1
|
Mobile Element Integration Reveals a Chromosome Dimer Resolution System in Legionellales. mBio 2022; 13:e0217122. [PMID: 36314797 PMCID: PMC9765430 DOI: 10.1128/mbio.02171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In bacteria, the mechanisms used to repair DNA lesions during genome replication include homologous recombination between sister chromosomes. This can lead to the formation of chromosome dimers if an odd number of crossover events occurs. The dimers must be resolved before cell separation to ensure genomic stability and cell viability. Dimer resolution is achieved by the broadly conserved dif/Xer system, which catalyzes one additional crossover event immediately prior to cell separation. While dif/Xer systems have been characterized or predicted in the vast majority of proteobacteria, no homologs to dif or xer have been identified in the order Legionellales. Here, we report the discovery of a distinct single-recombinase dif/Xer system in the intracellular pathogen Legionella pneumophila. The dif site was uncovered by our analysis of Legionella mobile element-1 (LME-1), which harbors a dif site mimic and integrates into the L. pneumophila genome via site-specific recombination. We demonstrate that lpg1867 (here named xerL) encodes a tyrosine recombinase that is necessary and sufficient for catalyzing recombination at the dif site and that deletion of dif or xerL causes filamentation along with extracellular and intracellular growth defects. We show that the dif/XerL system is present throughout Legionellales and that Coxiella burnetii XerL and its cognate dif site can functionally substitute for the native system in L. pneumophila. Finally, we describe an unexpected link between C. burnetii dif/Xer and the maintenance of its virulence plasmids. IMPORTANCE The maintenance of circular chromosomes depends on the ability to resolve aberrant chromosome dimers after they form. In most proteobacteria, broadly conserved Xer recombinases catalyze single crossovers at short, species-specific dif sites located near the replication terminus. Chromosomal dimerization leads to the formation of two copies of dif within the same molecule, leading to rapid site-specific recombination and conversion back into chromosome monomers. The apparent absence of chromosome dimer resolution mechanisms in Legionellales has been a mystery to date. By studying a phage-like mobile genetic element, LME-1, we have identified a previously unknown single-recombinase dif/Xer system that is not only widespread across Legionellales but whose activity is linked to virulence in two important human pathogens.
Collapse
|
2
|
Smyshlyaev G, Bateman A, Barabas O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol Syst Biol 2021; 17:e9880. [PMID: 34018328 PMCID: PMC8138268 DOI: 10.15252/msb.20209880] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Georgy Smyshlyaev
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)HinxtonUK
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitHeidelbergGermany
- Department of Molecular BiologyUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Jolly SM, Gainetdinov I, Jouravleva K, Zhang H, Strittmatter L, Bailey SM, Hendricks GM, Dhabaria A, Ueberheide B, Zamore PD. Thermus thermophilus Argonaute Functions in the Completion of DNA Replication. Cell 2020; 182:1545-1559.e18. [PMID: 32846159 PMCID: PMC7502556 DOI: 10.1016/j.cell.2020.07.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/25/2020] [Accepted: 07/24/2020] [Indexed: 01/06/2023]
Abstract
In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.
