1
|
Hassonizadeh Falahieh K, Sarkaki A, Edalatmanesh M, Gharib Naseri MK, Farbood Y. Ellagic acid alleviates motor, cognitive and hippocampal electrical activity deficits in the male rats with 2-vessel occlusion cerebral ischemia/reperfusion. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:651-664. [PMID: 38106628 PMCID: PMC10719720 DOI: 10.22038/ajp.2023.22787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/19/2023]
Abstract
Objective Cerebral ischemia/reperfusion (I/R) has been known as a major cause of inability and mortality worldwide. Ellagic acid (EA) has many pharmacological effects including antioxidant, antithrombotic and neurorestoration activities. The aim of this study was evaluation of the effects of EA on motor and cognitive behaviors, hippocampal local field potential (LFP), brain oxidative stress in male rats with cerebral 2-vessel occlusion ischemia/reperfusion (2VO I/R). Materials and Methods Forty-eight male Wistar rats (250-300 g) were assigned into six groups. 1) The Sham: rats were treated with DMSO10%/normal saline as solvent of EA 3 times daily for 1 week; 2) I/R+Veh; I/R rats received vehicle; 3-5) EA-treated groups: I/R rats received 50, 75, or 100 mg/kg EA; and 6) Cont+EA100: intact rats received EA. The cerebral 2VO I/R was made by the bilateral common carotid arteries closing for 20 min followed by reperfusion. The behavioral tests and hippocampal LFP recording were performed after treatment with EA. The oxidative stress parameters were assayed by special ELISA kits. Results Cerebral 2VO I/R significantly decreased motor coordination, memory and hippocampal LFP and significantly increased oxidative stress. Treatment with EA improved all I/R complications. Conclusion The current findings showed that treatment of I/R rats with EA could reverse cognitive and motor functions, and improve the LFP and oxidative stress markers. So, effects of EA on cognitive and motor function may at least in part, be due to its antioxidative actions.
Collapse
Affiliation(s)
- Khadijeh Hassonizadeh Falahieh
- Department of Physiology, College of Sciences, Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Alireza Sarkaki
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mohammadamin Edalatmanesh
- Department of Physiology, College of Sciences, Science and Research Branch, Islamic Azad University, Fars, Iran
- Department of Physiology, College of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Kazem Gharib Naseri
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
2
|
Nair KP, Salaka RJ, Srikumar BN, Kutty BM, Rao BSS. Enriched environment rescues impaired sleep-wake architecture and abnormal neural dynamics in chronic epileptic rats. Neuroscience 2022; 495:97-114. [DOI: 10.1016/j.neuroscience.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
|
3
|
Knackstedt LA, Wu L, Rothstein J, Vidensky S, Gordon J, Ramanjulu M, Dunman P, Blass B, Childers W, Abou-Gharbia M. MC-100093, a Novel β-Lactam Glutamate Transporter-1 Enhancer Devoid of Antimicrobial Properties, Attenuates Cocaine Relapse in Rats. J Pharmacol Exp Ther 2021; 378:51-59. [PMID: 33986035 PMCID: PMC8407531 DOI: 10.1124/jpet.121.000532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The β-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic β-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Lori A Knackstedt
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Lizhen Wu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Jeffrey Rothstein
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Svetlana Vidensky
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - John Gordon
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Mercy Ramanjulu
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Paul Dunman
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Benjamin Blass
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Wayne Childers
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| | - Magid Abou-Gharbia
- Psychology Department (L.A.K., L.W.) and Center for Addiction Research (L.A.K.), University of Florida, Gainesville, Florida; Moulder Center for Drug Discovery Research, Temple University, Philadelphia, Pennsylvania (J.G, M.R., B.B., W.C., M.A.-G.); Department of Neurology, Johns Hopkins University, Baltimore, Maryland (J.R., S.V.); and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York (P.D.)
