1
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
2
|
Spackman E. A Review of the Stability of Avian Influenza Virus in Materials from Poultry Farms. Avian Dis 2023; 67:229-236. [PMID: 39126409 DOI: 10.1637/aviandiseases-d-23-00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2024]
Abstract
Avian influenza virus (AIV) is widespread among poultry and wild waterfowl. The severity of the disease is variable and the highly pathogenic form can rapidly kill numerous avian species. Understanding the stability of AIV infectivity in different substrates in the environment of poultry facilities is critical to developing processes to effectively decontaminate or safely dispose of potentially contaminated material. This review aims to compile the current information on the stability of AIV in materials from poultry farms that cannot be disinfected with chemicals or fumigants: water, litter/bedding, soil, feed, feathers, carcasses/meat, manure/feces, and eggs. There are still important gaps in the data, but available data will inform risk assessments, biosecurity, and procedures to dispose of potentially contaminated material. Among the parameters and conditions reported, temperature is a nearly universal factor where, regardless of substrate, the virus will inactivate faster under a given set of conditions as the temperature increases, and freeze-thaw cycles can facilitate virus inactivation.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, 30605, USA,
| |
Collapse
|
3
|
Perlas A, Bertran K, Abad FX, Borrego CM, Nofrarías M, Valle R, Pailler-García L, Ramis A, Cortey M, Acuña V, Majó N. Persistence of low pathogenic avian influenza virus in artificial streams mimicking natural conditions of waterfowl habitats in the Mediterranean climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160902. [PMID: 36526195 DOI: 10.1016/j.scitotenv.2022.160902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Avian influenza viruses (AIVs) can affect wildlife, poultry, and humans, so a One Health perspective is needed to optimize mitigation strategies. Migratory waterfowl globally spread AIVs over long distances. Therefore, the study of AIV persistence in waterfowl staging and breeding areas is key to understanding their transmission dynamics and optimizing management strategies. Here, we used artificial streams mimicking natural conditions of waterfowl habitats in the Mediterranean climate (day/night cycles of photosynthetic active radiation and temperature, low water velocity, and similar microbiome to lowland rivers and stagnant water bodies) and then manipulated temperature and sediment presence (i.e., 10-13 °C vs. 16-18 °C, and presence vs. absence of sediments). An H1N1 low pathogenic AIV (LPAIV) strain was spiked in the streams, and water and sediment samples were collected at different time points until 14 days post-spike to quantify viral RNA and detect infectious particles. Viral RNA was detected until the end of the experiment in both water and sediment samples. In water samples, we observed a significant combined effect of temperature and sediments in viral decay, with higher viral genome loads in colder streams without sediments. In sediment samples, we didn't observe any significant effect of temperature. In contrast to prior laboratory-controlled studies that detect longer persistence times, infectious H1N1 LPAIV was isolated in water samples till 2 days post-spike, and none beyond. Infectious H1N1 LPAIV wasn't isolated from any sediment sample. Our results suggest that slow flowing freshwater surface waters may provide conditions facilitating bird-to-bird transmission for a short period when water temperature are between 10 and 18 °C, though persistence for extended periods (e.g., weeks or months) may be less likely. We hypothesize that experiments simulating real environments, like the one described here, provide a more realistic approach for assessing environmental persistence of AIVs.
Collapse
Affiliation(s)
- Albert Perlas
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Kateri Bertran
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| | - Francesc Xavier Abad
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona (UdG), Plaça Sant Domènec 3, 17004 Girona, Spain.
| | - Miquel Nofrarías
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| | - Rosa Valle
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| | - Lola Pailler-García
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain.
| | - Antonio Ramis
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona (UdG), Plaça Sant Domènec 3, 17004 Girona, Spain.