Collapse
Affiliation(s)
- Samson M Jolly
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karina Jouravleva
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Han Zhang
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lara Strittmatter
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shannon M Bailey
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory M Hendricks
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Center for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Li H, Marceau M, Yang T, Liao T, Tang X, Hu R, Xie Y, Tang H, Tay A, Shi Y, Shen Y, Yang T, Pi X, Lamichhane B, Luo Y, Debowski AW, Nilsson HO, Haslam SM, Mulloy B, Dell A, Stubbs KA, Marshall BJ, Benghezal M. East-Asian Helicobacter pylori strains synthesize heptan-deficient lipopolysaccharide. PLoS Genet 2019; 15:e1008497. [PMID: 31747390 PMCID: PMC6892558 DOI: 10.1371/journal.pgen.1008497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/04/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023] Open
Abstract
The lipopolysaccharide O-antigen structure expressed by the European Helicobacter pylori model strain G27 encompasses a trisaccharide, an intervening glucan-heptan and distal Lewis antigens that promote immune escape. However, several gaps still remain in the corresponding biosynthetic pathway. Here, systematic mutagenesis of glycosyltransferase genes in G27 combined with lipopolysaccharide structural analysis, uncovered HP0102 as the trisaccharide fucosyltransferase, HP1283 as the heptan transferase, and HP1578 as the GlcNAc transferase that initiates the synthesis of Lewis antigens onto the heptan motif. Comparative genomic analysis of G27 lipopolysaccharide biosynthetic genes in strains of different ethnic origin revealed that East-Asian strains lack the HP1283/HP1578 genes but contain an additional copy of HP1105 and JHP0562. Further correlation of different lipopolysaccharide structures with corresponding gene contents led us to propose that the second copy of HP1105 and the JHP0562 may function as the GlcNAc and Gal transferase, respectively, to initiate synthesis of the Lewis antigen onto the Glc-Trio-Core in East-Asian strains lacking the HP1283/HP1578 genes. In view of the high gastric cancer rate in East Asia, the absence of the HP1283/HP1578 genes in East-Asian H. pylori strains warrants future studies addressing the role of the lipopolysaccharide heptan in pathogenesis.
Collapse
Affiliation(s)
- Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Tiandi Yang
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Tingting Liao
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Xiaoqiong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Renwei Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xie
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Alfred Tay
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Ying Shi
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Shen
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tiankuo Yang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuenan Pi
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Binit Lamichhane
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Yong Luo
- Key Laboratory of Geoscience Spatial Information Technology, Ministry of Land and Resources of the P.R.China, Chengdu University of Technology
| | - Aleksandra W. Debowski
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Hans-Olof Nilsson
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Barbara Mulloy
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
- Ondek Pty Ltd, Rushcutters Bay, New South Wales, Australia
| | - Mohammed Benghezal
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia
| |
Collapse
|
5
|
Reuß DR, Faßhauer P, Mroch PJ, Ul-Haq I, Koo BM, Pöhlein A, Gross CA, Daniel R, Brantl S, Stülke J. Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Res 2019; 47:5231-5242. [PMID: 30957856 PMCID: PMC6547408 DOI: 10.1093/nar/gkz260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
DNA topoisomerases play essential roles in chromosome organization and replication. Most bacteria possess multiple topoisomerases which have specialized functions in the control of DNA supercoiling or in DNA catenation/decatenation during recombination and chromosome segregation. DNA topoisomerase I is required for the relaxation of negatively supercoiled DNA behind the transcribing RNA polymerase. Conflicting results have been reported on the essentiality of the topA gene encoding topoisomerase I in the model bacterium Bacillus subtilis. In this work, we have studied the requirement for topoisomerase I in B. subtilis. All stable topA mutants carried different chromosomal amplifications of the genomic region encompassing the parEC operon encoding topoisomerase IV. Using a fluorescent amplification reporter system we observed that each individual topA mutant had acquired such an amplification. Eventually, the amplifications were replaced by a point mutation in the parEC promoter region which resulted in a fivefold increase of parEC expression. In this strain both type I topoisomerases, encoded by topA and topB, were dispensable. Our results demonstrate that topoisomerase IV at increased expression is necessary and sufficient to take over the function of type 1A topoisomerases.