| |
Collapse
|
4
|
Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 2021; 106:1814-1828. [PMID: 34086374 DOI: 10.1113/ep089624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 01/29/2023]
Abstract
NEW FINDINGS What is the central question of this study? Imbalance of activities between GABAergic and glutamatergic systems is involved in epilepsy. It is not known whether simultaneously increasing GABAergic and decreasing glutamatergic activity using valproic acid and ceftriaxone, respectively, leads to better seizure control. What is the central question of this study? Ceftriaxone suppressed seizure and cognitive deficits and restored neuronal density and the number of newborn cells in the hippocampus in a rat model of epilepsy. Combined treatment with ceftriaxone and valproic acid showed additive effects in seizure suppression. ABSTRACT The pathophysiology of epilepsy is typically considered as an imbalance between inhibitory GABA and excitatory glutamate neurotransmission. Valproic acid (Val), a GABA agonist, is one of the first-line antiepileptic drugs in the treatment of epilepsy, but it exhibits adverse effects. Ceftriaxone (CEF) elevates expression of glutamate transporter-1, enhances the reuptake of synaptic glutamate, increases the number of newborn cells and exhibits neuroprotective effects in animal studies. In this study, we evaluated effects of the combination of CEF and Val on behavioural and neuronal measures in a rat epilepsy model. Male Wistar rats were injected i.p. with pentylenetetrazol (35 mg/kg, every other day for 13 days) to induce the epilepsy model. Ceftriaxone (10 or 50 mg/kg), Val (50 or 100 mg/kg) or the combination of CEF and Val were injected daily after the fourth pentylenetetrazol injection for seven consecutive days. Epileptic rats exhibited seizure and impairments in motor and cognitive functions. Treatment with CEF and Val reduced the seizure and enhanced motor and cognitive functions in a dose-dependent manner. The combination of CEF (10 mg/kg) and Val (50 mg/kg) improved behaviours considerably. Histologically, compared with control animals, epileptic rats exhibited lower neuronal density and a reduction in hippocampal newborn cells but higher apoptosis in the basolateral amygdala, all of which were restored by the treatment with CEF, Val or the combination of CEF and Val. The study findings demonstrated that the combination of low doses of CEF and Val has beneficial effects on seizure suppression, neuroprotection and improvement in motor and cognitive functions in epilepsy.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Pin-Jiun Lin
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan, Republic of China
| | - Hsin Tung
- Division of Epilepsy, Center of Faculty Development, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Wen-Yuan Liu
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Li Lin
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
5
|
Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep 2020; 10:19554. [PMID: 33177599 PMCID: PMC7659342 DOI: 10.1038/s41598-020-76562-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Dysbiosis of the gut microbiota affects physiological processes, including brain functions, by altering the intestinal metabolism. Here we examined the effects of the gut microbiota on sleep/wake regulation. C57BL/6 male mice were treated with broad-spectrum antibiotics for 4 weeks to deplete their gut microbiota. Metabolome profiling of cecal contents in antibiotic-induced microbiota-depleted (AIMD) and control mice showed significant variations in the metabolism of amino acids and vitamins related to neurotransmission, including depletion of serotonin and vitamin B6, in the AIMD mice. Sleep analysis based on electroencephalogram and electromyogram recordings revealed that AIMD mice spent significantly less time in non-rapid eye movement sleep (NREMS) during the light phase while spending more time in NREMS and rapid eye movement sleep (REMS) during the dark phase. The number of REMS episodes seen in AIMD mice increased during both light and dark phases, and this was accompanied by frequent transitions from NREMS to REMS. In addition, the theta power density during REMS was lower in AIMD mice during the light phase compared with that in the controls. Consequently, the gut microbiota is suggested to affect the sleep/wake architecture by altering the intestinal balance of neurotransmitters.
