1
|
Dental and Periodontal Health in Acute Intermittent Porphyria. Life (Basel) 2022; 12:life12081270. [PMID: 36013449 PMCID: PMC9410213 DOI: 10.3390/life12081270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
In the inherited metabolic disorder acute intermittent porphyria (AIP), high sugar intake prevents porphyric attacks due to the glucose effect and the following high insulin levels that may lower AIP disease activity. Insulin resistance is a known risk factor for periodontitis and sugar changes diabetogenic hormones and affects dental health. We hypothesized differences in homeostasis model assessment (HOMA) scores for insulin resistance in AIP cases vs. controls and in those with periodontitis. Our aim was to systematically study dental health in AIP as poor dental health was previously only described in case reports. Further, we aimed to examine if poor dental health and kidney failure might worsen AIP as chronic inflammation and kidney failure might increase disease activity. In 47 AIP cases and 47 matched controls, X-rays and physical examination of clinical attachment loss (CAL), probing pocket depth (PPD), and decayed missing filled teeth (DMFT) were performed. Dietary intake was evaluated through a diet logbook. Plasma cytokines and diabetogenic hormones were measured using multiplex technology and urine porphobilinogen and kidney and liver function by routine methods. An excel spreadsheet from the University of Oxford was used to estimate HOMA scores; beta cell function, HOMA%B (%B), insulin sensitivity, HOMA%S (%S), and insulin resistance HOMA-IR (IR), based on glucose and plasma (P) C-peptide. The Wilcoxon matched-pairs signed rank test, the Mann−Whitney U-test, and Spearman’s non-parametric correlation were used. Insulin (p = 0.007) and C-peptide (p = 0.006) were higher in the AIP cases with periodontitis versus those without. In AIP patients, the liver fibrosis index 4 correlated with DMFT (p < 0.001) and CAL ≥4 mm (p = 0.006); the estimated glomerular filtration rate correlated with DMFT (p < 0.001) and CAL ≥4 mm (p = 0.02). CAL ≥4 mm was correlated with chemokine ligand 11 and interleukin (IL)-13 (p = 0.04 for both), and PPD >5 mm was correlated with plasminogen activator inhibitor-1 (p = 0.003) and complement component 3 (p = 0.02). In conclusion, dental health in AIP cases was correlated with insulin resistance, inflammatory markers, and biomarkers of kidney and liver function, demonstrating that organ damage in the kidney and liver are associated with poorer dental health.
Collapse
|
2
|
Córdoba KM, Serrano-Mendioroz I, Jericó D, Merino M, Jiang L, Sampedro A, Alegre M, Corrales F, Garrido MJ, Martini PGV, Lanciego JL, Prieto J, Berraondo P, Fontanellas A. Recombinant porphobilinogen deaminase targeted to the liver corrects enzymopenia in a mouse model of acute intermittent porphyria. Sci Transl Med 2022; 14:eabc0700. [PMID: 35020410 DOI: 10.1126/scitranslmed.abc0700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Karol M Córdoba
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Daniel Jericó
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - María Merino
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain
| | - Lei Jiang
- Moderna Inc., Cambridge, MA 02139, USA
| | - Ana Sampedro
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Manuel Alegre
- Neurophysiology Laboratory, Neuroscience Area, CIMA and Clínica Universitaria, University of Navarra, 31008 Pamplona, Spain
| | - Fernando Corrales
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - María J Garrido
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31008 Pamplona, Spain
| | | | - José Luis Lanciego
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.,Neurosciences Department, CIMA-University of Navarra, 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Jesús Prieto
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.,Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Ricci A, Guida CC, Manzini P, Cuoghi C, Ventura P. Kidney Involvement in Acute Hepatic Porphyrias: Pathophysiology and Diagnostic Implications. Diagnostics (Basel) 2021; 11:2324. [PMID: 34943561 PMCID: PMC8700387 DOI: 10.3390/diagnostics11122324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
