000 Genomes Project and the literature. Phylogenetic and association analyses did not reveal evidence of association between mtSNPs/haplogroups and infertility. Ratios and patterns in patients of nonsynonymous/synonymous changes, and variation at homoplasmic, heteroplasmic and private variants, fall within expected values for healthy individuals. Moreover, the haplogroup background of patients was variable and fits well with patterns typically observed in healthy western Europeans. We did not find evidence of association of mtSNPs or haplogroups pointing to a role for mtDNA in male infertility. A thorough review of the literature on mtDNA variation and infertility revealed contradictory findings and methodological and theoretical problems that overall undermine previous positive findings.
Collapse
|
9
|
Barral-Arca R, Pischedda S, Gómez-Carballa A, Pastoriza A, Mosquera-Miguel A, López-Soto M, Martinón-Torres F, Álvarez-Iglesias V, Salas A. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula. PLoS One 2016; 11:e0159735. [PMID: 27441366 PMCID: PMC4956223 DOI: 10.1371/journal.pone.0159735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies.
Collapse
Affiliation(s)
- Ruth Barral-Arca
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Sara Pischedda
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Ana Pastoriza
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel López-Soto
- Servicio de Biología, Instituto Nacional de Toxicología y Ciencias Forenses, Departamento de Sevilla, Sevilla, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
- Pediatric Emergency and Critical Care Division, Department of Pediatrics, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Galicia, Spain
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
- GenPop Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
- * E-mail:
| |
Collapse
|
10
|
Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis. PLoS One 2015; 10:e0144919. [PMID: 26659590 PMCID: PMC4679185 DOI: 10.1371/journal.pone.0144919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022] Open
Abstract
The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies.
Collapse
|
11
|
De Fanti S, Barbieri C, Sarno S, Sevini F, Vianello D, Tamm E, Metspalu E, van Oven M, Hübner A, Sazzini M, Franceschi C, Pettener D, Luiselli D. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia. PLoS One 2015; 10:e0144391. [PMID: 26640946 PMCID: PMC4671665 DOI: 10.1371/journal.pone.0144391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023] Open
Abstract
Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent.
Collapse
Affiliation(s)
- Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Chiara Barbieri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (CB); (DL)
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Dario Vianello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
| | - Erika Tamm
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Evolutionary Biology, University of Tartu, Tartu, Estonia
| | - Mannis van Oven
- Estonian Biocentre, Evolutionary Biology group, Tartu, Estonia
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Marco Sazzini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre L. Galvani for Integrated Studies on Bioinformatics, Biophysics and Biocomplexity, University of Bologna, Bologna, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Ospedale Bellaria, Bologna, Italy
- CNR, Institute of Organic Synthesis and Photoreactivity (ISOF), Bologna, Italy
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (CB); (DL)
| |
Collapse
|
12
|
Fachal L, Mosquera-Miguel A, Pastor P, Ortega-Cubero S, Lorenzo E, Oterino-Durán A, Toriello M, Quintáns B, Camiña-Tato M, Sesar A, Vega A, Sobrido MJ, Salas A. No evidence of association between common European mitochondrial DNA variants in Alzheimer, Parkinson, and migraine in the Spanish population. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:54-65. [PMID: 25349034 DOI: 10.1002/ajmg.b.32276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/25/2014] [Indexed: 11/07/2022]
Abstract