Collapse
|
6
|
Peterson AR, Binder DK. Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target. Front Mol Neurosci 2019; 12:164. [PMID: 31338020 PMCID: PMC6629900 DOI: 10.3389/fnmol.2019.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporter-1 (GLT-1) is a Na+-dependent transporter that plays a key role in glutamate homeostasis by removing excess glutamate in the central nervous system (CNS). GLT-1 dysregulation occurs in various neurological diseases including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and epilepsy. Downregulation or dysfunction of GLT-1 has been a common finding across these diseases but how this occurs is still under investigation. This review aims to highlight post-translational regulation of GLT-1 which leads to its downregulation including sumoylation, palmitoylation, nitrosylation, ubiquitination, and subcellular localization. Various therapeutic interventions to restore GLT-1, their proposed mechanism of action and functional effects will be examined as potential treatments to attenuate the neurological symptoms associated with loss or downregulation of GLT-1.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Tai CH, Bellesi M, Chen AC, Lin CL, Li HH, Lin PJ, Liao WC, Hung CS, Schwarting RK, Ho YJ. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res 2019; 364:149-156. [DOI: 10.1016/j.bbr.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
8
|
Valtcheva S, Venance L. Control of Long-Term Plasticity by Glutamate Transporters. Front Synaptic Neurosci 2019; 11:10. [PMID: 31024287 PMCID: PMC6465798 DOI: 10.3389/fnsyn.2019.00010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Activity-dependent long-term changes in synaptic strength constitute key elements for learning and memory formation. Long-term plasticity can be induced in vivo and ex vivo by various physiologically relevant activity patterns. Depending on their temporal statistics, such patterns can induce long-lasting changes in the synaptic weight by potentiating or depressing synaptic transmission. At excitatory synapses, glutamate uptake operated by excitatory amino acid transporters (EAATs) has a critical role in regulating the strength and the extent of receptor activation by afferent activity. EAATs tightly control synaptic transmission and glutamate spillover. EAATs activity can, therefore, determine the polarity and magnitude of long-term plasticity by regulating the spatiotemporal profile of the glutamate transients and thus, the glutamate access to pre- and postsynaptic receptors. Here, we summarize compelling evidence that EAATs regulate various forms of long-term synaptic plasticity and the consequences of such regulation for behavioral output. We speculate that experience-dependent plasticity of EAATs levels can determine the sensitivity of synapses to frequency- or time-dependent plasticity paradigms. We propose that EAATs contribute to the gating of relevant inputs eligible to induce long-term plasticity and thereby select the operating learning rules that match the physiological function of the synapse adapted to the behavioral context.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| |
Collapse
|
9
|
Medeiros KAAL, Dos Santos JR, Melo TCDS, de Souza MF, Santos LDG, de Gois AM, Cintra RR, Lins LCRF, Ribeiro AM, Marchioro M. Depressant effect of geraniol on the central nervous system of rats: Behavior and ECoG power spectra. Biomed J 2018; 41:298-305. [PMID: 30580793 PMCID: PMC6306311 DOI: 10.1016/j.bj.2018.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/02/2022] Open
Abstract
Geraniol is a monoterpene alcohol that is derived from the essential oils of aromatic plants, with anti-inflammatory, antimicrobial, antioxidant and neuroprotective properties. This study characterized the effect of geraniol on behavior and brainwave patterns in rats. Male rats were submitted to administration of geraniol (25, 50 and 100 mg/kg). The hole board (HB) and open field (OF) tests were performed to evaluate anxiety and motor behavior, respectively. In addition, barbiturate-induced sleeping time (BIST) was used to analyze sedative effect. Finally, electrocorticogram (ECoG) recordings were used to characterize brain-wave patterns. The results showed that geraniol treatment in rats decreased the distance traveled, rearing numbers and lead to increase in immobility time in HB and OF tests. In BIST test, geraniol treatment increased sleep duration but not sleep latency in the animals. Furthermore, geraniol-treated animals demonstrated an increase in the percentage of delta waves in the total spectrum power. Taken together, our results suggested that geraniol exerted a depressant effect on the central nervous system of rats.
Collapse
Affiliation(s)
- Katty Anne A L Medeiros
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José R Dos Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Thaís Cristina de S Melo
- Center for Biological and Health Sciences, Department of Medicine, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Marina F de Souza
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Luciano de G Santos
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M de Gois
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rachel R Cintra
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Lívia Cristina R F Lins
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - Murilo Marchioro
- Center for Biological and Health Sciences, Graduate Program in Physiological Sciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| |
Collapse
|
10
|
Ousdal OT, Huys QJ, Milde AM, Craven AR, Ersland L, Endestad T, Melinder A, Hugdahl K, Dolan RJ. The impact of traumatic stress on Pavlovian biases. Psychol Med 2018; 48:327-336. [PMID: 28641601 DOI: 10.1017/s003329171700174x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Disturbances in Pavlovian valuation systems are reported to follow traumatic stress exposure. However, motivated decisions are also guided by instrumental mechanisms, but to date the effect of traumatic stress on these instrumental systems remain poorly investigated. Here, we examine whether a single episode of severe traumatic stress influences flexible instrumental decisions through an impact on a Pavlovian system. METHODS Twenty-six survivors of the 2011 Norwegian terror attack and 30 matched control subjects performed an instrumental learning task in which Pavlovian and instrumental associations promoted congruent or conflicting responses. We used reinforcement learning models to infer how traumatic stress affected learning and decision-making. Based on the importance of dorsal anterior cingulate cortex (dACC) for cognitive control, we also investigated if individual concentrations of Glx (=glutamate + glutamine) in dACC predicted the Pavlovian bias of choice. RESULTS Survivors of traumatic stress expressed a greater Pavlovian interference with instrumental action selection and had significantly lower levels of Glx in the dACC. Across subjects, the degree of Pavlovian interference was negatively associated with dACC Glx concentrations. CONCLUSIONS Experiencing traumatic stress appears to render instrumental decisions less flexible by increasing the susceptibility to Pavlovian influences. An observed association between prefrontal glutamatergic levels and this Pavlovian bias provides novel insight into the neurochemical basis of decision-making, and suggests a mechanism by which traumatic stress can impair flexible instrumental behaviours.