Collapse
Affiliation(s)
- Daniel R Reuß
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Philipp Joel Mroch
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Inam Ul-Haq
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anja Pöhlein
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA, de la Campa AG. Boldine-Derived Alkaloids Inhibit the Activity of DNA Topoisomerase I and Growth of Mycobacterium tuberculosis. Front Microbiol 2018; 9:1659. [PMID: 30087665 PMCID: PMC6066988 DOI: 10.3389/fmicb.2018.01659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
The spread of multidrug-resistant isolates of Mycobacterium tuberculosis requires the discovery of new drugs directed to new targets. In this study, we investigated the activity of two boldine-derived alkaloids, seconeolitsine (SCN) and N-methyl-seconeolitsine (N-SCN), against M. tuberculosis. These compounds have been shown to target DNA topoisomerase I enzyme and inhibit growth of Streptococcus pneumoniae. Both SCN and N-SCN inhibited M. tuberculosis growth at 1.95-15.6 μM, depending on the strain. In M. smegmatis this inhibitory effect correlated with the amount of topoisomerase I in the cell, hence demonstrating that this enzyme is the target for these alkaloids in mycobacteria. The gene coding for topoisomerase I of strain H37Rv (MtbTopoI) was cloned into pQE1 plasmid of Escherichia coli. MtbTopoI was overexpressed with an N-terminal 6-His-tag and purified by affinity chromatography. In vitro inhibition of MtbTopoI activity by SCN and N-SCN was tested using a plasmid relaxation assay. Both SCN and N-SCN inhibited 50% of the enzymatic activity at 5.6 and 8.4 μM, respectively. Cleavage of single-stranded DNA was also inhibited with SCN. The effects on DNA supercoiling were also evaluated in vivo in plasmid-containing cultures of M. tuberculosis. Plasmid supercoiling densities were -0.060 in cells untreated or treated with boldine, and -0.072 in 1 × MIC N-SCN treated cells, respectively, indicating that the plasmid became hypernegatively supercoiled in the presence of N-SCN. Altogether, these results demonstrate that the M. tuberculosis topoisomerase I enzyme is an attractive drug target, and that SCN and N-SCN are promising lead compounds for drug development.
Collapse
Affiliation(s)
- María T. García
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - Begoña Gracia
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular de Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José A. Ainsa
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Adela G. de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
7
|
Cury J, Touchon M, Rocha EPC. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res 2017; 45:8943-8956. [PMID: 28911112 PMCID: PMC5587801 DOI: 10.1093/nar/gkx607] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue du Dr Roux, Paris 75015, France.,CNRS, UMR3525, 28, rue Dr Roux, Paris 75015, France
| |
Collapse
|
8
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
9
|
The redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains. PLoS Pathog 2017; 13:e1006280. [PMID: 28306723 PMCID: PMC5371381 DOI: 10.1371/journal.ppat.1006280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/29/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. Here, structural investigations of lipopolysaccharides purified from two wild-type strains and the O-antigen ligase mutant revealed that the H. pylori core-oligosaccharide domain is a short conserved hexasaccharide (Glc-Gal-DD-Hep-LD-Hep-LD-Hep-KDO) decorated with the O-antigen domain encompassing a conserved trisaccharide (-DD-Hep-Fuc-GlcNAc-) and variable glucan, heptan and Lewis antigens. Furthermore, the putative heptosyltransferase HP1284 was found to be required for the transfer of the third heptose residue to the core-oligosaccharide. Interestingly, mutation of HP1284 did not affect the ligation of the O-antigen and resulted in the attachment of the O-antigen onto an incomplete core-oligosaccharide missing the third heptose and the adjoining Glc-Gal residues. Mutants deficient in either HP1284 or O-antigen ligase displayed a moderate increase in susceptibility to polymyxin B but were unable to colonise the mouse gastric mucosa. Finally, mapping mutagenesis and colonisation data of previous studies onto the redefined organisation of H. pylori lipopolysaccharide revealed that only the conserved motifs were essential for colonisation. In conclusion, H. pylori lipopolysaccharide is missing the canonical inner and outer core organisation. Instead it displays a short core and a longer O-antigen encompassing residues previously assigned as the outer core domain. The redefinition of H. pylori lipopolysaccharide domains warrants future studies to dissect the role of each domain in host-pathogen interactions. Also enzymes involved in the assembly of the conserved core structure, such as HP1284, could be attractive targets for the design of new therapeutic agents for managing persistent H. pylori infection causing peptic ulcers and gastric cancer.