Porphyrias are a group of rare disorders originating from an enzyme dysfunction in the pathway of heme biosynthesis. Depending on the specific enzyme involved, porphyrias manifest under drastically different clinical pictures. The most dramatic presentation of the four congenital acute hepatic porphyrias (AHPs: acute intermittent porphyria-AIP, ALAD deficiency, hereditary coproporphyria-HCP, and porphyria variegata-VP) consists of potentially life-threatening neurovisceral attacks, for which givosiran, a novel and effective siRNA-based therapeutic, has recently been licensed. Nonetheless, the clinical manifestations of acute porphyrias are multifaceted and do not limit themselves to acute attacks. In particular, porphyria-associated kidney disease (PAKD) is a distinct, long-term degenerating condition with specific pathological and clinical features, for which a satisfactory treatment is not available yet. In PAKD, chronic tubule-interstitial damage has been most commonly reported, though other pathologic features (e.g., chronic fibrous intimal hyperplasia) are consistent findings. Given the relevant role of the kidney in porphyrin metabolism, the mechanisms possibly intervening in causing renal damage in AHPs are different: among others, δ-aminolevulinic acid (ALA)-induced oxidative damage on mitochondria, intracellular toxic aggregation of porphyrins in proximal tubular cells, and derangements in the delicate microcirculatory balances of the kidney might be implicated. The presence of a variant of the human peptide transporter 2 (PEPT2), with a greater affinity to its substrates (including ALA), might confer a greater susceptibility to kidney damage in patients with AHPs. Furthermore, a possible effect of givosiran in worsening kidney function has been observed. In sum, the diagnostic workup of AHPs should always include a baseline evaluation of renal function, and periodic monitoring of the progression of kidney disease in patients with AHPs is strongly recommended. This review outlines the role of the kidney in porphyrin metabolism, the available evidence in support of the current etiologic and pathogenetic hypotheses, and the known clinical features of renal involvement in acute hepatic porphyrias.
Collapse
Affiliation(s)
- Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| | - Claudio Carmine Guida
- Interregional Reference Center for the Prevention, Surveillance, Diagnosis and Treatment of Porphyria, Nephrology and Dialysis Unit, Scientific Institute for Research and Health Care, Viale Cappuccini, San Giovanni Rotondo, 71013 Foggia, Italy;
| | - Paola Manzini
- Transfusion Medicine and Blood Establishment, Regional Reference Centre for Diagnosis and Management of Porphyrias, University Hospital City of Science and Health of Torino, 10126 Torino, Italy;
| | - Chiara Cuoghi
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Regional Reference Centre for Diagnosing and Management of Porphyrias, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico of Modena, Largo del Pozzo 71, 41124 Modena, Italy; (A.R.); (C.C.)
| |
Collapse
|
4
|
Imi Y, Shibata K. Nutritional Factors That Affect the Formation of 5-Aminolevulinic Acid, a Key Intermediate of Heme Biosynthesis. J Nutr Sci Vitaminol (Tokyo) 2021; 67:339-350. [PMID: 34719620 DOI: 10.3177/jnsv.67.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
5-Aminolevulinic acid (ALA) is a key intermediate of heme biosynthesis, which is an essential component of the respiratory chain. Therefore, nutrients that affect ALA biosynthesis eventually affect ATP production, which is the basis of mitochondrial function. Although the effects of various non-nutrient components that affect ALA after biosynthesis have been reported, there are few reports on the effects of dietary amino acids/protein on ALA formation and the effects of dietary vitamins that are involved in amino acid metabolism. In mitochondria, ALA is synthesized from succinyl-CoA and glycine by the pyridoxal phosphate-dependent enzyme ALA synthase [EC 2.3.1.37]. In this study, the effects of dietary amino acids/protein and vitamins on the amount of ALA synthesized were investigated using mice, rats, and cultured cells. Amounts of ALA in plasma and urine, and porphyrins in plasma increased with increasing protein intake. Vitamin B1 insufficiency did not affect ALA synthesis. Vitamin B6 insufficiency increased the amount of ALA synthesized, while niacin deficiency markedly reduced ALA synthesis. Thus, for heme synthesis, an essential biological substance for life, the amounts of amino acids, as well as the pathways metabolizing amino acids to glycine and succinyl-CoA are very important. Specifically, it is important that niacin is associated with the formation of glycine and succinyl-CoA from amino acids.