Collapse
Affiliation(s)
- O T Ousdal
- Department of Radiology,Haukeland University Hospital,Bergen,Norway
| | - Q J Huys
- Translational Neuromodeling Unit,Institute of Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich,Zurich,Switzerland
| | - A M Milde
- Department of Biological and Medical Psychology,University of Bergen,Bergen,Norway
| | - A R Craven
- Department of Biological and Medical Psychology,University of Bergen,Bergen,Norway
| | - L Ersland
- Department of Clinical Engineering,Haukeland University Hospital,Bergen,Norway
| | - T Endestad
- Institute of Psychology, University of Oslo,Oslo,Norway
| | - A Melinder
- Institute of Psychology, University of Oslo,Oslo,Norway
| | - K Hugdahl
- Department of Radiology,Haukeland University Hospital,Bergen,Norway
| | - R J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London,London,UK
| |
Collapse
|
11
|
Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia-Cairasco N, Ikeda A, de Curtis M, Galanopoulou AS, Kelly KM. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:10-27. [PMID: 29105073 DOI: 10.1111/epi.13903] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 01/13/2023]
Abstract
In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Department of Neurology, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery and Regional Epilepsy Center, University of Washington, Seattle, Washington, U.S.A
| | | | | | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Marco de Curtis
- Epileptology and Experimental Neurophysiology Unit, Institutes of Hospitality and Care of a Scientific Nature (IRCCS) Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Kevin M Kelly
- Brain Injury and Epilepsy Research Laboratory, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
12
|
Electroencephalographic and biochemical long–lasting abnormalities in animal model of febrile seizure. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2120-2125. [DOI: 10.1016/j.bbadis.2017.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/29/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022]
|
13
|
Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex. J Neurosci 2017; 37:5263-5273. [PMID: 28539349 DOI: 10.1523/jneurosci.3981-16.2017] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/23/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
Abstract
We previously found that Mertk and its ligand Gas6, astrocytic genes involved in phagocytosis, are upregulated after acute sleep deprivation. These results suggested that astrocytes may engage in phagocytic activity during extended wake, but direct evidence was lacking. Studies in humans and rodents also found that sleep loss increases peripheral markers of inflammation, but whether these changes are associated with neuroinflammation and/or activation of microglia, the brain's resident innate immune cells, was unknown. Here we used serial block-face scanning electron microscopy to obtain 3D volume measurements of synapses and surrounding astrocytic processes in mouse frontal cortex after 6-8 h of sleep, spontaneous wake, or sleep deprivation (SD) and after chronic (∼5 d) sleep restriction (CSR). Astrocytic phagocytosis, mainly of presynaptic components of large synapses, increased after both acute and chronic sleep loss relative to sleep and wake. MERTK expression and lipid peroxidation in synaptoneurosomes also increased to a similar extent after short and long sleep loss, suggesting that astrocytic phagocytosis may represent the brain's response to the increase in synaptic activity associated with prolonged wake, clearing worn components of heavily used synapses. Using confocal microscopy, we then found that CSR but not SD mice show morphological signs of microglial activation and enhanced microglial phagocytosis of synaptic elements, without obvious signs of neuroinflammation in the CSF. Because low-level sustained microglia activation can lead to abnormal responses to a secondary insult, these results suggest that chronic sleep loss, through microglia priming, may predispose the brain to further damage.SIGNIFICANCE STATEMENT We find that astrocytic phagocytosis of synaptic elements, mostly of presynaptic origin and in large synapses, is upregulated already after a few hours of sleep deprivation and shows a further significant increase after prolonged and severe sleep loss, suggesting that it may promote the housekeeping of heavily used and strong synapses in response to the increased neuronal activity of extended wake. By contrast, chronic sleep restriction but not acute sleep loss activates microglia, promotes their phagocytic activity, and does so in the absence of overt signs of neuroinflammation, suggesting that like many other stressors, extended sleep disruption may lead to a state of sustained microglia activation, perhaps increasing the brain's susceptibility to other forms of damage.