| | - Natàlia Majó
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| |
Collapse
|
4
|
Coronado Y, Navarro R, Mosqueda C, Valenzuela V, Pérez JP, González-Mendoza V, de la Torre M, Rocha J. SARS-CoV-2 in wastewater from Mexico City used for irrigation in the Mezquital Valley: quantification and modeling of geographic dispersion. ENVIRONMENTAL MANAGEMENT 2021; 68:580-590. [PMID: 34370090 PMCID: PMC8350920 DOI: 10.1007/s00267-021-01516-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/28/2021] [Indexed: 05/02/2023]
Abstract
Quantification of SARS-CoV-2 in urban wastewaters has emerged as a cheap, efficient strategy to follow trends of active COVID-19 cases in populations. Moreover, mathematical models have been developed that allow the prediction of active cases following the temporal patterns of viral loads in wastewaters. In Mexico, no systematic efforts have been reported in the use of these strategies. In this work, we quantified SARS-CoV-2 in rivers and irrigation canals in the Mezquital Valley, Hidalgo, an agricultural region where wastewater from Mexico City is distributed and used for irrigation. Using quantitative RT-PCR, we detected the virus in six out of eight water samples from rivers and five out of eight water samples from irrigation canals. Notably, samples showed a general consistent trend of having the highest viral loads in the sites closer to Mexico City, indicating that this is the main source that contributes to detection. Using the data for SARS-CoV-2 concentration in the river samples, we generated a simplified transport model that describes the spatial patterns of dispersion of virus in the river. We suggest that this model can be extrapolated to other wastewater systems where knowledge of spatial patterns of viral dispersion, at a geographic scale, is required. Our work highlights the need for improved practices and policies related to the use of wastewater for irrigation in Mexico and other countries.
Collapse
Affiliation(s)
- Yaxk'in Coronado
- Conacyt-Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo. Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
| | - Roberto Navarro
- Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo, Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
| | - Carlos Mosqueda
- Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo, Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
- Instituto Tecnológico de Celaya, Antonio García Cubas 600, Fovissste, Celaya, Gto, 38010, México
| | - Valeria Valenzuela
- Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo, Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
- Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta 2501, Nacional, Santiago de Querétaro, Qro., 76148, México
| | - Juan Pablo Pérez
- Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo, Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
| | - Víctor González-Mendoza
- Conacyt-Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo. Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
| | - Mayra de la Torre
- Unidad Regional Hidalgo. Centro de Investigación en Alimentación y Desarrollo, Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163
| | - Jorge Rocha
- Conacyt-Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo. Ciudad del Conocimiento y la Cultura de Hidalgo, Blvd. Santa Catarina S/N, San Agustín Tlaxiaca, Hidalgo, México, 42163.
| |
Collapse
|
5
|
A SYSTEMATIC REVIEW AND NARRATIVE SYNTHESIS OF THE USE OF ENVIRONMENTAL SAMPLES FOR THE SURVEILLANCE OF AVIAN INFLUENZA VIRUSES IN WILD WATERBIRDS. J Wildl Dis 2021; 57:1-18. [PMID: 33635994 DOI: 10.7589/jwd-d-20-00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2020] [Indexed: 11/20/2022]
Abstract
Wild waterbirds are reservoir hosts for avian influenza viruses (AIV), which can cause devastating outbreaks in multiple species, making them a focus for surveillance efforts. Traditional AIV surveillance involves direct sampling of live or dead birds, but environmental substrates present an alternative sample for surveillance. Environmental sampling analyzes AIV excreted by waterbirds into the environment and complements direct bird sampling by minimizing financial, logistic, permitting, and spatial-temporal constraints associated with traditional surveillance. Our objectives were to synthesize the literature on environmental AIV surveillance, to compare and contrast the different sample types, and to identify key themes and recommendations to aid in the implementation of AIV surveillance using environmental samples. The four main environmental substrates for AIV surveillance are feces, feathers, water, and sediment or soil. Feces were the most common environmental substrate collected. The laboratory analysis of water and sediment provided challenges, such as low AIV concentration, heterogenous AIV distribution, or presence of PCR inhibitors. There are a number of abiotic and biotic environmental factors, including temperature, pH, salinity, or presence of filter feeders, that can influence the presence and persistence of AIV in environmental substrates; however, the nature of this influence is poorly understood in field settings, and field data from southern, coastal, and tropical ecosystems are underrepresented. Similarly, there are few studies comparing the performance of environmental samples to each other and to samples collected in wild waterbirds, and environmental surveillance workflows have yet to be validated or optimized. Environmental samples, particularly when used in combination with new technology such as environmental DNA and next generation sequencing, provided information on trends in AIV detection rates and circulating subtypes that complemented traditional, direct waterbird sampling. The use of environmental samples for AIV surveillance also shows significant promise for programs whose goal is early warning of high-risk subtypes.