Collapse
Affiliation(s)
- Yukiko Imi
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University
| | - Katsumi Shibata
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University.,Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| |
Collapse
|
5
|
de Sousa Arantes Ferreira G, de Oliveira LC, de Sousa Ulisses LR, Watanabe ALC, Medeiros IN, Cardoso HSS, Alves ICDC, de Almeida TM, de Lima LV, Fontoura RP, Silva ERSE, de Araújo PL. Combined Liver and Kidney Transplant in Acute Intermittent Porphyria: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927832. [PMID: 33203827 PMCID: PMC7681258 DOI: 10.12659/ajcr.927832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute intermittent porphyria is an inherited disease caused by a defect in heme biosynthesis, with accumulation of neurotoxic metabolites leading to acute neurovisceral symptoms. Some patients develop long-term neurological and renal damage after the acute episodes, many of them requiring hemodialysis. Since heme production in the human body occurs predominantly in the bone marrow and liver, liver transplantation has been shown to significantly reduce the production of neurotoxic metabolites, effectively controlling the disease. Patients with severe acute intermittent porphyria who have chronic kidney failure may benefit from combined kidney and liver transplant. Only 2 uses of this approach have been previously reported in the literature. CASE REPORT We report here the case of a 19-year-old male patient who received a combined liver and kidney transplant for the treatment of acute intermittent porphyria. He presented the first symptoms of the disease 4 years before the procedure, with abdominal pain and significant neurological impairment, with weakness requiring prolonged mechanical ventilation. He also had chronic kidney failure secondary to the porphyria. A combined liver and kidney transplant was performed, with no intraoperative complications. The explanted liver showed light siderosis, as well as portal and perisinusoidal fibrosis at microscopy. At 3.5 years of follow-up, he remains clinically well, with normal hepatic and renal function, had had no further acute porphyria episodes, and shows progressive neurological recovery. CONCLUSIONS This case demonstrates that combined liver and kidney transplant can be a curative treatment for patients with severe acute intermittent porphyria associated with end-stage renal failure. The patient shows satisfactory long-term function of both grafts, with no clinical or biochemical signs of porphyria recurrence.
Collapse
Affiliation(s)
- Gustavo de Sousa Arantes Ferreira
- Department of Liver Transplantation, Institute of Cardiology of the Federal District (ICDF), Brasília, Brazil
- Corresponding Author: Gustavo de Sousa Arantes Ferreira, e-mail:
| | | | | | - Andre Luis Conde Watanabe
- Department of Liver Transplantation, Institute of Cardiology of the Federal District (ICDF), Brasília, Brazil
| | - Isabela Novais Medeiros
- Department of Kidney Transplantation, Institute of Cardiology of the Federal District (ICDF), Brasília, Brazil
| | | | - Inara Creão da Costa Alves
- Department of Kidney Transplantation, Institute of Cardiology of the Federal District (ICDF), Brasília, Brazil
| | - Tiago Martins de Almeida
- Department of Kidney Transplantation, Institute of Cardiology of the Federal District (ICDF), Brasília, Brazil
| | | | | | | | | |
Collapse
|
6
|
Ma Y, Teng Q, Zhang Y, Zhang S. Acute intermittent porphyria: focus on possible mechanisms of acute and chronic manifestations. Intractable Rare Dis Res 2020; 9:187-195. [PMID: 33139977 PMCID: PMC7586881 DOI: 10.5582/irdr.2020.03054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Porphyrias are a group of inherited metabolic diseases that include eight types, each of which is caused by a mutation that affects an enzyme of the heme biosynthetic pathway. When an enzyme defect has physiological significance, it leads to overproduction of pathway precursors prior to the defective step. The partial absence of the third enzyme in the heme biosynthetic pathway, porphobilinogen deaminase (PBGD) also known as hydroxymethylbilane synthase (HMBS), results in acute intermittent porphyria (AIP), which affects mainly women. Subjects who had AIP symptoms were deemed to have manifest AIP (MAIP). Clinical manifestations are usually diverse and non-specific. Acute AIP episodes may present with abdominal pain, nausea, and vomiting, and repeated episodes may result in a series of chronic injuries. Therefore, studying the mechanisms of acute and chronic manifestations of AIP is of great significance. This review aims to summarize the possible mechanisms of acute and chronic manifestations in patients with AIP.
