1
|
Turley B, Swiercz AP, Iyer L, Marvar PJ. Internal state-dependent conditioned stimulus delivery using cardiovascular telemetry in mice. Physiol Behav 2021; 236:113414. [PMID: 33819454 DOI: 10.1016/j.physbeh.2021.113414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
To further understand mechanisms of neuropsychiatric disease(s) and their impact on physiological systems, improved pre-clinical models and innovative methodology are needed to assess the internal physiological state of the animal in real-time. To address this challenge we developed a customizable software-based program for Ponemah™ that takes into account the animals diurnal and resting cardiovascular state in a home-cage environment. Using an integrated Pavlovian fear conditioning and cardiovascular telemetry approach in mice, we demonstrate for the first time a novel software add-on application that can remotely trigger a conditioned stimulus (CS) (i.e., audible tone) based on the animals instantaneous cardiovascular state while in its home-cage environment. This new software tool extends the ability to quantify integrated physiological correlates of learned threat and defensive behavior and may aid in further understanding mechanisms related to enhanced cardiovascular and autonomic arousal in anxiety-based disorders.
Collapse
Affiliation(s)
- Ben Turley
- Columbian College of Arts and Sciences, George Washington University, Washington DC, United States
| | - Adam P Swiercz
- Department of Pharmacology and Physiology, George Washington University, Washington DC, United States
| | - Laxmi Iyer
- Department of Pharmacology and Physiology, George Washington University, Washington DC, United States
| | - Paul J Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington DC, United States; Department of Psychiatry and Behavioral Sciences, George Washington University, Washington DC, United States.
| |
Collapse
|
2
|
Lapointe T, Wolter M, Leri F. Analysis of memory modulation by conditioned stimuli. ACTA ACUST UNITED AC 2021; 28:87-94. [PMID: 33593927 PMCID: PMC7888238 DOI: 10.1101/lm.052407.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 12/03/2022]
Abstract
Conditioned stimuli (CS) have multiple psychological functions that can potentially contribute to their effect on memory formation. It is generally believed that CS-induced memory modulation is primarily due to conditioned emotional responses, however, well-learned CSs not only generate the appropriate behavioral and physiological reactions required to best respond to an upcoming unconditioned stimulus (US), but they also serve as signals that the US is about to occur. Therefore, it is possible that CSs can impact memory consolidation even when their ability to elicit conditioned emotional arousal is significantly reduced. To test this, male Sprague–Dawley rats trained on a signaled active avoidance task were divided into “Avoider” and “Non-Avoider” subgroups on the basis of percentage avoidance after 6 d of training. Subgroup differences in responding to the CS complex were maintained during a test carried out in the absence of the US. Moreover, the subgroups displayed significant differences in stress-induced analgesia (hot-plate test) immediately after this test, suggesting significant subgroup differences in conditioned emotionality. Importantly, using the spontaneous object recognition task, it was found that immediate post-sample exposure to the avoidance CS complex had a similar enhancing effect on object memory in the two subgroups. Therefore, to our knowledge, this is the first study to demonstrate that a significant conditioned emotional response is not necessary for the action of a predictive CS on modulation of memory consolidation.
Collapse
Affiliation(s)
- Thomas Lapointe
- Department of Psychology, Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Michael Wolter
- Department of Psychology, Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology, Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Frank GKW. Editorial to the virtual issue highlighting neuroscience based research in eating disorders to mark the 49th Society for Neuroscience Annual Meeting. Int J Eat Disord 2019; 52:1332-1335. [PMID: 31524987 DOI: 10.1002/eat.23163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This virtual issue of the International Journal of Eating Disorders highlights recently published research that is based on neuroscience concepts, to mark the 49th Society for Neuroscience Annual Meeting in Chicago, IL, in November 2019. METHODS AND RESULTS The collection of articles includes research published between 2018 and 2019 that fall within the broader field of clinical neuroscience. Those articles span a broad range of themes, including food intake regulation and reward circuitry, taste perception, decision-making, cognitive and emotional bias, and targeting altered brain circuits using novel therapeutic methods. DISCUSSION The eating disorders field as a whole is increasingly incorporating neuroscience-based concepts when studying those disorders and developing disease models. We hope that this virtual issue will further stimulate discussion and research that is focused on brain circuits and neurobiology to study etiology and pathophysiology of eating disorders to develop more effective treatments.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, University of California, San Diego, Health Sciences, UCSD Eating Disorder Center for Treatment and Research, San Diego, California
| |
Collapse
|
4
|
Swiercz AP, Seligowski AV, Park J, Marvar PJ. Extinction of Fear Memory Attenuates Conditioned Cardiovascular Fear Reactivity. Front Behav Neurosci 2018; 12:276. [PMID: 30483079 PMCID: PMC6244092 DOI: 10.3389/fnbeh.2018.00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD–CVD comorbidity outcomes.