Collapse
|
6
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
7
|
Outbreak of highly pathogenic avian influenza in Ghana, 2015: degree of losses and outcomes of time-course outbreak management. Epidemiol Infect 2020; 148:e45. [PMID: 32063239 PMCID: PMC7058832 DOI: 10.1017/s095026882000045x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This retrospective study highlights the degree of losses and time-course through which the 2015 highly pathogenic avian influenza (HPAI) outbreaks in Ghana were managed. A total of 102 760 birds from 35 farms across five regions in Ghana included in this study were affected. Out of this, 89.3% was from the Greater Accra region. Majority of the birds were culled (94.2%). Adult layers were most affected and destroyed (64.0%), followed by broilers (13.7%). Event initiation to reporting averaged 7.7 ± 1.3 days (range: 1-30 days). Laboratory confirmation to depopulation of birds averaged 2.2 ± 0.5 (0-15) days while depopulation to disinfection took 2.2 ± 0.7 (0-20) days. Overall, some farms took as long as 30 days to report the outbreak to the authorities, 15 days from confirmation to depopulation and 20 days from depopulation to disinfection. On average, outbreak management lasted 12.3 (2-43) days from event initiation to depopulation. The study reveals a significant number of avian losses and delays in HPAI reporting and management by the authorities in Ghana during the 2015 outbreak. This poses a high risk of spread to other farms and a threat to public health. Awareness creation for poultry farmers is necessary for early reporting, while further study is required to set thresholds for the management of such outbreaks by veterinary departments.
Collapse
|
8
|
Henning J, Hesterberg UW, Zenal F, Schoonman L, Brum E, McGrane J. Risk factors for H5 avian influenza virus prevalence on urban live bird markets in Jakarta, Indonesia-Evaluation of long-term environmental surveillance data. PLoS One 2019; 14:e0216984. [PMID: 31125350 PMCID: PMC6534305 DOI: 10.1371/journal.pone.0216984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/02/2019] [Indexed: 11/19/2022] Open
Abstract
In the re-emergence of Highly Pathogenic Avian Influenza (HPAI), live bird markets have been identified to play a critical role. In this repeated cross-sectional study, we combined surveillance data collected monthly on Jakarta's live bird markets over a five-year period, with risk factors related to the structure and management of live bird markets, the trading and slaughtering of birds at these markets, and environmental and demographic conditions in the areas where the markets were located. Over the study period 36.7% (95% CI: 35.1, 38.3) of samples (N = 1315) tested HPAI H5 virus positive. Using General Estimation Equation approaches to account for repeated observations over time, we explored the association between HPAI H5 virus prevalence and potential risk factors. Markets where only live birds and carcasses were sold, but no slaughtering was conducted at or at the vicinity of the markets, had a significantly reduced chance of being positive for H5 virus (OR = 0.2, 95% CI 0.1-0.5). Also, markets, that used display tables for poultry carcasses made from wood, had reduced odds of being H5 virus positive (OR = 0.7, 95% CI 0.5-1.0), while having at least one duck sample included in the pool of samples collected at the market increased the chance of being H5 virus positive (OR = 5.7, 95% CI 3.6-9.2). Markets where parent stock was traded, were more at risk of being H5 virus positive compared to markets where broilers were traded. Finally, the human population density in the district, the average distance between markets and origins of poultry sold at markets and the total rainfall per month were all positively associated with higher H5 virus prevalence. In summary, our results highlight that a combination of factors related to trading and marketing processes and environmental pressures need to be considered to reduce H5 virus infection risk for customers at urban live bird markets. In particular, the relocation of slaughter areas to well-managed separate locations should be considered.