Collapse
Affiliation(s)
- Yuelin Ma
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Teng
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiran Zhang
- School of First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Songyun Zhang
- Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Lazareth H, Talbi N, Kamar N, Levi C, Moulin B, Caillard S, Frimat L, Chemouny J, Chatelet V, Vachey C, Snanoudj R, Lefebvre T, Karras A, Gouya L, Schmitt C, Puy H, Pallet N. Kidney transplantation improves the clinical outcomes of Acute Intermittent Porphyria. Mol Genet Metab 2020; 131:259-266. [PMID: 32893121 DOI: 10.1016/j.ymgme.2020.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute Intermittent Porphyria (AIP) is a rare inherited autosomal dominant disorder of heme biosynthesis. Porphyria-associated kidney disease occurs in more than 50% of the patients with AIP, and end stage renal disease (ESRD) can be a devastating complication for AIP patients. The outcomes of AIP patients after kidney transplantation are poorly known. METHODS We examined the outcomes of 11 individuals with AIP, identified as kidney transplant recipients in the French Porphyria Center Registry. RESULTS AIP had been diagnosed on average 19 years before the diagnosis of ESRD except for one patient in whom the diagnosis of AIP had been made 5 years after the initiation of dialysis. Median follow-up after transplantation was 9 years. A patient died 2 months after transplantation from a cardiac arrest and a patient who received a donation after cardiac death experienced a primary non-function. No rejection episode and no noticeable adverse event occurred after transplantation. Serum creatinine was on average 117 μmol/l, and proteinuria <0.5 g/l in all patients at last follow up. All usually prescribed drugs after transplantation are authorized except for trimethoprim/sulfamethoxazole. Critically, acute porphyria attacks almost disappeared after kidney transplantation, and skin lesions resolved in all patients. CONCLUSION Kidney transplantation is the treatment of choice for AIP patients with ESRD and dramatically reduces the disease activity.
Collapse
Affiliation(s)
- Helene Lazareth
- Nephrology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris University, France
| | - Neila Talbi
- French Porphyria Center, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes and Research Center on Inflammation, INSERM U1149, Paris University, France
| | - Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM U1043, IFR-BMT, University Paul Sabatier, Toulouse, France
| | - Charlène Levi
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot University Hospital, Lyon, France
| | - Bruno Moulin
- Nephrology and Transplantation Department, University Hospital, Strasbourg, France
| | - Sophie Caillard
- Nephrology and Transplantation Department, University Hospital, Strasbourg, France
| | - Luc Frimat
- Nephrology, Dialysis and Transplantation Department, CHU Nancy, Nancy, France
| | - Jonathan Chemouny
- Nephrology, Dialysis and Transplantation Department, Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, CIC-P 1414 (Centre d'investigation clinique), F-35000 Rennes, France
| | - Valérie Chatelet
- Nephrology, Dialysis, Transplantation Department, CHU Cote de Nacre, Caen University, Caen, France
| | - Clément Vachey
- Nephrology, Dialysis and Transplantation Department, CHU Besançon, Besançon, France
| | - Renaud Snanoudj
- Nephrology, Dialysis and Renal Transplantation Department, Hospital Foch, Suresnes, France
| | - Thibaud Lefebvre
- French Porphyria Center, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes and Research Center on Inflammation, INSERM U1149, Paris University, France
| | - Alexandre Karras
- Nephrology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris University, France
| | - Laurent Gouya
- French Porphyria Center, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes and Research Center on Inflammation, INSERM U1149, Paris University, France
| | - Caroline Schmitt
- French Porphyria Center, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes and Research Center on Inflammation, INSERM U1149, Paris University, France
| | - Hervé Puy
- French Porphyria Center, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes and Research Center on Inflammation, INSERM U1149, Paris University, France
| | - Nicolas Pallet
- Nephrology Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris University, France; Clinical Chemistry Department, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris University, Paris, France.
