1
|
Borriello G, Buonincontri V, de Donato A, Della Corte M, Gravina I, Iulianiello P, Joshi R, Mone P, Cacciola G, Viggiano D. The interplay between sodium/glucose cotransporter type 2 and mitochondrial ionic environment. Mitochondrion 2024; 76:101878. [PMID: 38599300 DOI: 10.1016/j.mito.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial volume is maintained through the permeability of the inner mitochondrial membrane by a specific aquaporin and the osmotic balance between the mitochondrial matrix and cellular cytoplasm. Various electrolytes, such as calcium and hydrogen ions, potassium, and sodium, as well as other osmotic substances, affect the swelling of mitochondria. Intracellular glucose levels may also affect mitochondrial swelling, although the relationship between mitochondrial ion homeostasis and intracellular glucose is poorly understood. This article reviews what is currently known about how the Sodium-Glucose transporter (SGLT) may impact mitochondrial sodium (Na+) homeostasis. SGLTs regulate intracellular glucose and sodium levels and, therefore, interfere with mitochondrial ion homeostasis because mitochondrial Na+ is closely linked to cytoplasmic calcium and sodium dynamics. Recently, a large amount of data has been available on the effects of SGLT2 inhibitors on mitochondria in different cell types, including renal proximal tubule cells, endothelial cells, mesangial cells, podocytes, neuronal cells, and cardiac cells. The current evidence suggests that SGLT inhibitors (SGLTi) may affect mitochondrial dynamics regarding intracellular Sodium and hydrogen ions. Although the regulation of mitochondrial ion channels by SGLTs is still in its infancy, the evidence accumulated thus far of the effect of SGLTi on mitochondrial functions certainly will foster further research in this direction.
Collapse
Affiliation(s)
- Gianmarco Borriello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | | | - Antonio de Donato
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, AV, Italy
| | - Michele Della Corte
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Ilenia Gravina
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pietro Iulianiello
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Rashmi Joshi
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Pasquale Mone
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; Casa di cura privata Montevergine, Mercogliano, Italy
| | - Giovanna Cacciola
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy
| | - Davide Viggiano
- Dept. Translational Medical Sciences, Univ. Campania, "L Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Huang CY, Loo DM, Gu W. Modeling of glycosaminoglycan biosynthesis in intervertebral disc cells. Comput Biol Med 2023; 162:107039. [PMID: 37295387 DOI: 10.1016/j.compbiomed.2023.107039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Loss of proteoglycan (PG) is a potential factor responsible for degeneration of the intervertebral disc (IVD). PG consists of a core protein with covalently attached glycosaminoglycan (GAG) chains. The objective of this study was to develop a mathematical model of GAG biosynthesis to investigate the effects of glycolytic enzymes on GAG biosynthesis of IVD cells. A new mathematical model of GAG biosynthesis was developed for IVD cells by incorporating biosynthesis of uridine diphosphate-sugars into the glycolytic pathway. This new model showed good agreement between the model predictions of intracellular ATP content and GAG biosynthesis and experimental data measured at different external glucose levels. The quantitative analyses demonstrated that GAG biosynthesis may be sensitive to the activities of hexokinase (HK) and phosphofructokinase (PFK), especially at low glucose supply, with GAG biosynthesis being significantly enhanced by a slight increase in activities of HK and PFK. This suggests that metabolic reprogramming could be a potential strategy for promoting PG biosynthesis in IVD cells. Furthermore, it was shown that GAG biosynthesis may be promoted by increasing intracellular glutamine concentration or activity of glutamine:fructose-6-phosphate amidotransferase in the hexamine pathway. This study provides a better understanding of the relationship between glycolysis and PG biosynthesis in IVD cells. The theoretical framework developed in this study is useful for studying the role of glycolysis in disc degeneration and developing new preventive and treatment strategies for degeneration of the IVD.