Certain mitochondrial DNA (mtDNA) variants and haplogroups have been found to be associated with neurological disorders. Several studies have suggested that mtDNA variation could have an etiologic role in these disorders by affecting the ATP production on high-energy demanding organs, such as the brain. We have analyzed 15 mtDNA SNPs (mtSNPs) in five cohorts of cases presenting Alzheimer disease (AD), Parkinson disease (PD), and migraine, and in controls, to evaluate the role mtDNA variation in disease risk. Association tests were undertaken both for mtSNPs and mitochondrial haplogroups. No significant association was detected for any mtSNP or haplogroup in AD and PD cohorts. Two mtSNPs were associated with one migraine cohort after correcting for multiple tests, namely, T4216C and G13708A and haplogroup J (FDR q-value = 0.02; Santiago's cohort). However, this association was not confirmed in a second replication migraine series. A review of the literature reveals the existence of inconsistent findings and methodological shortcomings affecting a large proportion of mtDNA association studies on AD, PD, and migraine. A detailed inspection of the literature highlights the need for performing more rigorous methodological and statistical standards in mtDNA genetic association studies aimed to avoid false positive results of association between mtDNA variants and neurological diseases.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica, CIBERER, IDIS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Santos C, Fregel R, Cabrera VM, Álvarez L, Larruga JM, Ramos A, López MA, Pilar Aluja M, González AM. Mitochondrial DNA and Y-chromosome structure at the mediterranean and atlantic façades of the iberian peninsula. Am J Hum Biol 2013; 26:130-41. [DOI: 10.1002/ajhb.22497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/31/2013] [Accepted: 12/07/2013] [Indexed: 01/24/2023] Open
Affiliation(s)
- Cristina Santos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Rosa Fregel
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Vicente M. Cabrera
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Luis Álvarez
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- IPATIMUP; Institute of Molecular Pathology and Immunology of the University of Porto; 4200-465 Porto Portugal
| | - Jose M. Larruga
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| | - Amanda Ramos
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
- Centre of Research in Natural Resources (CIRN), Department of Biology; University of the Azores; 9500-321 Ponta Delgada Portugal
- Molecular and Cellular Biology Institute (IBMC); University of Porto; 4150-180 Porto Portugal
| | - Miguel A. López
- Clinical Management and Biotechnology Unit; Torre Cárdena Hospital; 04008 Almería Spain
| | - María Pilar Aluja
- Unitat Antropologia Biològica; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Ana M. González
- Department of Genetics; University of La Laguna; 38271 Tenerife Canary Islands Spain
| |
Collapse
|
14
|
Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes. PLoS One 2013; 8:e75397. [PMID: 24143169 PMCID: PMC3797067 DOI: 10.1371/journal.pone.0075397] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their ancestral Indian homeland.
Collapse
|
15
|
Olivieri A, Pala M, Gandini F, Kashani BH, Perego UA, Woodward SR, Grugni V, Battaglia V, Semino O, Achilli A, Richards MB, Torroni A. Mitogenomes from two uncommon haplogroups mark late glacial/postglacial expansions from the near east and neolithic dispersals within Europe. PLoS One 2013; 8:e70492. [PMID: 23936216 PMCID: PMC3729697 DOI: 10.1371/journal.pone.0070492] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
The current human mitochondrial (mtDNA) phylogeny does not equally represent all human populations but is biased in favour of representatives originally from north and central Europe. This especially affects the phylogeny of some uncommon West Eurasian haplogroups, including I and W, whose southern European and Near Eastern components are very poorly represented, suggesting that extensive hidden phylogenetic substructure remains to be uncovered. This study expanded and re-analysed the available datasets of I and W complete mtDNA genomes, reaching a comprehensive 419 mitogenomes, and searched for precise correlations between the ages and geographical distributions of their numerous newly identified subclades with events of human dispersal which contributed to the genetic formation of modern Europeans. Our results showed that haplogroups I (within N1a1b) and W originated in the Near East during the Last Glacial Maximum or pre-warming period (the period of gradual warming between the end of the LGM, ∼19 ky ago, and the beginning of the first main warming phase, ∼15 ky ago) and, like the much more common haplogroups J and T, may have been involved in Late Glacial expansions starting from the Near East. Thus our data contribute to a better definition of the Late and postglacial re-peopling of Europe, providing further evidence for the scenario that major population expansions started after the Last Glacial Maximum but before Neolithic times, but also evidencing traces of diffusion events in several I and W subclades dating to the European Neolithic and restricted to Europe.