| |
Collapse
|
8
|
Bustad HJ, Toska K, Schmitt C, Vorland M, Skjærven L, Kallio JP, Simonin S, Letteron P, Underhaug J, Sandberg S, Martinez A. A Pharmacological Chaperone Therapy for Acute Intermittent Porphyria. Mol Ther 2019; 28:677-689. [PMID: 31810863 PMCID: PMC7001003 DOI: 10.1016/j.ymthe.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/26/2022] Open
Abstract
Mutations in hydroxymethylbilane synthase (HMBS) cause acute intermittent porphyria (AIP), an autosomal dominant disease where typically only one HMBS allele is mutated. In AIP, the accumulation of porphyrin precursors triggers life-threatening neurovisceral attacks and at long-term, entails an increased risk of hepatocellular carcinoma, kidney failure, and hypertension. Today, the only cure is liver transplantation, and a need for effective mechanism-based therapies, such as pharmacological chaperones, is prevailing. These are small molecules that specifically stabilize a target protein. They may be developed into an oral treatment, which could work curatively during acute attacks, but also prophylactically in asymptomatic HMBS mutant carriers. With the use of a 10,000 compound library, we identified four binders that further increased the initially very high thermal stability of wild-type HMBS and protected the enzyme from trypsin digestion. The best hit and a selected analog increased steady-state levels and total HMBS activity in human hepatoma cells overexpressing HMBS, and in an Hmbs-deficient mouse model with a low-expressed wild-type-like allele, compared to untreated controls. Moreover, the concentration of porphyrin precursors decreased in liver of mice treated with the best hit. Our findings demonstrate the great potential of these hits for the development of a pharmacological chaperone-based corrective treatment of AIP by enhancing wild-type HMBS function independently of the patients’ specific mutation.
Collapse
Affiliation(s)
- Helene J Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Karen Toska
- Norwegian Porphyria Centre (NAPOS), Laboratory for Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Caroline Schmitt
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France; INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Laboratory for Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Lars Skjærven
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Sylvie Simonin
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France; INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France
| | - Philippe Letteron
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France
| | - Jarl Underhaug
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Laboratory for Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway; Department of Global Public Health and Primary Care, University of Bergen, 5020 Bergen, Norway; The Norwegian Quality Improvement of Primary Care Laboratories, Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
9
|
Ruspini SF, Zuccoli JR, Lavandera JV, Martínez MDC, Oliveri LM, Gerez EN, Batlle AMDC, Buzaleh AM. Effects of volatile anaesthetics on heme metabolism in a murine genetic model of Acute Intermittent Porphyria. A comparative study with other porphyrinogenic drugs. Biochim Biophys Acta Gen Subj 2018; 1862:1296-1305. [PMID: 29476795 DOI: 10.1016/j.bbagen.2018.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice. METHODS The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned. RESULTS Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected. DISCUSSION Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group. GENERAL SIGNIFICANCE This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.