Collapse
Affiliation(s)
- Chun-Yuh Huang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| | - Daniela M Loo
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Weiyong Gu
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
3
|
Tuo J, Nawab S, Ma X, Huo YX. Recent advances in screening amino acid overproducers. ENGINEERING MICROBIOLOGY 2023; 3:100066. [PMID: 39628519 PMCID: PMC11610995 DOI: 10.1016/j.engmic.2022.100066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/06/2024]
Abstract
Microbial fermentation has contributed to 80% of global amino acid production. The key to microbial fermentation is to obtain fermentation strains with high performance to produce target amino acids with a high yield. These strains are primarily derived from screening enormous mutant libraries. Therefore, a high-throughput, rapid, accurate, and universal screening strategy for amino acid overproducers has become a guarantee for obtaining optional amino acid overproducers. In recent years, the rapid development of various novel screening strategies has been witnessed. However, proper analysis and discussion of these innovative technologies are lacking. Here we systematically reviewed recent advances in screening strategies: the auxotrophic-based strategy, the biosensor-based strategy, and the latest translation-based screening strategy. The design principle, application scope, working efficiency, screening accuracy, and universality of these strategies were discussed in detail. The potential for screening nonstandard amino acid overproducers was also analyzed. Guidance for the improvement of future screening strategies is provided in this review, which could expedite the reconstruction of amino acid overproducers and help promote the fermentation industry to reduce cost, increase yield, and improve quality.
Collapse
Affiliation(s)
- Junkai Tuo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan 063611, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology (Tangshan) Translational Research Center, Tangshan Port Economic Development Zone, Tangshan 063611, China
| |
Collapse
|
4
|
Saldanha M, Shelar A, Patil V, Warke VG, Dandekar P, Jain R. A case study: Correlation of the nutrient composition in Chinese Hamster Ovary cultures with cell growth, antibody titre and quality attributes using multivariate analyses for guiding medium and feed optimization in early upstream process development. Cytotechnology 2023; 75:77-91. [PMID: 36713064 PMCID: PMC9880107 DOI: 10.1007/s10616-022-00561-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
In this case-study, we demonstrate an approach for identifying correlations between nutrients/metabolites in the spent medium of CHO cell cultures and cell growth, mAb titre and critical quality attributes, using multivariate analyses, which can aid in selection of targets for medium and feed optimization. An extensive LC-MS-based method was used to analyse the spent medium composition. Partial least squares (PLS) model was used to identify correlations between nutrient composition and cell growth and mAb titre and orthogonal projections to latent structures (OPLS) model was used to determine the effect of the changing nutrient composition during the culture on critical quality attributes. The PLS model revealed that the initial concentrations of several amino acids as well as pyruvic acid and pyridoxine, governed the early cell growth, while the concentrations of TCA cycle intermediates and several vitamins highly influenced the stationary phase, in which mAb production was maximum. For the first time, with the help of the OPLS model, we were able to draw correlations between nutrients/metabolites during the culture and critical quality attributes, for example, optimizing the supply of certain amino acids and vitamins could reduce impurities while simultaneously increasing desirable glycoforms. The unique correlations obtained from such an exploratory analysis, utilizing conditions that are commonly adopted in early process development, present opportunities for optimizing the compositions of the growth media and the feed media for enhancing cell growth, mAb production and quality, thereby proving to be a useful preliminary step in bioprocess optimization. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00561-z.
Collapse
Affiliation(s)
- Marianne Saldanha
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Private Limited, Rushabh Chambers, Marol, Andheri East, Mumbai, 400059 India
| | - Vaibhav Patil
- Sartorius Stedim India Private Limited, No. 69/2 & 69/3, Jakkasandra, Nelamangala, Bangalore, 562123 India
| | - Vishal G. Warke
- Himedia Laboratories Private Limited, Plot No. C40, MIDC, Wagle Industrial Area, Thane, 400604 India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
5
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
6
|
Rajeeve K, Vollmuth N, Janaki-Raman S, Wulff TF, Baluapuri A, Dejure FR, Huber C, Fink J, Schmalhofer M, Schmitz W, Sivadasan R, Eilers M, Wolf E, Eisenreich W, Schulze A, Seibel J, Rudel T. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nat Microbiol 2020; 5:1390-1402. [PMID: 32747796 DOI: 10.1038/s41564-020-0762-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.