Collapse
Affiliation(s)
- Joerg Henning
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Uta Walburga Hesterberg
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - Farida Zenal
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| | - Luuk Schoonman
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| | - Eric Brum
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh
| | - James McGrane
- Emergency Centre for Transboundary Animal Diseases (ECTAD), Food and Agriculture Organization of the United Nations (FAO), Jakarta, Java, Indonesia
| |
Collapse
|
9
|
Martin G, Becker DJ, Plowright RK. Environmental Persistence of Influenza H5N1 Is Driven by Temperature and Salinity: Insights From a Bayesian Meta-Analysis. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
10
|
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Yamamoto Y, Nakamura K, Mase M. Survival of Highly Pathogenic Avian Influenza H5N1 Virus in Tissues Derived from Experimentally Infected Chickens. Appl Environ Microbiol 2017; 83:e00604-17. [PMID: 28625993 PMCID: PMC5541213 DOI: 10.1128/aem.00604-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
Eurasian lineage highly pathogenic avian influenza (HPAI) H5N1 virus has been a severe threat to the poultry industry since its emergence in 1996. The carcass or tissues derived from infected birds may present the risk of the virus spreading to humans, animals, and the surrounding environment. In this study, we investigated the survival of the virus in feather, muscle, and liver tissues collected from six chickens (Gallus gallus) experimentally infected with HPAI H5N1 virus. The tissues were stored at +4°C or +20°C, and viral isolation was performed at different times for 360 days. The maximum periods for viral survival were observed in samples stored at +4°C in all tissue types and were 240 days in feather tissues, 160 days in muscle, and 20 days in liver. The viral infectivity at +20°C was maintained for a maximum of 30 days in the feather tissues, 20 days in muscle, and 3 days in liver. The viral inactivation rates partly overlapped in the feather and muscle tissues at the two temperatures. The virus was inactivated rapidly in the liver. Our experimental results indicate that the tissue type and temperature can greatly influence the survival of HPAI H5N1 virus in the tissues of infected chickens.IMPORTANCE Highly pathogenic avian influenza virus of the H5N1 subtype can cause massive losses of poultry, and people need to handle a large number of chicken carcasses contaminated with the virus at outbreak sites. This study evaluated how long the virus can keep its infectivity in the three types of tissues derived from chickens infected with the virus. Our experimental results indicate that the virus can survive in tissues for a specific period of time depending on the tissue type and temperature. Our results are valuable for better understanding of viral ecology in the environment and for reducing the risk of the virus spreading via bird tissues contaminated with the virus.
Collapse
Affiliation(s)
- Yu Yamamoto
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Masaji Mase
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Ly S, Vong S, Cavailler P, Mumford E, Mey C, Rith S, Van Kerkhove MD, Sorn S, Sok T, Tarantola A, Buchy P. Environmental contamination and risk factors for transmission of highly pathogenic avian influenza A(H5N1) to humans, Cambodia, 2006-2010. BMC Infect Dis 2016; 16:631. [PMID: 27809855 PMCID: PMC5095992 DOI: 10.1186/s12879-016-1950-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A (H5N1) virus has been of public health concern since 2003. Probable risk factors for A(H5N1) transmission to human have been demonstrated in several studies or epidemiological reports. However, transmission patterns may differ according to demographic characteristics of the population and local practices. This article aggregates these data from three studies with data collected in the previous surveys in 2006 and 2007 to further examine the risks factors associated with presence of anti-A(H5) antibodies among villagers residing within outbreak areas. METHODS We aggregated 5-year data (2006-2010) from serology survey and matched case-control studies in Cambodia to further examine the risks factors associated with A(H5N1) infection among villagers in the outbreak areas. RESULTS Serotesting among villagers detected 35 (1.5 % [0-2.6]) positive cases suggesting recent exposure to A(H5N1) virus. Practices associated with A(H5N1) infection among all ages were: having poultry cage or nesting area under or adjacent to the house (OR: 6.7 [1.6-28.3]; p = 0.010) and transporting poultry to market (OR: 17.6 [1.6-193.7]; p = 0.019). Practices found as risk factors for the infection among age under 20 years were swimming/bathing in ponds also accessed by domestic poultry (OR: 4.6 [1.1-19.1]; p = 0.038). Association with consuming wild birds reached borderline significance (p = 0.066). CONCLUSION Our results suggest that swimming/bathing in contaminated pond water and close contact with poultry may present a risk of A(H5N1) transmission to human.
