1
|
Gomes SIL, Roca CP, Pegoraro N, Trindade T, Scott-Fordsmand JJ, Amorim MJB. High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO 3, and Cu salt aged): transcriptomics in Enchytraeus crypticus. Nanotoxicology 2018; 12:325-340. [PMID: 29506436 DOI: 10.1080/17435390.2018.1446559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The current testing of nanomaterials (NMs) via standard toxicity tests does not cover many of the NMs specificities. One of the recommendations lays on understanding the mechanisms of action, as these can help predicting long-term effects and safe-by-design production. In the present study, we used the high-throughput gene expression tool, developed for Enchytraeus crypticus (4 × 44k Agilent microarray), to study the effects of exposure to several copper (Cu) forms. The Cu treatments included two NMs (spherical and wires) and two copper-salt treatments (CuNO3 spiked and Cu salt field historical contamination). To relate gene expression with higher effect level, testing was done with reproduction effect concentrations (EC20, EC50), using 3 and 7 days as exposure periods. Results showed that time plays a major role in the transcriptomic response, most of it occurring after 3 days. Analysis of gene expression profiles showed that Cu-salt-aged and Cu-nanowires (Nwires) differed from CuNO3 and Cu-nanoparticles (NPs). Functional analysis revealed specific mechanisms: Cu-NPs uniquely affected senescence and cuticle pattern formation, which can result from the contact of the NPs with the worms' tegument. Cu-Nwires affected reproduction via male gamete generation and hermaphrodite genitalia development. CuNO3 affected neurotransmission and locomotory behavior, both of which can be related with avoidance response. Cu salt-aged uniquely affected phagocytosis and reproductive system development (via different mechanisms than Cu-Nwires). For the first time for Cu (nano)materials, the adverse outcome pathways (AOPs) drafted here provide an overview for common and unique effects per material and linkage with apical effects.
Collapse
Affiliation(s)
- Susana I L Gomes
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
| | - Carlos P Roca
- b Department of Chemical Engineering , Universitat Rovira i Virgili , Tarragona , Spain.,c Department of Bioscience , Aarhus University , Silkeborg , Denmark
| | - Natália Pegoraro
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
| | - Tito Trindade
- d Department of Chemistry & CICECO , Aveiro Institute of Materials, University of Aveiro , Aveiro , Portugal
| | | | - Mónica J B Amorim
- a Department of Biology & CESAM , University of Aveiro , Aveiro , Portugal
| |
Collapse
|
2
|
Bundy JG, Kille P. Metabolites and metals in Metazoa--what role do phytochelatins play in animals? Metallomics 2015; 6:1576-82. [PMID: 24926533 DOI: 10.1039/c4mt00078a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochelatins are sulfur-rich metal-binding peptides, and phytochelatin synthesis is one of the key mechanisms by which plants protect themselves against toxic soft metal ions such as cadmium. It has been known for a while now that some invertebrates also possess functional phytochelatin synthase (PCS) enzymes, and that at least one species, the nematode Caenorhabditis elegans, produces phytochelatins to help detoxify cadmium, and probably also other metal and metalloid ions including arsenic, zinc, selenium, silver, and copper. Here, we review recent studies on the occurrence, utilization, and regulation of phytochelatin synthesis in invertebrates. The phytochelatin synthase gene has a wide phylogenetic distribution, and can be found in species that cover almost all of the animal tree of life. The evidence to date, though, suggests that the occurrence is patchy, and even though some members of particular taxonomic groups may contain PCS genes, there are also many species without these genes. For animal species that do possess PCS genes, some of them (e.g. earthworms) do synthesize phytochelatins in response to potentially toxic elements, whereas others (e.g. Schistosoma mansoni, a parasitic helminth) do not appear to do so. Just how (and if) phytochelatins in invertebrates complement the function of metallothioneins remains to be elucidated, and the temporal, spatial, and metal specificity of the two systems is still unknown.