Collapse
Affiliation(s)
- Karthika Rajeeve
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany. .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sudha Janaki-Raman
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas F Wulff
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Francesca R Dejure
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.,BioMed X Institute, Heidelberg, Germany
| | - Claudia Huber
- Chair of Biochemistry, Technical University of Munich, Garching, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rajeeve Sivadasan
- RNA Biology and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Würzburg, Germany.,Division of Tumour Metabolism and Microenvironment, German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany. .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.
| |
Collapse
|
7
|
Askretkov AD, Klishin AA, Zybin DI, Orlova NV, Kholodova AV, Lobanova NV, Seregin YA. Determination of Twenty Proteinogenic Amino Acids and Additives in Cultural Liquid by High-Performance Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Bearham J, Garnett JP, Schroeder V, Biggart MGS, Baines DL. Effective glucose metabolism maintains low intracellular glucose in airway epithelial cells after exposure to hyperglycemia. Am J Physiol Cell Physiol 2019; 317:C983-C992. [PMID: 31433692 PMCID: PMC6879884 DOI: 10.1152/ajpcell.00193.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
The airway epithelium maintains differential glucose concentrations between the airway surface liquid (ASL, ~0.4 mM) and the blood/interstitium (5-6 mM), which is important for defense against infection. Glucose primarily moves from the blood to the ASL via paracellular movement, down its concentration gradient, across the tight junctions. However, there is evidence that glucose can move transcellularly across epithelial cells. Using a Förster resonance energy transfer sensor for glucose, we investigated intracellular glucose concentrations in airway epithelial cells and the role of hexokinases in regulating intracellular glucose concentrations in normoglycemic and hyperglycemic conditions. Our findings indicated that in airway epithelial cells (H441 or primary human bronchial epithelial cells) exposed to 5 mM glucose (normoglycemia), intracellular glucose concentration is in the micromolar range. Inhibition of facilitative glucose transporters (GLUTs) with cytochalasin B reduced intracellular glucose concentration. When cells were exposed to 15 mM glucose (hyperglycemia), intracellular glucose concentration was reduced. Airway cells expressed hexokinases I, II, and III. Inhibition with 3-bromopyruvate decreased hexokinase activity by 25% and elevated intracellular glucose concentration, but levels remained in the micromolar range. Exposure to hyperglycemia increased glycolysis, glycogen, and sorbitol. Thus, glucose enters the airway cell via GLUTs and is then rapidly processed by hexokinase-dependent and hexokinase-independent metabolic pathways to maintain low intracellular glucose concentrations. We propose that this prevents transcellular transport and aids the removal of glucose from the ASL and that the main route of entry for glucose into the ASL is via the paracellular pathway.
Collapse
Affiliation(s)
- Jade Bearham
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - James P Garnett
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma and Company, Biberach an der Riss, Germany
| | - Victoria Schroeder
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma and Company, Biberach an der Riss, Germany
| | - Matthew G S Biggart
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom
| |
Collapse
|
9
|
Wragg NM, Mosqueira D, Blokpeol-Ferreras L, Capel A, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System. Biotechnol J 2019; 15:e1900106. [PMID: 31468704 DOI: 10.1002/biot.201900106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/05/2019] [Indexed: 12/26/2022]
Abstract
In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.