Collapse
|
14
|
Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex. Mol Neurobiol 2016; 54:5590-5603. [PMID: 27613284 DOI: 10.1007/s12035-016-0093-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.
Collapse
|
15
|
Transcriptome profiling of sleeping, waking, and sleep deprived adult heterozygous Aldh1L1 - eGFP-L10a mice. GENOMICS DATA 2015; 6:114-117. [PMID: 26413480 PMCID: PMC4580259 DOI: 10.1016/j.gdata.2015.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcriptomic studies revealed that hundreds of mRNAs show differential expression in the brains of sleeping relative to awake rats, mice, flies, and sparrows. Although these results have offered clues regarding the molecular consequences of sleep and sleep loss, their functional significance thus far has been limited. This is probably because the previous studies pooled transcripts from all brain cells, including neurons and glia. In Bellesi et al. 2015 [1], we used the translating ribosome affinity purification technology (TRAP) and microarray analysis to obtain a genome-wide mRNA profiling of astrocytes as a function of sleep and wake. We used bacterial artificial chromosome (BAC) transgenic mice expressing eGFP tagged ribosomal protein L10a under the promoter of the Aldh1L1 gene, a highly expressed astrocytic gene. Using this approach, we could extract only the astrocytic mRNAs, and only those already committed to be translated into proteins (L10a is part of the translational machinery). Here, we report a detailed description of the protocol used in the study [1]. Array data have been submitted to NCBI GEO under accession number (GSE69079).
Collapse
|
16
|
Kim SY, Jones TA. The effects of ceftriaxone on skill learning and motor functional outcome after ischemic cortical damage in rats. Restor Neurol Neurosci 2013; 31:87-97. [PMID: 23047495 PMCID: PMC4433287 DOI: 10.3233/rnn-2012-120245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ceftriaxone, a β-lactam antibiotic, can selectively enhance the expression of glutamate transporter 1 (GLT1), the most abundant astrocytic glutamate transporter expressed in the cortex. It has been found to have neuroprotective effects when administered prior to brain ischemic damage or during the acute phase post-stroke, but its effects in chronic period have not been examined. METHODS We examined the effects of ceftriaxone on the acquisition of motor skill and the functional outcome after focal ischemic cortical lesions. In adult male rats, ceftriaxone (200 mg/kg) or vehicle was intraperitoneally injected daily for 5 days, a treatment regime previously established to upregulate GLT-1. This preceded 28 days of skilled reach training in intact animals or began 3 days following lesions, followed by 5 weeks of rehabilitative reach training. RESULTS In intact rats, ceftriaxone did not affect skill learning rate or final performance. Following ischemic lesions, though there was no significant difference in lesion sizes between groups, ceftriaxone exacerbated initial deficits in reaching performance. CONCLUSION These findings of detrimental effects on motor functional outcome suggest that ceftriaxone may be more useful for neuroprotection during the acute phase of ischemia than for functional recovery in the post-acute period after ischemic damage.
Collapse
Affiliation(s)
- Soo Young Kim
- Institute for Neuroscience, University of Texas at Austin, TX, USA.
| | | |
Collapse
|
17
|
Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. ACTA ACUST UNITED AC 2012; 2:57-66. [PMID: 22905336 DOI: 10.1016/j.baga.2012.04.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's Disease (HD) is a fatally inherited neurodegenerative disorder caused by an expanded glutamine repeat in the N-terminal region of the huntingtin (HTT) protein. The result is a progressively worsening triad of cognitive, emotional, and motor alterations that typically begin in adulthood and end in death 10-20 years later. Autopsy of HD patients indicates massive cell loss in the striatum and its main source of input, the cerebral cortex. Further studies of HD patients and transgenic animal models of HD indicate that corticostriatal neuronal processing is altered long before neuronal death takes place. In fact, altered neuronal function appears to be the primary driver of the HD behavioral phenotype, and dysregulation of glutamate, the excitatory amino acid released by corticostriatal afferents, is believed to play a critical role. Although mutant HTT interferes with the operation of multiple proteins related to glutamate transmission, consistent evidence links the expression of mutant HTT with reduced activity of glutamate transporter 1 (rodent GLT1 or human EAAT2), the astrocytic protein responsible for the bulk of glutamate uptake. Here, we review corticostriatal dysfunction in HD and focus on GLT1 and its expression in astrocytes as a possible therapeutic target.
Collapse
|