1
|
Li X, Wang M, Gao X, Li C, Chen C, Qi Y, Wan Y, Yu W. Knockdown of SIRT2 Rescues YARS-induced Charcot-Marie-Tooth Neuropathy in Drosophila. Neurosci Bull 2024; 40:539-543. [PMID: 38066253 PMCID: PMC11004100 DOI: 10.1007/s12264-023-01156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/20/2023] [Indexed: 04/10/2024] Open
Affiliation(s)
- Xuedong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- School of Basic Medic Science, Southwest Medical University, Luzhou, 64600, China
| | - Mengrong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Xiang Gao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chunyu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Ying Wan
- School of Basic Medic Science, Southwest Medical University, Luzhou, 64600, China.
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Li W, Li HL, Wang JZ, Liu R, Wang X. Abnormal protein post-translational modifications induces aggregation and abnormal deposition of protein, mediating neurodegenerative diseases. Cell Biosci 2024; 14:22. [PMID: 38347638 PMCID: PMC10863199 DOI: 10.1186/s13578-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024] Open
Abstract
Protein post-translational modifications (PPTMs) refer to a series of chemical modifications that occur after the synthesis of protein. Proteins undergo different modifications such as phosphorylation, acetylation, ubiquitination, and so on. These modifications can alter the protein's structure, function, and interaction, thereby regulating its biological activity. In neurodegenerative diseases, several proteins undergo abnormal post-translational modifications, which leads to aggregation and abnormal deposition of protein, thus resulting in neuronal death and related diseases. For example, the main pathological features of Alzheimer's disease are the aggregation of beta-amyloid protein and abnormal phosphorylation of tau protein. The abnormal ubiquitination and loss of α-synuclein are related to the onset of Parkinson's disease. Other neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, and so on are also connected with abnormal PPTMs. Therefore, studying the abnormal PPTMs in neurodegenerative diseases is critical for understanding the mechanism of these diseases and the development of significant therapeutic strategies. This work reviews the implications of PPTMs in neurodegenerative diseases and discusses the relevant therapeutic strategies.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| |
Collapse
|
3
|
Li HW, Zhang HH. The Protein Acetylation after Traumatic Spinal Cord Injury: Mechanisms and Therapeutic Opportunities. Int J Med Sci 2024; 21:725-731. [PMID: 38464830 PMCID: PMC10920853 DOI: 10.7150/ijms.92222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Spinal cord injury (SCI) leads to deficits of various normal functions and is difficult to return to a normal state. Histone and non-histone protein acetylation after SCI is well documented and regulates spinal cord plasticity, axonal growth, and sensory axon regeneration. However, our understanding of protein acetylation after SCI is still limited. In this review, we summarize current research on the role of acetylation of histone and non-histone proteins in regulating neuron growth and axonal regeneration in SCI. Furthermore, we discuss inhibitors and activators targeting acetylation-related enzymes, such as α-tubulin acetyltransferase 1 (αTAT1), histone deacetylase 6 (HDAC6), and sirtuin 2 (SIRT2), to provide promising opportunities for recovery from SCI. In conclusion, a comprehensive understanding of protein acetylation and deacetylation in SCI may contribute to the development of SCI treatment.
Collapse
Affiliation(s)
| | - Hai-hong Zhang
- Department of Spine Surgery, Lanzhou University Second Hospital; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
4
|
Wu LE, Fiveash CE, Bentley NL, Kang M, Govindaraju H, Barbour JA, Wilkins BP, Hancock SE, Madawala R, Das A, Massudi H, Li C, Kim L, Wong ASA, Marinova MB, Sultani G, Das A, Youngson NA, Le Couteur DG, Sinclair DA, Turner N. SIRT2 transgenic over-expression does not impact lifespan in mice. Aging Cell 2023; 22:e14027. [PMID: 38009412 PMCID: PMC10726910 DOI: 10.1111/acel.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023] Open
Abstract
The NAD+ -dependent deacylase family of sirtuin enzymes have been implicated in biological ageing, late-life health and overall lifespan, though of these members, a role for sirtuin-2 (SIRT2) is less clear. Transgenic overexpression of SIRT2 in the BubR1 hypomorph model of progeria can rescue many aspects of health and increase overall lifespan, due to a specific interaction between SIRT2 and BubR1 that improves the stability of this protein. It is less clear whether SIRT2 is relevant to biological ageing outside of a model where BubR1 is under-expressed. Here, we sought to test whether SIRT2 over-expression would impact the overall health and lifespan of mice on a nonprogeroid, wild-type background. While we previously found that SIRT2 transgenic overexpression prolonged female fertility, here, we did not observe any additional impact on health or lifespan, which was measured in both male and female mice on standard chow diets, and in males challenged with a high-fat diet. At the biochemical level, NMR studies revealed an increase in total levels of a number of metabolites in the brain of SIRT2-Tg animals, pointing to a potential impact in cell composition; however, this did not translate into functional differences. Overall, we conclude that strategies to enhance SIRT2 protein levels may not lead to increased longevity.