Collapse
Affiliation(s)
- Nicholas M Wragg
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Diogo Mosqueira
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lia Blokpeol-Ferreras
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH University College London, Stanmore, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
10
|
Sun Z, Ji Q, Evans AR, Lewis MJ, Mo J, Hu P. High-throughput LC-MS quantitation of cell culture metabolites. Biologicals 2019; 61:44-51. [DOI: 10.1016/j.biologicals.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
|
11
|
Modi A, Verma SK, Bellare J. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:524-540. [DOI: 10.1016/j.msec.2018.05.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
|
12
|
Csepregi R, Temesfői V, Sali N, Poór M, W Needs P, A Kroon P, Kőszegi T. A One-Step Extraction and Luminescence Assay for Quantifying Glucose and ATP Levels in Cultured HepG2 Cells. Int J Mol Sci 2018; 19:E2670. [PMID: 30205572 PMCID: PMC6163413 DOI: 10.3390/ijms19092670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
A fluorescence-based enzymatic microplate intracellular glucose assay was designed and fully validated. The method was tested in a hepatocellular cancer cell line (HepG2). Our novel one-step extraction reagent gave stable cell lysates for glucose, adenosine triphosphate (ATP), and total protein determination from the same sample. Limit of detection for glucose was 0.13 µM (26 pmol/well), which is superior to commercially available glucose assays. Both intra- and interday assay imprecision in HepG2 cultures were less than 12% coefficient of variance (CV). In cell lysates spiked with glucose, recovery at two levels varied between 83.70% and 91.81%, and both linearity and stability were acceptable. HepG2 cells treated with agents affecting glucose uptake/metabolism (phloretin, quercetin, quercetin-3'-sulfate, NaF, 3-bromopyruvate, NaN₃, oligomycin A, ochratoxin A, cytochalasin B, and anti-GLUT1 antibody) showed dose-dependent changes in glucose and ATP levels without total protein (cell) loss. Finally, we performed flow cytometric glucose uptake measurement in the treated cells using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose fluorescent glucose analog. Glucose uptake did not always mirror the intracellular glucose levels, which most likely reflects the differences between the two methodologies. However, interpreting data obtained by both methods and taking ATP/protein levels at the same time, one can get information on the mode of action of the compounds.
Collapse
Affiliation(s)
- Rita Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| | - Viktória Temesfői
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| | - Nikolett Sali
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
| | - Miklós Poór
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| |
Collapse
|
13
|
Pelosse M, Cottet-Rousselle C, Grichine A, Berger I, Schlattner U. Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism. ACTA ACUST UNITED AC 2017; 107:491-523. [PMID: 27812993 DOI: 10.1007/978-3-319-43589-3_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maintenance of energy homeostasis is a basic requirement for cell survival. Different mechanisms have evolved to cope with spatial and temporal mismatch between energy-providing and -consuming processes. Among these, signaling by AMP-activated protein kinase (AMPK) is one of the key players, regulated by and itself regulating cellular adenylate levels. Further understanding its complex cellular function requires deeper insight into its activation patterns in space and time at a single cell level. This may become possible with an increasing number of genetically encoded fluorescent biosensors, mostly based on fluorescence resonance energy transfer, which have been engineered to monitor metabolic parameters and kinase activities. Here, we review basic principles of biosensor design and function and the advantages and limitations of their use and provide an overview on existing FRET biosensors to monitor AMPK activation, ATP concentration, and ATP/ADP ratios, together with other key metabolites and parameters of energy metabolism.
Collapse
Affiliation(s)
- Martin Pelosse
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm, U1055 and U1209, Grenoble, France
| | - Alexei Grichine
- Inserm, U1055 and U1209, Grenoble, France.,Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | | | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France. .,Inserm, U1055 and U1209, Grenoble, France.