Collapse
Affiliation(s)
- Sowath Ly
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sirenda Vong
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Philippe Cavailler
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- Agence de Médecine Préventive, Ferney-Voltaire, France
| | | | - Channa Mey
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Sareth Rith
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | | | - San Sorn
- National Veterinary Research Institute, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Touch Sok
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | | | - Philippe Buchy
- Institut Pasteur in Cambodia, Phnom Penh, Cambodia
- GSK Vaccines R&D, 150 Beach Road, 189720 Singapore, Singapore
| |
Collapse
|
13
|
Henning J, Pfeiffer DU, Stevenson M, Yulianto D, Priyono W, Meers J. Who Is Spreading Avian Influenza in the Moving Duck Flock Farming Network of Indonesia? PLoS One 2016; 11:e0152123. [PMID: 27019344 PMCID: PMC4809517 DOI: 10.1371/journal.pone.0152123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/09/2016] [Indexed: 11/30/2022] Open
Abstract
Duck populations are considered to be a reservoir of Highly pathogenic avian influenza (HPAI) virus H5N1 in some agricultural production systems, as they are able to shed the virus for several days without clinical signs. Countries endemically affected with HPAI in Asia are characterised by production systems where ducks are fed on post-harvest spilled rice. During this scavenging process it is common for ducks to come into contact with other duck flocks or wild birds, thereby providing opportunities for virus spread. Effective risk management for HPAI has been significantly compromised by a limited understanding of management of moving duck flocks in these countries, despite of a small number of recent investigations. Here, for the first time, we described the management of moving duck flocks and the structure of the moving duck flock network in quantitative terms so that factors influencing the risk of HPAIV transmission can be identified. By following moving duck flock farmers over a period of 6 months in Java, Indonesia, we were able to describe the movement of flocks and to characterise the network of various types of actors associated with the production system. We used these data to estimate the basic reproductive number for HPAI virus spread. Our results suggest that focussing HPAI prevention measures on duck flocks alone will not be sufficient. Instead, the role of transporters of moving duck flocks, hatcheries and rice paddy owners, in the spread of the HPAI virus needs to be recognised.
Collapse
Affiliation(s)
- Joerg Henning
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
- * E-mail:
| | - Dirk U. Pfeiffer
- Royal Veterinary College, University of London, London, United Kingdom
| | - Mark Stevenson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Victoria, Australia
| | | | | | - Joanne Meers
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
14
|
Wilasang C, Wiratsudakul A, Chadsuthi S. The Dynamics of Avian Influenza: Individual-Based Model with Intervention Strategies in Traditional Trade Networks in Phitsanulok Province, Thailand. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:6832573. [PMID: 27110273 PMCID: PMC4821968 DOI: 10.1155/2016/6832573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 11/30/2022]
Abstract
Avian influenza virus subtype H5N1 is endemic to Southeast Asia. In Thailand, avian influenza viruses continue to cause large poultry stock losses. The spread of the disease has a serious impact on poultry production especially among rural households with backyard chickens. The movements and activities of chicken traders result in the spread of the disease through traditional trade networks. In this study, we investigate the dynamics of avian influenza in the traditional trade network in Phitsanulok Province, Thailand. We also propose an individual-based model with intervention strategies to control the spread of the disease. We found that the dynamics of the disease mainly depend on the transmission probability and the virus inactivation period. This study also illustrates the appropriate virus disinfection period and the target for intervention strategies on traditional trade network. The results suggest that good hygiene and cleanliness among household traders and trader of trader areas and ensuring that any equipment used is clean can lead to a decrease in transmission and final epidemic size. These results may be useful to epidemiologists, researchers, and relevant authorities in understanding the spread of avian influenza through traditional trade networks.
Collapse
Affiliation(s)
- Chaiwat Wilasang
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health and the Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
15
|