Collapse
Affiliation(s)
- Anna Olivieri
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Maria Pala
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | | | - Ugo A. Perego
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Martin B. Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, United Kingdom
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| |
Collapse
|
16
|
Cardoso S, Valverde L, Alfonso-Sánchez MA, Palencia-Madrid L, Elcoroaristizabal X, Algorta J, Catarino S, Arteta D, Herrera RJ, Zarrabeitia MT, Peña JA, de Pancorbo MM. The expanded mtDNA phylogeny of the Franco-Cantabrian region upholds the pre-neolithic genetic substrate of Basques. PLoS One 2013; 8:e67835. [PMID: 23844106 PMCID: PMC3700859 DOI: 10.1371/journal.pone.0067835] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
The European genetic landscape has been shaped by several human migrations occurred since Paleolithic times. The accumulation of archaeological records and the concordance of different lines of genetic evidence during the last two decades have triggered an interesting debate concerning the role of ancient settlers from the Franco-Cantabrian region in the postglacial resettlement of Europe. Among the Franco-Cantabrian populations, Basques are regarded as one of the oldest and more intriguing human groups of Europe. Recent data on complete mitochondrial DNA genomes focused on macrohaplogroup R0 revealed that Basques harbor some autochthonous lineages, suggesting a genetic continuity since pre-Neolithic times. However, excluding haplogroup H, the most representative lineage of macrohaplogroup R0, the majority of maternal lineages of this area remains virtually unexplored, so that further refinement of the mtDNA phylogeny based on analyses at the highest level of resolution is crucial for a better understanding of the European prehistory. We thus explored the maternal ancestry of 548 autochthonous individuals from various Franco-Cantabrian populations and sequenced 76 mitogenomes of the most representative lineages. Interestingly, we identified three mtDNA haplogroups, U5b1f, J1c5c1 and V22, that proved to be representative of Franco-Cantabria, notably of the Basque population. The seclusion and diversity of these female genetic lineages support a local origin in the Franco-Cantabrian area during the Mesolithic of southwestern Europe, ∼10,000 years before present (YBP), with signals of expansions at ∼3,500 YBP. These findings provide robust evidence of a partial genetic continuity between contemporary autochthonous populations from the Franco-Cantabrian region, specifically the Basques, and Paleolithic/Mesolithic hunter-gatherer groups. Furthermore, our results raise the current proportion (≈15%) of the Franco-Cantabrian maternal gene pool with a putative pre-Neolithic origin to ≈35%, further supporting the notion of a predominant Paleolithic genetic substrate in extant European populations.
Collapse
Affiliation(s)
- Sergio Cardoso
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miguel A. Alfonso-Sánchez
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Xabier Elcoroaristizabal
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jaime Algorta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Susana Catarino
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - David Arteta
- Progenika Biopharma, Parque Tecnológico de Bizkaia, Derio-Bizkaia, Spain
| | - Rene J. Herrera
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, Florida, United States of America
| | | | - José A. Peña
- Departmento de Genética, Antropología Física y Fisiología Animal, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Centro de Investigación “Lascaray” Ikergunea, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, Spain
- * E-mail:
| |
Collapse
|
17
|
Brisighelli F, Álvarez-Iglesias V, Fondevila M, Blanco-Verea A, Carracedo Á, Pascali VL, Capelli C, Salas A. Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage. PLoS One 2012; 7:e50794. [PMID: 23251386 PMCID: PMC3519480 DOI: 10.1371/journal.pone.0050794] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. Methods/Principal Findings A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities — and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy – probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. Conclusions/Significance Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times.