| |
Collapse
|
14
|
Blume M, Nitzsche R, Sternberg U, Gerlic M, Masters SL, Gupta N, McConville MJ. A Toxoplasma gondii Gluconeogenic Enzyme Contributes to Robust Central Carbon Metabolism and Is Essential for Replication and Virulence. Cell Host Microbe 2016; 18:210-20. [PMID: 26269956 DOI: 10.1016/j.chom.2015.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
The expression of gluconeogenic enzymes is typically repressed when glucose is available. The protozoan parasite Toxoplasma gondii utilizes host glucose to sustain high rates of intracellular replication. However, despite their preferential utilization of glucose, intracellular parasites constitutively express two isoforms of the gluconeogenic enzyme fructose 1,6-bisphosphatase (TgFBP1 and TgFBP2). The rationale for constitutive expression of FBPases in T. gondii remains unclear. We find that conditional knockdown of TgFBP2 results in complete loss of intracellular growth in vitro under glucose-replete conditions and loss of acute virulence in mice. TgFBP2 deficiency was rescued by expression of catalytically active FBPase and was associated with altered glycolytic and mitochondrial TCA cycle fluxes, as well as dysregulation of glycolipid, amylopectin, and fatty acid biosynthesis. Futile cycling between gluconeogenic and glycolytic enzymes may constitute a regulatory mechanism that allows T. gondii to rapidly adapt to changes in nutrient availability in different host cells.
Collapse
Affiliation(s)
- Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Richard Nitzsche
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Ulrich Sternberg
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Motti Gerlic
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, and Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nishith Gupta
- Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
15
|
Slade PG, Caspary RG, Nargund S, Huang CJ. Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol Bioeng 2016; 113:1468-80. [PMID: 26724786 DOI: 10.1002/bit.25924] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 01/02/2023]
Abstract
Understanding the causes of high-mannose (HM) glycosylation of recombinant IgG in CHO cells would facilitate the production of therapeutics. CHO cells grown with mannose as the major carbon source demonstrated a dramatic increase in total HM glycosylation in recombinant IgG, with no effect on cell growth, viability, or titer. Quantitative metabolomics and (13) C flux analysis were used to explore the mechanism for increased HM glycosylation and understand the metabolism of mannose in CHO cells. It was demonstrated that mannose was a good carbon source for CHO cell growth and IgG production, readily entering both glycolysis and the TCA Cycle. Previous mechanisms for increased HM glycosylation during antibody production have been attributed to changes in pH, osmolality, increased specific productivity, and nutrient limitation. The results from this study propose a novel mechanism where an increased carbon flux in the GDP-mannose synthetic pathway increased the intracellular concentration of mannose-containing metabolites. The abnormally high concentration of mannose and mannose-metabolites were shown to inhibit α-mannosidase activity and it was proposed that this inhibition in the ER and Golgi caused the production of IgG with increased high-mannose glycosylation. Biotechnol. Bioeng. 2016;113: 1468-1480. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Slade
- Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, 98119, Washington.
| | - R Guy Caspary
- Process and Product Development, Amgen Inc., 1201 Amgen Court West, Seattle, 98119, Washington
| | - Shilpa Nargund
- Process and Product Development, Amgen Inc., Thousand Oaks, California
| | - Chung-Jr Huang
- Process and Product Development, Amgen Inc., Thousand Oaks, California
| |
Collapse
|
16
|
Nascimento RAS, Özel RE, Mak WH, Mulato M, Singaram B, Pourmand N. Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells. NANO LETTERS 2016; 16:1194-200. [PMID: 26752097 PMCID: PMC4887140 DOI: 10.1021/acs.nanolett.5b04495] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of β-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ.
Collapse
Affiliation(s)
- Raphael A. S. Nascimento
- Biomolecular Engineering Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
- Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-401, Brazil
| | - Rıfat Emrah Özel
- Biomolecular Engineering Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
- Corresponding Author: Tel.: +1-831-459-4382. Fax: +1-831-459-2891.