Collapse
Affiliation(s)
- J G Bundy
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | | |
Collapse
|
3
|
Novais SC, Gomes NC, Soares AMVM, Amorim MJB. Antioxidant and neurotoxicity markers in the model organism Enchytraeus albidus (Oligochaeta): mechanisms of response to atrazine, dimethoate and carbendazim. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1220-1233. [PMID: 24912478 DOI: 10.1007/s10646-014-1265-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The present study aimed to investigate the effects of dimethoate, atrazine and carbendazim on the antioxidant defences and neuronal function of the soil organism Enchytraeus albidus. Effects were studied at concentrations known to affect their reproduction (EC20, EC50 and EC90) and along time (2, 4, 8, 14 and 21 days). In general, responses were more pronounced at periods of exposure longer than 8 days and at the highest concentrations. Multivariate statistics (RDA-PRC) clearly displayed that exposure duration had an effect itself, biomarkers' responses showed interaction for all pesticides and catalase scored consistently high, indicating its relevancy in the group of measured markers. Univariate analysis indicated oxidative stress for all pesticides and atrazine induced oxidative damage in lipids. Atrazine seems to be effectively metabolized by GST of the biotransformation system, as its activity significantly increased after exposure to this pesticide. Dimethoate caused ChE inhibition, indicating an impairment of the neuronal function. Carbendazim impaired the antioxidant system, but no oxidative damage was observed, along with any effects on the ChE activity. The integrated biomarker response analysis was performed but we suggest modifications due to limiting artefacts.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | |
Collapse
|
4
|
Castro-Ferreira MP, de Boer TE, Colbourne JK, Vooijs R, van Gestel CAM, van Straalen NM, Soares AMVM, Amorim MJB, Roelofs D. Transcriptome assembly and microarray construction for Enchytraeus crypticus, a model oligochaete to assess stress response mechanisms derived from soil conditions. BMC Genomics 2014; 15:302. [PMID: 24758194 PMCID: PMC4234436 DOI: 10.1186/1471-2164-15-302] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 04/17/2014] [Indexed: 12/02/2022] Open
Abstract
Background The soil worm Enchytraeus crypticus (Oligochaeta) is an ecotoxicology model species that, until now, was without genome or transcriptome sequence information. The present research aims at studying the transcriptome of Enchytraeus crypticus, sampled from multiple test conditions, and the construction of a high-density microarray for functional genomic studies. Results Over 1.5 million cDNA sequence reads were obtained representing 645 million nucleotides. After assembly, 27,296 contigs and 87,686 singletons were obtained, from which 44% and 25% are annotated as protein-coding genes, respectively, sharing homology with other animal proteomes. Concerning assembly quality, 84% of the contig sequences contain an open reading frame with a start codon while E. crypticus homologs were identified for 92% of the core eukaryotic genes. Moreover, 65% and 77% of the singletons and contigs without known homologs, respectively, were shown to be transcribed in an independent microarray experiment. An Agilent 180 K microarray platform was designed and validated by hybridizing cDNA from 4 day zinc- exposed E. crypticus to the concentration corresponding to 50% reduction in reproduction after three weeks (EC50). Overall, 70% of all probes signaled expression above background levels (mean signal + 1x standard deviation). More specifically, the probes derived from contigs showed a wider range of average intensities when compared to probes derived from singletons. In total, 522 significantly differentially regulated transcripts were identified upon zinc exposure. Several significantly regulated genes exerted predicted functions (e.g. zinc efflux, zinc transport) associated with zinc stress. Unexpectedly, the microarray data suggest that zinc exposure alters retro transposon activity in the E. crypticus genome. Conclusion An initial investigation of the E. crypticus transcriptome including an associated microarray platform for future studies proves to be a valuable resource to investigate functional genomics mechanisms of toxicity in soil environments and to annotate a potentially large number of lineage specific genes that are responsive to environmental stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dick Roelofs
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Gomes SIL, Scott-Fordsmand JJ, Amorim MJB. Profiling transcriptomic response of Enchytraeus albidus to Cu and Ni: comparison with Cd and Zn. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:75-82. [PMID: 24361568 DOI: 10.1016/j.envpol.2013.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/01/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Metals are among the most common contaminants in soils in Europe. Although their effects are relatively well known regarding survival and reproduction to soil invertebrates, their mode of action is poorly understood. Enchytraeus albidus is a model organism in ecotoxicology and with the development of a gene library for this species, transcriptomic studies are now possible. The main aim of this study is to understand the Cu and Ni mechanisms of response in E. albidus, in comparison with Cd and Zn (already studied). E. albidus were exposed to Cu and Ni for 4 days to the reproduction effect concentrations EC50 and EC90. Results indicate that Cu and Ni have similar mechanisms of toxicity. When comparing four elements (hierarchical clustering) it was possible to observe a clear separation of Cd from all other metals. This separation correlates with the available information from other species regarding the toxicokinetics of the tested elements.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO Box 314, DK-8600 Silkeborg, Denmark.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Gomes SIL, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. JOURNAL OF HAZARDOUS MATERIALS 2013; 254-255:336-344. [PMID: 23644687 DOI: 10.1016/j.jhazmat.2013.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Silver has antimicrobial properties and silver nanoparticles (Ag-NPs) have been some of the most widely used NPs. Information regarding their effects is still insufficient, in particular for soil dwelling organisms. The standard soil Oligochaete Enchytraeus albidus was used to study the effects of Ag in soils, using differential gene expression (microarray) and population (survival, reproduction) response to Ag-NPs (PVP coated) and AgNO₃. Results showed higher toxicity of AgNO₃ (EC₅₀<50 mg/kg) compared to toxicity of Ag-NPs (EC₅₀=225 mg/kg). Based on the biological and material identity, the difference in toxicity between Ag-NPs and AgNO₃ could possibly be explained by a release of Ag(+) ions from the particles or by a slower uptake of Ag-NPs. The indications were that the responses to Ag-NPs reflect an effect of Ag ions and Ag-NPs given the extent of similar/dissimilar genes activated. The particles characterization supports this deduction as there were limited free ions measured in soil extracts, maybe related to little oxidation and/or complexation in the soil matrix. The possibility that gene differences were due to different levels of biological impact (i.e. physiological responses) should not be excluded. Testing of Ag-NPs seem to require longer exposure period to be comparable in terms of effect/risk assessment with other chemicals.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Janeck J Scott-Fordsmand
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, DK-8600 Silkeborg, Denmark.