Collapse
Affiliation(s)
- Silvina Fernanda Ruspini
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Marìa Del Carmen Martínez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | - Leda María Oliveri
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Alcira María Del Carmen Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Curr Opin Hematol 2017; 24:198-207. [PMID: 28118224 DOI: 10.1097/moh.0000000000000330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Many studies over the past decade have together identified new genes including modifier genes and new regulation and pathophysiological mechanisms in inherited inborn diseases of the heme biosynthetic pathway. A new porphyria has been characterized: X-linked protoporphyria and the perspective to have innovative treatment at very short-term became a reality. We will summarize how recent data on both ALAS1 and ALAS2 have informed our understanding of disease pathogenesis with an emphasis on how this information may contribute to new therapeutic strategies. RECENT FINDINGS The development of clinical and biological porphyria networks improved the long-term follow up of cohorts. The ageing of patients have allowed for the identification of novel recurrently mutated genes, and highlighted long-term complications in acute hepatic porphyrias. The treatment of hepatic porphyrias by an RNAi-targeting hepatic ALAS1 is actually tested and may lead to improve the management of acute attacks.In erythropoietic porphyrias, the key role of ALAS2 as a gate keeper of the heme and subsequently hemoglobin synthesis has been demonstrated. Its implication as a modifier gene in over erythroid disorders has also been documented. SUMMARY The knowledge of both the genetic abnormalities and the regulation of heme biosynthesis has increased over the last 5 years and open new avenues in the management of erythropoietic and acute hepatic porphyrias.
Collapse
|
11
|
Storjord E, Dahl JA, Landsem A, Fure H, Ludviksen JK, Goldbeck-Wood S, Karlsen BO, Berg KS, Mollnes TE, W Nielsen E, Brekke OL. Systemic inflammation in acute intermittent porphyria: a case-control study. Clin Exp Immunol 2016; 187:466-479. [PMID: 27859020 DOI: 10.1111/cei.12899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 12/26/2022] Open
Abstract
This study aimed to examine whether acute intermittent porphyria (AIP) is associated with systemic inflammation and whether the inflammation correlates with disease activity. A case-control study with 50 AIP cases and age-, sex- and place of residence-matched controls was performed. Plasma cytokines, insulin and C-peptide were analysed after an overnight fast using multiplex assay. Long pentraxin-3 (PTX3) and complement activation products (C3bc and TCC) were analysed using enzyme-linked immunosorbent assay (ELISA). Urine porphobilinogen ratio (U-PBG, µmol/mmol creatinine), haematological and biochemical tests were performed using routine methods. Questionnaires were used to register AIP symptoms, medication and other diseases. All 27 cytokines, chemokines and growth factors investigated were increased significantly in symptomatic AIP cases compared with controls (P < 0·0004). Hierarchical cluster analyses revealed a cluster with high visfatin levels and several highly expressed cytokines including interleukin (IL)-17, suggesting a T helper type 17 (Th17) inflammatory response in a group of AIP cases. C3bc (P = 0·002) and serum immunoglobulin (Ig)G levels (P = 0·03) were increased significantly in cases with AIP. The U-PBG ratio correlated positively with PTX3 (r = 0·38, P = 0·006), and with terminal complement complex (TCC) levels (r = 0·33, P = 0·02). PTX3 was a significant predictor of the biochemical disease activity marker U-PBG in AIP cases after adjustment for potential confounders in multiple linear regression analyses (P = 0·032). Prealbumin, C-peptide, insulin and kidney function were all decreased in the symptomatic AIP cases, but not in the asymptomatic cases. These results indicate that AIP is associated with systemic inflammation. Decreased C-peptide levels in symptomatic AIP cases indicate that reduced insulin release is associated with enhanced disease activity and reduced kidney function.