| | - Wai Han Mak
- Biomolecular Engineering Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Marcelo Mulato
- Biomolecular Engineering Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
- Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, São Paulo 14040-401, Brazil
| | - Bakthan Singaram
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Nader Pourmand
- Biomolecular Engineering Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
17
|
Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R, Dickson AJ. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness. Biotechnol J 2015. [DOI: 10.1002/biot.201400664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Chowdhury T, Köhler JR. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans. Mol Microbiol 2015; 98:384-402. [PMID: 26173379 DOI: 10.1111/mmi.13130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
Abstract
TOR and PKA signaling pathways control eukaryotic cell growth and proliferation. TOR activity in model fungi, such as Saccharomyces cerevisiae, responds principally to nutrients, e.g., nitrogen and phosphate sources, which are incorporated into the growing cell mass; PKA signaling responds to the availability of the cells' major energy source, glucose. In the fungal commensal and pathogen, Candida albicans, little is known of how these pathways interact. Here, the signal from phosphorylated ribosomal protein S6 (P-S6) was defined as a surrogate marker for TOR-dependent anabolic activity in C. albicans. Nutritional, pharmacologic and genetic modulation of TOR activity elicited corresponding changes in P-S6 levels. The P-S6 signal corresponded to translational activity of a GFP reporter protein. Contributions of four PKA pathway components to anabolic activation were then examined. In high glucose concentrations, only Tpk2 was required to upregulate P-S6 to physiologic levels, whereas all four tested components were required to downregulate P-S6 in low glucose. TOR was epistatic to PKA components with respect to P-S6. In many host niches inhabited by C. albicans, glucose is scarce, with protein being available as a nitrogen source. We speculate that PKA may modulate TOR-dependent cell growth to a rate sustainable by available energy sources, when monomers of anabolic processes, such as amino acids, are abundant.
Collapse
Affiliation(s)
- Tahmeena Chowdhury
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
19
|
Enhancement of production of protein biopharmaceuticals by mammalian cell cultures: the metabolomics perspective. Curr Opin Biotechnol 2014; 30:73-9. [DOI: 10.1016/j.copbio.2014.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 01/01/2023]
|
20
|
|
21
|
Ozyurt C, Evran S, Telefoncu A. Development of genetically encoded fluorescent protein constructs of hyperthermophilic maltose-binding protein. Prep Biochem Biotechnol 2014; 44:132-45. [PMID: 24152100 DOI: 10.1080/10826068.2013.797436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Circularly permuted green fluorescent protein (cGFP) was inserted into the hyperthermophilic maltose binding protein at two different locations. cGFP was inserted between amino acid residues 206 and 207, or fused to the N-terminal of maltose binding protein from Thermotoga maritima. The cloned DNA constructs were expressed in Escherichia coli cells, and purified by metal chelate affinity chromatography. Conformational change upon ligand binding was monitored by the increase in fluorescence intensity. Both of the fusion proteins developed significant fluorescence change at 0.5 mM maltose concentration, whereas their maltose binding affinities and optimum incubation times were different. Fluorescent biosensors based on mesophilic maltose binding proteins have been described in the literature, but there is a growing interest in biosensors based on thermostable proteins. Therefore, the developed protein constructs could be models for thermophilic protein-based fluorescent biosensors.
Collapse
Affiliation(s)
- Canan Ozyurt
- a Department of Biochemistry, Faculty of Science , Ege University , Izmir , Turkey
| | | | | |
Collapse
|
22
|
Behjousiar A, Constantinou A, Polizzi KM, Kontoravdi C. FIBS-enabled noninvasive metabolic profiling. J Vis Exp 2014:e51200. [PMID: 24513729 DOI: 10.3791/51200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In the era of computational biology, new high throughput experimental systems are necessary in order to populate and refine models so that they can be validated for predictive purposes. Ideally such systems would be low volume, which precludes sampling and destructive analyses when time course data are to be obtained. What is needed is an in situ monitoring tool which can report the necessary information in real-time and noninvasively. An interesting option is the use of fluorescent, protein-based in vivo biological sensors as reporters of intracellular concentrations. One particular class of in vivo biosensors that has found applications in metabolite quantification is based on Förster Resonance Energy Transfer (FRET) between two fluorescent proteins connected by a ligand binding domain. FRET integrated biological sensors (FIBS) are constitutively produced within the cell line, they have fast response times and their spectral characteristics change based on the concentration of metabolite within the cell. In this paper, the method for constructing Chinese hamster ovary (CHO) cell lines that constitutively express a FIBS for glucose and glutamine and calibrating the FIBS in vivo in batch cell culture in order to enable future quantification of intracellular metabolite concentration is described. Data from fed-batch CHO cell cultures demonstrates that the FIBS was able in each case to detect the resulting change in the intracellular concentration. Using the fluorescent signal from the FIBS and the previously constructed calibration curve, the intracellular concentration was accurately determined as confirmed by an independent enzymatic assay.