Collapse
Affiliation(s)
- Adam P Swiercz
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States
| | | | - Jeanie Park
- Atlanta VA Medical Center, Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul J Marvar
- Department of Pharmacology and Physiology and Institute for Neuroscience, George Washington University, Washington, DC, United States.,Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
Schleyer M, Fendt M, Schuller S, Gerber B. Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats. Front Psychol 2018; 9:1494. [PMID: 30197613 PMCID: PMC6117914 DOI: 10.3389/fpsyg.2018.01494] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
Finding rewards and avoiding punishments are powerful goals of behavior. To maximize reward and minimize punishment, it is beneficial to learn about the stimuli that predict their occurrence, and decades of research have provided insight into the brain processes underlying such associative reinforcement learning. In addition, it is well known in experimental psychology, yet often unacknowledged in neighboring scientific disciplines, that subjects also learn about the stimuli that predict the absence of reinforcement. Here we evaluate evidence for both these learning processes. We focus on two study cases that both provide a baseline level of behavior against which the effects of associative learning can be assessed. Firstly, we report pertinent evidence from Drosophila larvae. A re-analysis of the literature reveals that through paired presentations of an odor A and a sugar reward (A+) the animals learn that the reward can be found where the odor is, and therefore show an above-baseline preference for the odor. In contrast, through unpaired training (A/+) the animals learn that the reward can be found precisely where the odor is not, and accordingly these larvae show a below-baseline preference for it (the same is the case, with inverted signs, for learning through taste punishment). In addition, we present previously unpublished data demonstrating that also during a two-odor, differential conditioning protocol (A+/B) both these learning processes take place in larvae, i.e., learning about both the rewarded stimulus A and the non-rewarded stimulus B (again, this is likewise the case for differential conditioning with taste punishment). Secondly, after briefly discussing published evidence from adult Drosophila, honeybees, and rats, we report an unpublished data set showing that relative to baseline behavior after truly random presentations of a visual stimulus A and punishment, rats exhibit memories of opposite valence upon paired and unpaired training. Collectively, the evidence conforms to classical findings in experimental psychology and suggests that across species animals associatively learn both through paired and through unpaired presentations of stimuli with reinforcement – with opposite valence. While the brain mechanisms of unpaired learning for the most part still need to be uncovered, the immediate implication is that using unpaired procedures as a mnemonically neutral control for associative reinforcement learning may be leading analyses astray.
Collapse
Affiliation(s)
- Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Sarah Schuller
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Behavior Genetics, Institute for Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Hsu YC, Tsai SF, Yu L, Chuang JI, Wu FS, Jen CJ, Kuo YM. Long-term moderate exercise accelerates the recovery of stress-evoked cardiovascular responses. Stress 2016; 19:125-32. [PMID: 26473638 DOI: 10.3109/10253890.2015.1108305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Psychological stress is an important global health problem. It is well documented that stress increases the incidences of various cardiovascular disorders. Regular exercise is known to reduce resting blood pressure (BP) and heart rate (HR). This study was designed to clarify the effects of long-term exercise on stress-evoked cardiovascular responses and to emphasize post-stress recovery effects. Male Wistar rats underwent 8 weeks of moderate treadmill training, with cardiovascular responses, autonomic nervous system activities and local Fos reactivity changes in the cardiovascular regulation center were monitored before, during and after immobilization stress. A spectral analysis of cardiovascular parameters was used to examine autonomic nervous activities. We found that long-term exercise (i) lowered resting BP, HR and sympathetic activity, but increased resting parasympathetic activity and baroreflex sensitivity (BRS); (ii) accelerated post-stress recovery of stress-evoked cardiovascular and sympathetic responses along with increased BRS and (iii) accelerated post-stress recovery of stress-evoked neuron activations in the paraventricular nucleus, but delayed it in the nucleus of the tractus solitarius. We conclude that, in rats, long-term exercise accelerated recovery of stress-evoked cardiovascular responses differentially altering hypothalamic and medullar neuron activities.
Collapse
Affiliation(s)
- Yuan-Chang Hsu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
| | - Sheng-Feng Tsai
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
| | - Lung Yu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- b Institute of Behavioral Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Jih-Ing Chuang
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Fong-Sen Wu
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Chauying J Jen
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- c Department of Physiology , National Cheng Kung University , Tainan , Taiwan , and
| | - Yu-Min Kuo
- a Institute of Basic Medical Sciences, National Cheng Kung University , Tainan , Taiwan
- d Department of Cell Biology and Anatomy , National Cheng Kung University , Tainan , Taiwan
| |
Collapse
|
7
|
Lazaroni TLDN, Bastos CP, Moraes MFD, Santos RS, Pereira GS. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice. Neurobiol Learn Mem 2015; 127:27-33. [PMID: 26642920 DOI: 10.1016/j.nlm.2015.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023]
Abstract
Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Thiago Luiz do Nascimento Lazaroni
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Cristiane Perácio Bastos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Robson Souza Santos
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
8
|
Tsai SF, Huang TY, Chang CY, Hsu YC, Chen SJ, Yu L, Kuo YM, Jen CJ. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats. Front Behav Neurosci 2014; 8:27. [PMID: 24550802 PMCID: PMC3909871 DOI: 10.3389/fnbeh.2014.00027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/19/2014] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old) and adult (8-week-old) rats with social instability stress for 5 weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the brain-derived neurotrophic factor (BDNF)-TrkB signaling and neuroplasticity in the amygdala.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Physiology, National Cheng Kung University Tainan, Taiwan ; Institute of Basic Medical Sciences, National Cheng Kung University Tainan, Taiwan
| | - Tung-Yi Huang
- Department of Physiology, National Cheng Kung University Tainan, Taiwan
| | - Chia-Yuan Chang
- Department of Engineering Science, National Cheng Kung University Tainan, Taiwan ; Advanced Optoelectronic Technology Center, National Cheng Kung University Tainan, Taiwan
| | - Yuan-Chang Hsu
- Institute of Basic Medical Sciences, National Cheng Kung University Tainan, Taiwan
| | - Shean-Jen Chen
- Department of Engineering Science, National Cheng Kung University Tainan, Taiwan ; Advanced Optoelectronic Technology Center, National Cheng Kung University Tainan, Taiwan
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University Tainan, Taiwan ; Institute of Behavioral Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University Tainan, Taiwan ; Department of Cell Biology and Anatomy, National Cheng Kung University Tainan, Taiwan
| | - Chauying J Jen
- Department of Physiology, National Cheng Kung University Tainan, Taiwan ; Institute of Basic Medical Sciences, National Cheng Kung University Tainan, Taiwan
| |
Collapse
|