Collapse
|
10
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
11
|
Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. eLife 2016; 5. [PMID: 28009253 PMCID: PMC5241119 DOI: 10.7554/elife.19706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI:http://dx.doi.org/10.7554/eLife.19706.001 Similar to humans, bacteria store their genetic material in the form of DNA and arrange it into structures called chromosomes. In fact, most bacteria have a single circular chromosome. Bacteria multiply by simply dividing in two, and before that happens they must replicate their DNA so that each of the newly formed cells receives one copy of the chromosome. Occasionally, mistakes during the DNA replication process can cause the two chromosomes to become tangled with each other; this prevents them from separating into the newly formed cells. For instance, the chromosomes can become physically connected like links in a chain, or merge into one long string. This kind of tangling can result in cell death, so bacteria encode enzymes called Xer recombinases that can untangle chromosomes. These enzymes separate the chromosomes by cutting and rejoining the DNA strands in a process known as Xer recombination. Although Xer recombinases have been studied in quite some detail, many questions remain unanswered about how they work. How do Xer recombinases interact with DNA? How do they ensure they only work on tangled chromosomes? And how does a protein called FtsK ensure that Xer recombination takes place at the correct time and place? Bebel et al. have now studied the Xer recombinase from a bacterium called Helicobacter pylori, which causes stomach ulcers, using a technique called X-ray crystallography. This enabled the three-dimensional structure of the Xer recombinase to be visualized as it interacted with DNA to form a Xer-DNA complex. Structures of the enzyme before and after it cut the DNA show that Xer-DNA complexes first assemble in an inactive state and are then activated by large conformational changes that make the DNA bend. Bebel et al. propose that the FtsK protein might trigger these changes and help to bend the DNA as it activates Xer recombination. Further work showed that the structures could be used to model and understand Xer recombinases from other species of bacteria. The next step is to analyze how FtsK activates Xer recombinases and to see if this process is universal amongst bacteria. Understanding how this process can be interrupted could help to develop new drugs that can kill harmful bacteria. DOI:http://dx.doi.org/10.7554/eLife.19706.002
Collapse
Affiliation(s)
- Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ezgi Karaca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Banushree Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
12
|
Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction. Sci Rep 2016; 6:33357. [PMID: 27708355 PMCID: PMC5052618 DOI: 10.1038/srep33357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.
Collapse
|
13
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
14
|
Expansion of the tetracycline-dependent regulation toolbox for Helicobacter pylori. Appl Environ Microbiol 2015; 81:7969-80. [PMID: 26362986 DOI: 10.1128/aem.02191-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In an effort to gain greater understanding of the biology and infection processes of Helicobacter pylori, we have expanded the functionality of the tetracycline-dependent gene regulation (tet) system to provide more improved and versatile genetic control and facilitate the generation of conditional mutants to study essential genes. Second-generation tetracycline-responsive H. pylori uPtetO5 promoters were based on the mutated core ureA promoter. Single point mutations at either the ribosomal binding site or the start codon were introduced to shift the regulatory range of three uPtetO5 derivatives. All promoters were tested for regulation by TetR and revTetR using dapD, a gene essential to peptidoglycan biosynthesis, as a reporter. All tet promoters were effectively regulated by both TetR and revTetR, and their regulation windows overlapped so as to cover a broad range of expression levels. tet promoters uPtetO5m1 and uPtetO5m2 could be sufficiently silenced by both TetR and revTetR so that the conditional mutants could not grow in the absence of diaminopimelic acid (DAP). Furthermore, through the use of these inducible promoters, we reveal that insufficient DAP biosynthesis results in viable cells with altered morphology. Overall, the development and optimization of tet regulation for H. pylori will not only permit the study of essential genes but also facilitate investigations into gene dosage effects on H. pylori physiology.
Collapse
|
15
|
Development of a tetracycline-inducible gene expression system for the study of Helicobacter pylori pathogenesis. Appl Environ Microbiol 2013; 79:7351-9. [PMID: 24056453 DOI: 10.1128/aem.02701-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Deletion mutants and animal models have been instrumental in the study of Helicobacter pylori pathogenesis. Conditional mutants, however, would enable the study of the temporal gene requirement during H. pylori colonization and chronic infection. To achieve this goal, we adapted the Escherichia coli Tn10-derived tetracycline-inducible expression system for use in H. pylori. The ureA promoter was modified by inserting one or two tet operators to generate tetracycline-responsive promoters, named uPtetO, and these promoters were then fused to the reporter gfpmut2 and inserted into different loci. The expression of the tetracycline repressor (tetR) was placed under the control of one of three promoters and inserted into the chromosome. Conditional expression of green fluorescent protein (GFP) in strains harboring tetR and uPtetO-GFP was characterized by measuring GFP activity and by immunoblotting. The two tet-responsive uPtetO promoters differ in strength, and induction of these promoters was inducer concentration and time dependent, with maximum expression achieved after induction for 8 to 16 h. Furthermore, the chromosomal location of the uPtetO-GFP construct and the nature of the promoter driving expression of tetR influenced the strength of the uPtetO promoters upon induction. Integration of uPtetO-GFP and tetR constructs at different genomic loci was stable in vivo and did not affect colonization. Finally, we demonstrate tetracycline-dependent induction of GFP expression in vivo during chronic infection. These results open new experimental avenues for dissecting H. pylori pathogenesis using animal models and for testing the roles of specific genes in colonization of, adaptation to, and persistence in the host.