Schaduangrat N, Phanich J, Rungrotmongkol T, Lerdsamran H, Puthavathana P, Ubol S. The significance of naturally occurring neuraminidase quasispecies of H5N1 avian influenza virus on resistance to oseltamivir: a point of concern. J Gen Virol 2016; 97:1311-1323. [PMID: 26935590 DOI: 10.1099/jgv.0.000444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral adaptability and survival arise due to the presence of quasispecies populations that are able to escape the immune response or produce drug-resistant variants. However, the presence of H5N1 virus with natural mutations acquired without any drug selection pressure poses a great threat. Cloacal samples collected from the 2004-2005 epidemics in Thailand from Asian open-billed storks revealed one major and several minor quasispecies populations with mutations on the oseltamivir (OTV)-binding site of the neuraminidase gene (NA) without prior exposure to a drug. Therefore, this study investigated the binding between the NA-containing novel mutations and OTV drug using molecular dynamic simulations and plaque inhibition assay. The results revealed that the mutant populations, S236F mutant, S236F/C278Y mutant, A250V/V266A/P271H/G285S mutant and C278Y mutant, had a lower binding affinity with OTV as compared with the WT virus due to rearrangement of amino acid residues and increased flexibility in the 150-loop. This result was further emphasized through the IC50 values obtained for the major population and WT virus, 104.74 nM and 18.30 nM, respectively. Taken together, these data suggest that H5N1 viruses isolated from wild birds have already acquired OTV-resistant point mutations without any exposure to a drug.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchatewi, Bangkok 10400, Thailand
| | - Jiraphorn Phanich
- Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hatairat Lerdsamran
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchatewi, Bangkok 10400, Thailand
| |
Collapse
|
16
|
Abstract
The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;
| | | |
Collapse
|
17
|
Brown J, Stallknecht D, Lebarbenchon C, Swayne D. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains. Avian Dis 2014; 58:453-7. [PMID: 25518441 PMCID: PMC11542066 DOI: 10.1637/10741-120513-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aquatic habitats play a critical role in the transmission and maintenance of low-pathogenic avian influenza (LPAI) viruses in wild waterfowl; however, the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, LPAI viruses can remain infective for extended durations (months) in water, but the persistence is strongly dependent on water conditions (temperature, salinity, pH) and virus strain. Little is known about the stability of H5N1 HPAI viruses in water. With the use of an established laboratory model system, the persistence of 11 strains of H5N1 HPAI virus was measured in buffered distilled water (pH 7.2) at two temperatures (17 and 28 C) and three salinities (0, 15,000, and 30,000 ppm). There was extensive variation between the 11 H5N1 HPAI virus strains in the overall stability in water, with a range similar to that which has been reported for wild-bird-origin LPAI viruses. The H5N1 HPAI virus strains responded similarly to different water temperatures and salinities, with all viruses being most stable at colder temperatures and fresh to brackish salinities. These results indicate that the overall stability and response of H5N1 HPAI viruses in water is similar to LPAI viruses, and suggest there has been no increase or loss of environmental survivability in H5N1 HPAI viruses.
Collapse
Affiliation(s)
- Justin Brown
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602
| | - David Stallknecht
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602
| | - Camille Lebarbenchon
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602
- University of Reunion Island, Avenue René Cassin, BP 7151, 97715 Saint-Denis Cedex, Reunion Island
| | - David Swayne
- Southeast Poultry Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA 30605
| |
Collapse
|
18
|
Nagy A, Černíková L, Jiřincová H, Havlíčková M, Horníčková J. Local-scale diversity and between-year "frozen evolution" of avian influenza A viruses in nature. PLoS One 2014; 9:e103053. [PMID: 25075739 PMCID: PMC4116140 DOI: 10.1371/journal.pone.0103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus (IAV) in wild bird reservoir hosts is characterized by the perpetuation in a plethora of subtype and genotype constellations. Multiyear monitoring studies carried out during the last two decades worldwide have provided a large body of knowledge regarding the ecology of IAV in wild birds. Nevertheless, other issues of avian IAV evolution have not been fully elucidated, such as the complexity and dynamics of genetic interactions between the co-circulating IAV genomes taking place at a local-scale level or the phenomenon of frozen evolution. We investigated the IAV diversity in a mallard population residing in a single pond in the Czech Republic. Despite the relative small number of samples collected, remarkable heterogeneity was revealed with four different IAV subtype combinations, H6N2, H6N9, H11N2, and H11N9, and six genomic constellations in co-circulation. Moreover, the H6, H11, and N2 segments belonged to two distinguishable sub-lineages. A reconstruction of the pattern of genetic reassortment revealed direct parent-progeny relationships between the H6N2, H11N9 and H6N9 viruses. Interestingly the IAV, with the H6N9 subtype, was re-detected a year later in a genetically unchanged form in the close proximity of the original sampling locality. The almost absolute nucleotide sequence identity of all the respective genomic segments between the two H6N9 viruses indicates frozen evolution as a result of prolonged conservation in the environment. The persistence of the H6N9 IAV in various abiotic and biotic environmental components was also discussed.
