1
|
Feindt W, Oppenheim SJ, DeSalle R, Goldstein PZ, Hadrys H. Transcriptome profiling with focus on potential key genes for wing development and evolution in Megaloprepus caerulatus, the damselfly species with the world's largest wings. PLoS One 2018; 13:e0189898. [PMID: 29329292 PMCID: PMC5766104 DOI: 10.1371/journal.pone.0189898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
The evolution, development and coloration of insect wings remains a puzzling subject in evolutionary research. In basal flying insects such as Odonata, genomic research regarding bauplan evolution is still rare. Here we focus on the world's largest odonate species-the "forest giant" Megaloprepus caerulatus, to explore its potential for looking deeper into the development and evolution of wings. A recently discovered cryptic species complex in this genus previously considered monotypic is characterized by morphological differences in wing shape and color patterns. As a first step toward understanding wing pattern divergence and pathways involved in adaptation and speciation at the genomic level, we present a transcriptome profiling of M. caerulatus using RNA-Seq and compare these data with two other odonate species. The de novo transcriptome assembly consists of 61,560 high quality transcripts and is approximately 93% complete. For almost 75% of the identified transcripts a possible function could be assigned: 48,104 transcripts had a hit to an InterPro protein family or domain, and 28,653 were mapped to a Gene Ontology term. In particular, we focused on genes related to wing development and coloration. The comparison with two other species revealed larva-specific genes and a conserved 'core' set of over 8,000 genes forming orthologous clusters with Ischnura elegans and Ladona fulva. This transcriptome may provide a first point of reference for future research in odonates addressing questions surrounding the evolution of wing development, wing coloration and their role in speciation.
Collapse
Affiliation(s)
- Wiebke Feindt
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- Leibniz University Hannover, Hannover, Germany
| | - Sara J. Oppenheim
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Robert DeSalle
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
| | - Paul Z. Goldstein
- Systematic Entomology Laboratory (USDA-ARS), National Museum of Natural History, Washington, DC, United States of America
| | - Heike Hadrys
- University of Veterinary Medicine Hannover, ITZ—Division of Ecology and Evolution, Hannover, Germany
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, United States of America
- Yale University, Department of Ecology & Evolutionary Biology, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Simon S, Sagasser S, Saccenti E, Brugler MR, Schranz ME, Hadrys H, Amato G, DeSalle R. Comparative transcriptomics reveal developmental turning points during embryogenesis of a hemimetabolous insect, the damselfly Ischnura elegans. Sci Rep 2017; 7:13547. [PMID: 29051502 PMCID: PMC5648782 DOI: 10.1038/s41598-017-13176-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Identifying transcriptional changes during embryogenesis is of crucial importance for unravelling evolutionary, molecular and cellular mechanisms that underpin patterning and morphogenesis. However, comparative studies focusing on early/embryonic stages during insect development are limited to a few taxa. Drosophila melanogaster is the paradigm for insect development, whereas comparative transcriptomic studies of embryonic stages of hemimetabolous insects are completely lacking. We reconstructed the first comparative transcriptome covering the daily embryonic developmental progression of the blue-tailed damselfly Ischnura elegans (Odonata), an ancient hemimetabolous representative. We identified a "core" set of 6,794 transcripts - shared by all embryonic stages - which are mainly involved in anatomical structure development and cellular nitrogen compound metabolic processes. We further used weighted gene co-expression network analysis to identify transcriptional changes during Odonata embryogenesis. Based on these analyses distinct clusters of transcriptional active sequences could be revealed, indicating that embryos at different development stages have their own transcriptomic profile according to the developmental events and leading to sequential reprogramming of metabolic and developmental genes. Interestingly, a major change in transcriptionally active sequences is correlated with katatrepsis (revolution) during mid-embryogenesis, a 180° rotation of the embryo within the egg and specific to hemimetabolous insects.
Collapse
Affiliation(s)
- Sabrina Simon
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA.
| | - Sven Sagasser
- Ludwig Institute for Cancer Research, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeng 4, 6708 WE, Wageningen, The Netherlands
| | - Mercer R Brugler
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
- Biological Sciences Department, NYC College of Technology, City University of New York, 300 Jay Street, Brooklyn, New York, 11201, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Heike Hadrys
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
- ITZ, Ecology&Evolution, University of Veterinary Medicine Hanover, Buenteweg 17d, D-30559, Hannover, Germany
- Yale University, Department of Ecology & Evolutionary Biology, 165 Prospect Street, New Haven, CT, 06511, USA
| | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West and 79th St., New York, NY, 10024, USA
| |
Collapse
|
3
|
Kjer KM, Simon C, Yavorskaya M, Beutel RG. Progress, pitfalls and parallel universes: a history of insect phylogenetics. J R Soc Interface 2016; 13:20160363. [PMID: 27558853 PMCID: PMC5014063 DOI: 10.1098/rsif.2016.0363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985-2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed.