Collapse
Affiliation(s)
- E Storjord
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, K.G. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway
| | - J A Dahl
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - A Landsem
- Institute of Clinical Medicine, K.G. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway
| | - H Fure
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - J K Ludviksen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - S Goldbeck-Wood
- Department of Obstetrics and Gynecology, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Research, Nordland Hospital, Bodø, Norway
| | - B O Karlsen
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - K S Berg
- Department of Anesthesiology, Nordland Hospital, Bodø, Norway
| | - T E Mollnes
- Institute of Clinical Medicine, K.G. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - E W Nielsen
- Institute of Clinical Medicine, K.G. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Anesthesiology, Nordland Hospital, Bodø, Norway.,Nord University, Bodø, Norway
| | - O-L Brekke
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.,Institute of Clinical Medicine, K.G. Jebsen TREC, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disease caused by hepatic deficiency of hydroxymethylbilane synthase (HMBS), the third enzyme of the heme synthesis pathway. The dominant clinical feature is acute neurovisceral attack associated with high production of potentially neurotoxic porphyrin precursors due to increased hepatic heme consumption. Current Standard of Care is based on a down-regulation of hepatic heme synthesis using heme therapy. Recurrent hyper-activation of the hepatic heme synthesis pathway affects about 5% of patients and can be associated with neurological and metabolic manifestations and long-term complications including chronic kidney disease and increased risk of hepatocellular carcinoma. Prophylactic heme infusion is an effective strategy in some of these patients, but it induces tolerance and its frequent application may be associated with thromboembolic disease and hepatic siderosis. Orthotopic liver transplantation is the only curative treatment in patients with recurrent acute attacks. Emerging therapies including replacement enzyme therapy or gene therapies (HMBS-gene transfer and ALAS1-gene expression inhibition) are being developed to improve quality of life, reduce the significant morbidity associated with current therapies and prevent late complications such as hepatocellular cancer or kidney failure in HMBS mutation carriers with long-standing high production of noxious heme precursors. Herein, we provide a critical digest of the recent literature on the topic and a summary of recently developed approaches to AIP treatment and their clinical implications.
Collapse
|
13
|
High prevalence of and potential mechanisms for chronic kidney disease in patients with acute intermittent porphyria. Kidney Int 2015; 88:386-95. [PMID: 25830761 DOI: 10.1038/ki.2015.97] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
Acute intermittent porphyria (AIP) is a genetic disorder of the synthesis of heme caused by a deficiency in hydroxymethylbilane synthase (HMBS), leading to the overproduction of the porphyrin precursors δ-aminolevulinic acid and porphobilinogen. The aim of this study is to describe the clinical and biological characteristics, the renal pathology, and the cellular mechanisms of chronic kidney disease associated with AIP. A total of 415 patients with HMBS deficiency followed up in the French Porphyria Center were enrolled in 2003 in a population-based study. A follow-up study was conducted in 2013, assessing patients for clinical, biological, and histological parameters. In vitro models were used to determine whether porphyrin precursors promote tubular and endothelial cytotoxicity. Chronic kidney disease occurred in up to 59% of the symptomatic AIP patients, with a decline in the glomerular filtration rate of ~1 ml/min per 1.73 m(2) annually. Proteinuria was absent in the vast majority of the cases. The renal pathology was a chronic tubulointerstitial nephropathy, associated with a fibrous intimal hyperplasia and focal cortical atrophy. Our experimental data provide evidence that porphyrin precursors promote endoplasmic reticulum stress, apoptosis, and epithelial phenotypic changes in proximal tubular cells. In conclusion, the diagnosis of chronic kidney disease associated with AIP should be considered in cases of chronic tubulointerstitial nephropathy and/or focal cortical atrophy with severe proliferative arteriosclerosis.
Collapse
|
14
|
Augmenting PBGD Expression in the Liver as a Novel Gene Therapy for Acute Intermittent Porphyria (AIPgene). HUM GENE THER CL DEV 2014; 25:61-3. [DOI: 10.1089/humc.2014.2506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
|
16
|
Clinical manifestations and diagnostic challenges in acute porphyrias. Case Rep Hematol 2013; 2013:628602. [PMID: 23476835 PMCID: PMC3583083 DOI: 10.1155/2013/628602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
The porphyrias are a group of disorders characterized by an enzyme deficiency in the heme biosynthetic pathway. These can be classified into either erythropoietic or hepatic forms depending on the site of the major enzyme deficiency. The diagnosis of acute porphyrias, however, can be very challenging due to overlapping features amongst the various types. Initial suspicion is based on a myriad of clinical manifestations, which then are confirmed by laboratory testing where available. Genetic testing is now also available for the different types of porphyrias, aiding in the definitive diagnosis. Here, we present a challenging case of porphyria in a patient with end-stage renal disease and present the diagnostic challenges associated with the case and the ways forward.
Collapse
|