Collapse
Affiliation(s)
- Alexander Nagy
- State Veterinary Institute Prague, National Reference Laboratory for Avian Influenza and Newcastle Disease, Laboratory of Molecular Methods, Prague, Czech Republic
- National Institute of Public Health, Centre for Epidemiology and Microbiology, National Reference Laboratory for Influenza, Prague, Czech Republic
- * E-mail:
| | - Lenka Černíková
- State Veterinary Institute Prague, National Reference Laboratory for Avian Influenza and Newcastle Disease, Laboratory of Molecular Methods, Prague, Czech Republic
| | - Helena Jiřincová
- National Institute of Public Health, Centre for Epidemiology and Microbiology, National Reference Laboratory for Influenza, Prague, Czech Republic
| | - Martina Havlíčková
- National Institute of Public Health, Centre for Epidemiology and Microbiology, National Reference Laboratory for Influenza, Prague, Czech Republic
| | - Jitka Horníčková
- State Veterinary Institute Prague, National Reference Laboratory for Avian Influenza and Newcastle Disease, Laboratory of Molecular Methods, Prague, Czech Republic
| |
Collapse
|
19
|
Thanapongtharm W, Van Boeckel TP, Biradar C, Xiao X, Gilbert M. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand. GEOSPATIAL HEALTH 2013; 8:193-201. [PMID: 24258895 PMCID: PMC4868045 DOI: 10.4081/gh.2013.66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI) H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7 - Enhanced Thematic Mapper Plus scenes covering 174,610 km(2) were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3) geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.
Collapse
Affiliation(s)
- Weerapong Thanapongtharm
- Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Bangkok, Thailand
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas P. Van Boeckel
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | | | - Xiangming Xiao
- Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, USA
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| |
Collapse
|
20
|
Accumulation and inactivation of avian influenza virus by the filter-feeding invertebrate Daphnia magna. Appl Environ Microbiol 2013; 79:7249-55. [PMID: 24038705 DOI: 10.1128/aem.02439-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The principal mode of avian influenza A virus (AIV) transmission among wild birds is thought to occur via an indirect fecal-oral route, whereby individuals are exposed to virus from the environment through contact with virus-contaminated water. AIV can remain viable for an extended time in water; however, little is known regarding the influence of the biotic community (i.e., aquatic invertebrates) on virus persistence and infectivity in aquatic environments. We conducted laboratory experiments to investigate the ability of an aquatic filter-feeding invertebrate, Daphnia magna, to accumulate virus from AIV-dosed water under the hypothesis that they represent a potential vector of AIV to waterfowl hosts. We placed live daphnids in test tubes dosed with low-pathogenicity AIV (H3N8 subtype isolated from a wild duck) and sampled Daphnia tissue and the surrounding water using reverse transcription-quantitative PCR (RT-qPCR) at 3- to 120-min intervals for up to 960 min following dosing. Concentrations of viral RNA averaged 3 times higher in Daphnia tissue than the surrounding water shortly after viral exposure, but concentrations decreased exponentially through time for both. Extracts from Daphnia tissue were negative for AIV by cell culture, whereas AIV remained viable in water without Daphnia present. Our results suggest daphnids can accumulate AIV RNA and effectively remove virus particles from water. Although concentrations of viral RNA were consistently higher in Daphnia tissue than the water, additional research is needed on the time scale of AIV inactivation after Daphnia ingestion to fully elucidate Daphnia's role as a potential vector of AIV infection to aquatic birds.
Collapse
|
21
|
Persistence of low-pathogenic H5N7 and H7N1 avian influenza subtypes in filtered natural waters. Vet Microbiol 2013; 166:419-28. [PMID: 23891171 DOI: 10.1016/j.vetmic.2013.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Wild aquatic birds are the natural reservoir of avian influenza virus (AIV), and the virus is transmitted among birds through a fecal-oral route. Infected birds excrete significant amounts of AIV into the environment, and thereby sustain the circulation of AIV in the bird populations. Improved knowledge on the influence of environmental factors on the persistence of AIV in natural habitats would be valuable for risk assessments. The presented work investigated the persistence of two low-pathogenic AIV subtypes in natural water samples. The study included two AIVs formerly isolated from wild ducks, which were suspended in filtered natural fresh, brackish or sea water with salinity of 0, 8000 and 20,000 parts per million (ppm), respectively. Also sterilized brackish and sea waters were included in order to examine the influence of microbial flora on virus persistence. All water samples were incubated at temperatures representative for seasonal variation of ambient temperatures in Northern Europe (4, 17 and 25 °C). The results showed a clear correlation between persistence of viral infectivity and temperature, salinity and presence of microbial flora. While independent of virus subtype, the persistence of infectivity was negatively affected by increased temperature, salinity as well as presence of natural microbial flora. The study provides insight on impact of essential physical, chemical and biological parameters on persistence of AIV in aquatic environments. Studies determining the importance of additional environmental parameters and the detailed mechanisms of microbial inactivation of AIV should be encouraged.