Collapse
Affiliation(s)
- Karl M Kjer
- Department of Entomology and Nematology, University of California-Davis, 1282 Academic Surge, Davis, CA 95616, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3043, USA
| | - Margarita Yavorskaya
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| | - Rolf G Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie, FSU Jena, 07743 Jena, Germany
| |
Collapse
|
4
|
Meng G, Dai F, Tong X, Li N, Ding X, Song J, Lu C. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes. Mol Genet Genomics 2014; 290:807-24. [PMID: 25424044 DOI: 10.1007/s00438-014-0958-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline sites. WW domains are found in many different structural and signaling proteins that are involved in a variety of cellular processes. WW domain-containing proteins (WWCPs) and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway, making them targets for new diagnostics and therapeutics. There are a number of reports about the WWCPs in different species, but systematic analysis of the WWCP genes and its ligands is still lacking in silkworm and the other organisms. In this study, WWCP genes and PY motif-containing proteins have been identified and analyzed in 56 species including silkworm. Whole-genome screening of B. mori identified thirty-three proteins with thirty-nine WW domains located on thirteen chromosomes. In the 39 silkworm WW domains, 15 domains belong to the Group I WW domain; 14 domains were in Group II/III, 9 domains derived from 8 silkworm WWCPs could not be classified into any group, and Group IV contains only one WW domain. Based on gene annotation, silkworm WWCP genes have functions in multi-biology processes. A detailed list of WWCPs from the other 55 species was sorted in this work. In 14,623 silkworm predicted proteins, nearly 18 % contained PY motif, nearly 30 % contained various motifs totally that could be recognized by WW domains. Gene Ontology and KEGG analysis revealed that dozens of WW domain-binding proteins are involved in Wnt, Hedgehog, Notch, mTOR, EGF and Jak-STAT signaling pathway. Tissue expression patterns of WWCP genes and potential WWCP-binding protein genes on the third day of the fifth instar (L5D3) were examined by microarray analysis. Tissue expression profile analysis found that several WWCP genes and poly-proline or PY motif-containing protein genes took tissue- or gender-dependent expression manner in silkworms. We further analyzed WWCPs and PY motif-containing proteins in representative organisms of invertebrates and vertebrates. The results showed that there are no less than 16 and up to 29 WWCPs in insects, the average is 22. The number of WW domains in insects is no less than 19, and up to 47, the average is 36. In vertebrates, excluding the Hydrobiontes, the number of WWCPs is no less than 34 and up to 49, the average is 43. The number of WW domains in vertebrates is no less than 56 and up to 85, the average is 73. Phylogenetic analysis revealed that most homologous genes of the WWCP subfamily in vertebrates were duplicated during evolution and functions diverged. Nearly 1,000 PY motif-containing protein genes were found in insect genomes and nearly 2,000 genes in vertebrates. The different distributions of WWCP genes and PY motif-containing protein genes in different species revealed a possible positive correlation with organism complexity. In conclusion, this comprehensive bio-information analysis of WWCPs and its binding ligands would provide rich fundamental knowledge and useful information for further exploration of the function of the WW domain-containing proteins not only in silkworm, but also in other species.
Collapse
Affiliation(s)
- Gang Meng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China,
| | | | | | | | | | | | | |
Collapse
|
5
|
Chauhan P, Hansson B, Kraaijeveld K, de Knijff P, Svensson EI, Wellenreuther M. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes. BMC Genomics 2014; 15:808. [PMID: 25245033 PMCID: PMC4182773 DOI: 10.1186/1471-2164-15-808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. RESULTS Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. CONCLUSIONS Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.
Collapse
Affiliation(s)
- Pallavi Chauhan
- />Department of Biology, Lund University, Sölvegatan 37, SE 22362 Lund, Sweden
| | - Bengt Hansson
- />Department of Biology, Lund University, Sölvegatan 37, SE 22362 Lund, Sweden
| | - Ken Kraaijeveld
- />Animal Ecology, Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- />Department of Human and Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Peter de Knijff
- />Department of Human and Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Erik I Svensson
- />Department of Biology, Lund University, Sölvegatan 37, SE 22362 Lund, Sweden
| | - Maren Wellenreuther
- />Department of Biology, Lund University, Sölvegatan 37, SE 22362 Lund, Sweden
| |
Collapse
|
6
|
Simon S, Narechania A, Desalle R, Hadrys H. Insect phylogenomics: exploring the source of incongruence using new transcriptomic data. Genome Biol Evol 2012; 4:1295-309. [PMID: 23175716 PMCID: PMC3542558 DOI: 10.1093/gbe/evs104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 11/13/2022] Open
Abstract
The evolution of the diverse insect lineages is one of the most fascinating issues in evolutionary biology. Despite extensive research in this area, the resolution of insect phylogeny especially of interordinal relationships has turned out to be still a great challenge. One of the challenges for insect systematics is the radiation of the polyneopteran lineages with several contradictory and/or unresolved relationships. Here, we provide the first transcriptomic data for three enigmatic polyneopteran orders (Dermaptera, Plecoptera, and Zoraptera) to clarify one of the most debated issues among higher insect systematics. We applied different approaches to generate 3 data sets comprising 78 species and 1,579 clusters of orthologous genes. Using these three matrices, we explored several key mechanistic problems of phylogenetic reconstruction including missing data, matrix selection, gene and taxa number/choice, and the biological function of the genes. Based on the first phylogenomic approach including these three ambiguous polyneopteran orders, we provide here conclusive support for monophyletic Polyneoptera, contesting the hypothesis of Zoraptera + Paraneoptera and Plecoptera + remaining Neoptera. In addition, we employ various approaches to evaluate data quality and highlight problematic nodes within the Insect Tree that still exist despite our phylogenomic approach. We further show how the support for these nodes or alternative hypotheses might depend on the taxon- and/or gene-sampling.
Collapse
Affiliation(s)
- Sabrina Simon
- ITZ, Ecology & Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | | | | | |
Collapse
|