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Novais SC, De Coen W, Amorim MJB. Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2289-2299. [PMID: 22821857 DOI: 10.1002/etc.1946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Metal ecotoxicity to soil organisms (for example, in enchytraeids) has been addressed mainly by assessing effects on survival and reproduction, but very little is known about the underlying molecular mechanisms of responses. The main purpose of the present study was to assess and compare the transcriptional responses of Enchytraeus albidus to an essential (Zn) and a nonessential (Cd) metal. Exposure was performed with two concentrations with a known effect on reproduction (effective concentration for 50% [EC50] and 90% [EC90]) at three time points (2, 4, and 8 d). Results showed that transcriptional responses were influenced by exposure duration but, independently of that, the mechanisms of response to Cd and Zn were consistently different. Both metals affected pathways related to the regulation of gene expression, calcium homeostasis, and cellular respiration. Mechanisms of toxicity that were exclusively associated with Cd exposures were the inhibition of DNA repair and the impairment of ubiquitin-mediated proteolysis. The microarray for E. albidus was a useful tool for detecting molecular pathways affected by metal exposures. Transcriptional responses strongly correlated with known mechanisms of Cd and Zn responses in other organisms, suggesting cross-species conserved mechanisms of action. It should be highlighted not only that the authors could retrieve mechanistic information but also that genes responded within 2 to 8 d of exposure. This represents an additional advantage of using such molecular endpoints as a complement to the traditional, more time-consuming endpoints.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|
8
|
Novais SC, De Coen W, Amorim MJB. Gene expression responses linked to reproduction effect concentrations (EC 10,20,50,90) of dimethoate, atrazine and carbendazim, in Enchytraeus albidus. PLoS One 2012; 7:e36068. [PMID: 22558331 PMCID: PMC3338630 DOI: 10.1371/journal.pone.0036068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/30/2012] [Indexed: 01/25/2023] Open
Abstract
Background Molecular mechanisms of response to pesticides are scarce and information on such responses from soil invertebrates is almost inexistent. Enchytraeus albidus (Oligochaeta) is a standard soil ecotoxicology model species for which effects of many pesticides are known on survival, reproduction and avoidance behaviour. With the recent microarray development additional information can be retrieved on the molecular effects. Methodology/Principal Findings Experiments were performed to investigate the transcription responses of E. albidus when exposed to three pesticides – dimethoate (insecticide), atrazine (herbicide) and carbendazim (fungicide) – in a range of concentrations that inhibited reproduction by 10%, 20%, 50% and 90% (EC10, EC20, EC50 and EC90, respectively). The goal of this study was to further identify key biological processes affected by each compound and if dose-related. All three pesticides significantly affected biological processes like translation, regulation of the cell cycle or general response to stress. Intracellular signalling and microtubule-based movement were affected by dimethoate and carbendazim whereas atrazine affected lipid and steroid metabolism (also by dimethoate) or carbohydrate metabolism (also by carbendazim). Response to DNA damage/DNA repair was exclusively affected by carbendazim. Conclusions Changes in gene expression were significantly altered after 2 days of exposure in a dose-related manner. The mechanisms of response were comparable with the ones for mammals, suggesting across species conserved modes of action. The present results indicate the potential of using gene expression in risk assessment and the advantage as early markers.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|