Collapse
|
22
|
Sentilhes AC, Choumlivong K, Celhay O, Sisouk T, Phonekeo D, Vongphrachanh P, Brey P, Buchy P. Respiratory virus infections in hospitalized children and adults in Lao PDR. Influenza Other Respir Viruses 2013; 7:1070-8. [PMID: 23796419 PMCID: PMC4634274 DOI: 10.1111/irv.12135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 11/26/2022] Open
Abstract
Background Acute respiratory infections are an important cause of morbidity and mortality worldwide, with a major burden of disease in developing countries. The relative contribution of viruses in acute lower respiratory infections (ALRI) is, however, poorly documented in Lao PDR. Objective The objective of this study is to investigate the etiology of ALRI in patients of all ages in two hospitals of Laos. Methods Multiplex PCR/RT‐PCR methods were used to target 18 major common respiratory viruses. Between August 2009 and October 2010, samples from 292 patients presenting with ALRI were collected. Results and conclusion Viruses were detected in 162 (55%) samples. In 48% (140/292) of the total ALRI cases, a single virus was detected while coinfections were observed in 8% (22/292) of the samples. The most frequent viruses were rhinovirus/enterovirus (35%), human respiratory syncytial virus (26%), and influenza viruses (13%). Parainfluenza viruses were detected in 9%, adenovirus in 6%, human metapneumovirus in 4%, coronaviruses (229E, NL63, OC43, HKU1) in 4%, and bocavirus in 3% of ALRI specimens. Most viral infections occurred in patients below 5 years of age. The distribution of viruses varied according to age‐groups. No significant correlation was observed between the severity of the disease and the age of patients or the virus species. This study provides the description of viral etiology among patients presenting with ALRI in Lao PDR. Additional investigations are required to better understand the clinical role of the different viruses and their seasonality in Laos.
Collapse
Affiliation(s)
- Anne-Charlotte Sentilhes
- National Center for Laboratory and Epidemiology, Vientiane, Lao PDR; Virology Unit, Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh, Cambodia; Institut Pasteur in Laos, Réseau International des Instituts Pasteur, Vientiane, Lao PDR
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bonté B, Mathias JD, Duboz R. Moment approximation of infection dynamics in a population of moving hosts. PLoS One 2012; 7:e51760. [PMID: 23272160 PMCID: PMC3525645 DOI: 10.1371/journal.pone.0051760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 11/06/2012] [Indexed: 11/25/2022] Open
Abstract
The modelling of contact processes between hosts is of key importance in epidemiology. Current studies have mainly focused on networks with stationary structures, although we know these structures to be dynamic with continuous appearance and disappearance of links over time. In the case of moving individuals, the contact network cannot be established. Individual-based models (IBMs) can simulate the individual behaviours involved in the contact process. However, with very large populations, they can be hard to simulate and study due to the computational costs. We use the moment approximation (MA) method to approximate a stochastic IBM with an aggregated deterministic model. We illustrate the method with an application in animal epidemiology: the spread of the highly pathogenic virus H5N1 of avian influenza in a poultry flock. The MA method is explained in a didactic way so that it can be reused and extended. We compare the simulation results of three models: 1. an IBM, 2. a MA, and 3. a mean-field (MF). The results show a close agreement between the MA model and the IBM. They highlight the importance for the models to capture the displacement behaviours and the contact processes in the study of disease spread. We also illustrate an original way of using different models of the same system to learn more about the system itself, and about the representation we build of it.
Collapse
Affiliation(s)
- Bruno Bonté
- Laboratory of Engineering for Complex System (LISC) of the French National Research Institute for Science and Techniques in Environment and Agriculture (IRSTEA), Aubière, France
- Animals and Integrated Risk Management (AGIRs) research unit of the French Center for International Cooperation for Agricultural Research and Development (CIRAD), Montpellier, France
| | - Jean-Denis Mathias
- Laboratory of Engineering for Complex System (LISC) of the French National Research Institute for Science and Techniques in Environment and Agriculture (IRSTEA), Aubière, France
| | - Raphaël Duboz
- Animals and Integrated Risk Management (AGIRs) research unit of the French Center for International Cooperation for Agricultural Research and Development (CIRAD), Montpellier, France
- Computer Science and Information Management (CSIM) department of the Asian Institute of Technology (AIT), Pathumthani, Thailand
| |
Collapse
|