Collapse
|
16
|
The Xer/dif site-specific recombination system of Campylobacter jejuni. Mol Genet Genomics 2013; 288:495-502. [PMID: 23861023 DOI: 10.1007/s00438-013-0765-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Chromosome dimers, which form during the bacterial life cycle, represent a problem that must be solved by the bacterial cell machinery so that chromosome segregation can occur effectively. The Xer/dif site-specific recombination system, utilized by most bacteria, resolves chromosome dimers into monomers using two tyrosine recombinases, XerC and XerD, to perform the recombination reaction at the dif site which consists of 28-30 bp. However, single Xer recombinase systems have been recently discovered in several bacterial species. In Streptococci and Lactococci a single recombinase, XerS, is capable of completing the monomerisation reaction by acting at an atypical dif site called dif SL (31 bp). It was recently shown that a subgroup of ε-proteobacteria including Campylobacter spp. and Helicobacter spp. had a phylogenetically distinct Xer/dif recombination system with only one recombinase (XerH) and an atypical dif motif (difH). In order to biochemically characterize this system in greater detail, Campylobacter jejuni XerH was purified and its DNA-binding activity was characterized. The protein showed specific binding to the complete difH site and to both halves separately. It was also shown to form covalent complexes with difH suicide substrates. In addition, XerH was able to catalyse recombination between two difH sites located on a plasmid in Escherichia coli in vivo. This indicates that this XerH protein performs a similar function as the related XerS protein, but shows significantly different binding characteristics.
Collapse
|
17
|
Debowski AW, Gauntlett JC, Li H, Liao T, Sehnal M, Nilsson HO, Marshall BJ, Benghezal M. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions. Helicobacter 2012; 17:435-43. [PMID: 23066820 DOI: 10.1111/j.1523-5378.2012.00969.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Xer-cise is an efficient selectable marker removal technique that was first applied in Bacillus subtilis and Escherichia coli for the construction of markerless gene deletions. Xer-cise marker excision takes advantage of the presence of site-specific Xer recombination in most bacterial species for the resolution of chromosome dimers at the dif site during replication. The identification and functional characterization of the difH/XerH recombination system enabled the development of Xer-cise in Helicobacter pylori. METHODS Markerless deletions were obtained by a single natural transformation step of the Xer-cise cassette containing rpsL and cat genes, for streptomycin susceptibility and chloramphenicol resistance respectively, flanked by difH sites and neighboring homologous sequences of the target gene. Insertion/deletion recombinant H. pylori were first selected on chloramphenicol-containing medium followed by selection on streptomycin-containing medium for clones that underwent XerH mediated excision of the rpsL-cat cassette, resulting in a markerless deletion. RESULTS XerH-mediated removal of the antibiotic marker was successfully applied in three different H. pylori strains to obtain markerless gene deletions at very high efficiencies. An unmarked triple deletion mutant was also constructed by sequential deletion of ureA, vacA and HP0366 and removal of the selectable marker at each step. The triple mutant had no growth defect suggesting that multiple difH sites per chromosome can be tolerated without affecting bacterial fitness. CONCLUSION Xer-cise eliminates the need for multiple passages on non selective plates and subsequent screening of clones for loss of the antibiotic cassette by replica plating.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Ondek Pty Ltd. and Helicobacter pylori Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Pathology & Laboratory Medicine, Discipline of Microbiology & Immunology, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|