Collapse
Affiliation(s)
- Francesca Brisighelli
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Manuel Fondevila
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Alejandro Blanco-Verea
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX-SERGAS), CIBER enfermedades raras, Santiago de Compostela, Galicia, Spain
| | - Vincenzo L. Pascali
- Forensic Genetics Laboratory, Institute of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Antonio Salas
- Unidade de Xenética, Facultade de Medicina, Instituto de Medicina Legal, Universidade de Santiago de Compostela, Galicia, Spain
- * E-mail:
| |
Collapse
|
18
|
Pardiñas AF, Roca A, García-Vazquez E, López B. Assessing the genetic influence of ancient sociopolitical structure: micro-differentiation patterns in the population of Asturias (Northern Spain). PLoS One 2012; 7:e50206. [PMID: 23209673 PMCID: PMC3507697 DOI: 10.1371/journal.pone.0050206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
The human populations of the Iberian Peninsula are the varied result of a complex mixture of cultures throughout history, and are separated by clear social, cultural, linguistic or geographic barriers. The stronger genetic differences between closely related populations occur in the northern third of Spain, a phenomenon commonly known as "micro-differentiation". It has been argued and discussed how this form of genetic structuring can be related to both the rugged landscape and the ancient societies of Northern Iberia, but this is difficult to test in most regions due to the intense human mobility of previous centuries. Nevertheless, the Spanish autonomous community of Asturias shows a complex history which hints of a certain isolation of its population. This, joined together with a difficult terrain full of deep valleys and steep mountains, makes it suitable for performing a study of genetic structure, based on mitochondrial DNA and Y-Chromosome markers. Our analyses do not only show that there are micro-differentiation patterns inside the Asturian territory, but that these patterns are strikingly similar between both uniparental markers. The inference of barriers to gene flow also indicates that Asturian populations from the coastal north and the mountainous south seem to be relatively isolated from the rest of the territory. These findings are discussed in light of historic and geographic data and, coupled with previous evidence, show that the origin of the current genetic patterning might indeed lie in Roman and Pre-Roman sociopolitical divisions.
Collapse
Affiliation(s)
- Antonio F. Pardiñas
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
| | - Agustín Roca
- Departamento de Biología Funcional, Universidad de Oviedo, Asturias, Spain
| | - Eva García-Vazquez
- Departamento de Biología Funcional, Universidad de Oviedo, Asturias, Spain
| | - Belén López
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
19
|
Fachal L, Rodríguez-Pazos L, Ginarte M, Toribio J, Salas A, Vega A. Multiple local and recent founder effects of TGM1 in Spanish families. PLoS One 2012; 7:e33580. [PMID: 22511925 PMCID: PMC3325222 DOI: 10.1371/journal.pone.0033580] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations in the TGM1 gene encoding transglutaminase 1 are a major cause of autosomal recessive congenital ichthyosis. In the Galician (NW Spain) population, three mutations, c.2278C>T, c.1223_1227delACAC and c.984+1G>A, were observed at high frequency, representing ~46%, ~21% and ~13% of all TGM1 gene mutations, respectively. Moreover, these mutations were reported only once outside of Galicia, pointing to the existence of historical episodes of local severe genetic drift in this region. METHODOLOGY/PRINCIPAL FINDINGS In order to determine whether these mutations were inherited from a common ancestor in the Galician population, and to estimate the number of generations since their initial appearance, we carried out a haplotype-based analysis by way of genotyping 21 SNPs within and flanking the TGM1 gene and 10 flanking polymorphic microsatellite markers spanning a region of 12 Mb. Two linkage disequilibrium based methods were used to estimate the time to the most recent common ancestor (TMRCA), while a Bayesian-based procedure was used to estimate the age of the two mutations. Haplotype reconstruction from unphased genotypes of all members of the affected pedigrees indicated that all carriers for each of the two mutations harbored the same haplotypes, indicating common ancestry. CONCLUSIONS/SIGNIFICANCE In good agreement with the documentation record and the census, both mutations arose between 2,800-2,900 years ago (y.a.), but their TMRCA was in the range 600-1,290 y.a., pointing to the existence of historical bottlenecks in the region followed by population growth. This demographic scenario finds further support on a Bayesian Coalescent Analysis based on TGM1 haplotypes that allowed estimating the occurrence of a dramatic reduction of effective population size around 900-4,500 y.a. (95% highest posterior density) followed by exponential growth.
Collapse
Affiliation(s)
- Laura Fachal
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Laura Rodríguez-Pazos
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Manuel Ginarte
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Jaime Toribio
- Department of Dermatology, Complejo Hospitalario Universitario, SERGAS, Faculty of Medicine, Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, and Departamento de Anatomía Patolóxica e Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, Spain
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|