Collapse
Affiliation(s)
- Alireza Behjousiar
- Centre for Process Systems Engineering, Department of Chemical Engineering and Chemical Technology, Imperial College London
| | | | | | | |
Collapse
|
23
|
Abstract
Bioprocess monitoring is used to track the progress of a cell culture and ensure that the product quality is maintained. Current schemes for monitoring metabolism rely on offline measurements of samples of the extracellular medium. However, in the era of synthetic biology, it is now possible to design and implement biosensors that consist of biological macromolecules and are able to report on the intracellular environment of cells. The use of fluorescent reporter signals allows non-invasive, non-destructive and online monitoring of the culture, which reduces the delay between measurement and any necessary intervention. The present mini-review focuses on protein-based biosensors that utilize FRET as the signal transduction mechanism. The mechanism of FRET, which utilizes the ratio of emission intensity at two wavelengths, has an inherent advantage of being ratiometric, meaning that small differences in the experimental set-up or biosensor expression level can be normalized away. This allows for more reliable quantitative estimation of the concentration of the target molecule. Existing FRET biosensors that are of potential interest to bioprocess monitoring include those developed for primary metabolites, redox potential, pH and product formation. For target molecules where a biosensor has not yet been developed, some candidate binding domains can be identified from the existing biological databases. However, the remaining challenge is to make the process of developing a FRET biosensor faster and more efficient.
Collapse
|
24
|
Royle KE, Jimenez del Val I, Kontoravdi C. Integration of models and experimentation to optimise the production of potential biotherapeutics. Drug Discov Today 2013; 18:1250-5. [PMID: 23850703 DOI: 10.1016/j.drudis.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/29/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Despite decades of clinical and commercial success, the current paradigm for drug discovery and development is still empirical and costly. The many hundreds of therapeutic proteins (TPs) in the development pipeline and the FDA-led quality-by-design initiative represent opportunities to address this issue. Advances in our understanding of cellular mechanisms as well as the physicochemical and biological characteristics of TPs have enabled researchers to develop computational models that analyse or even predict molecular and cellular behaviour under different conditions. Coupled with new analytical tools, these models are increasingly used to systemise and expedite the design and optimisation of protein production processes throughout the discovery and development stages.
Collapse
Affiliation(s)
- Kate E Royle
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
25
|
MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ. Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 2013; 12:682-92. [PMID: 23159057 DOI: 10.1016/j.chom.2012.09.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/07/2012] [Accepted: 09/20/2012] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii proliferates within host cell vacuoles where the parasite relies on host carbon and nutrients for replication. To assess how T. gondii utilizes these resources, we mapped the carbon metabolism pathways in intracellular and egressed parasite stages. We determined that intracellular T. gondii stages actively catabolize host glucose via a canonical, oxidative tricarboxylic acid (TCA) cycle, a mitochondrial pathway in which organic molecules are broken down to generate energy. These stages also catabolize glutamine via the TCA cycle and an unanticipated γ-aminobutyric acid (GABA) shunt, which generates GABA and additional molecules that enter the TCA cycle. Chemically inhibiting the TCA cycle completely prevents intracellular parasite replication. Parasites lacking the GABA shunt exhibit attenuated growth and are unable to sustain motility under nutrient-limited conditions, suggesting that GABA functions as a short-term energy reserve. Thus, T. gondii tachyzoites have metabolic flexibility that likely allows the parasite to infect diverse cell types.
Collapse
Affiliation(s)
- James I MacRae
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Goers L, Kylilis N, Tomazou M, Yan Wen K, Freemont P, Polizzi K. Engineering Microbial Biosensors. METHODS IN MICROBIOLOGY 2013. [DOI: 10.1016/b978-0-12-417029-2.00005-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|