Collapse
Affiliation(s)
- Lindsay E. Wu
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Corrine E. Fiveash
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | | | - Myung‐Jin Kang
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Hemna Govindaraju
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
- Victor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
| | - Jayne A. Barbour
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Brendan P. Wilkins
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Sarah E. Hancock
- Victor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
| | - Romanthi Madawala
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Abhijit Das
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
- School of PsychologyUNSW SydneyKensingtonNew South WalesAustralia
| | - Hassina Massudi
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Catherine Li
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Lynn‐Jee Kim
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Ashley S. A. Wong
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Maria B. Marinova
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Ghazal Sultani
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Abhirup Das
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - Neil A. Youngson
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
| | - David G. Le Couteur
- ANZAC Medical Research InstituteConcordNew South WalesAustralia
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - David A. Sinclair
- Department of Genetics, Blavatnik InstitutePaul F. Glenn Center for Biology of Aging Research, Harvard Medical SchoolBostonMassachusettsUnited States
| | - Nigel Turner
- School of Biomedical SciencesUNSW SydneyKensingtonNew South WalesAustralia
- Victor Chang Cardiac Research InstituteDarlinghurstNew South WalesAustralia
| |
Collapse
|
5
|
Garmendia-Berges M, Sola-Sevilla N, Mera-Delgado MC, Puerta E. Age-Associated Changes of Sirtuin 2 Expression in CNS and the Periphery. BIOLOGY 2023; 12:1476. [PMID: 38132302 PMCID: PMC10741187 DOI: 10.3390/biology12121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Sirtuin 2 (SIRT2), one of the seven members of the sirtuin family, has emerged as a potential regulator of aging and age-related pathologies since several studies have demonstrated that it shows age-related changes in humans and different animal models. A detailed analysis of the relevant works published to date addressing this topic shows that the changes that occur in SIRT2 with aging seem to be opposite in the brain and in the periphery. On the one hand, aging induces an increase in SIRT2 levels in the brain, which supports the notion that its pharmacological inhibition is beneficial in different neurodegenerative diseases. However, on the other hand, in the periphery, SIRT2 levels are reduced with aging while keeping its expression is protective against age-related peripheral inflammation, insulin resistance, and cardiovascular diseases. Thus, systemic administration of any known modulator of this enzyme would have conflicting outcomes. This review summarizes the currently available information on changes in SIRT2 expression in aging and the underlying mechanisms affected, with the aim of providing evidence to determine whether its pharmacological modulation could be an effective and safe pharmacological strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Maider Garmendia-Berges
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Noemi Sola-Sevilla
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - MCarmen Mera-Delgado
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Elena Puerta
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
6
|
Li W, Pang Y, Jin K, Wang Y, Wu Y, Luo J, Xu W, Zhang X, Xu R, Wang T, Jiao L. Membrane contact sites orchestrate cholesterol homeostasis that is central to vascular aging. WIREs Mech Dis 2023; 15:e1612. [PMID: 37156598 DOI: 10.1002/wsbm.1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Chronological age causes structural and functional vascular deterioration and is a well-established risk factor for the development of cardiovascular diseases, leading to more than 40% of all deaths in the elderly. The etiology of vascular aging is complex; a significant impact arises from impaired cholesterol homeostasis. Cholesterol level is balanced through synthesis, uptake, transport, and esterification, the processes executed by multiple organelles. Moreover, organelles responsible for cholesterol homeostasis are spatially and functionally coordinated instead of isolated by forming the membrane contact sites. Membrane contact, mediated by specific protein-protein interaction, pulls opposing organelles together and creates the hybrid place for cholesterol transfer and further signaling. The membrane contact-dependent cholesterol transfer, together with the vesicular transport, maintains cholesterol homeostasis and has intimate implications in a growing list of diseases, including vascular aging-related diseases. Here, we summarized the latest advances regarding cholesterol homeostasis by highlighting the membrane contact-based regulatory mechanism. We also describe the downstream signaling under cholesterol homeostasis perturbations, prominently in cholesterol-rich conditions, stimulating age-dependent organelle dysfunction and vascular aging. Finally, we discuss potential cholesterol-targeting strategies for therapists regarding vascular aging-related diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Pang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuru Wang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lu W, Ji H, Wu D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol 2023; 14:1174180. [PMID: 37215138 PMCID: PMC10196137 DOI: 10.3389/fimmu.2023.1174180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuroinflammation and neuroimmunology-associated disorders, including ischemic stroke and neurodegenerative disease, commonly cause severe neurologic function deficits, including bradypragia, hemiplegia, aphasia, and cognitive impairment, and the pathological mechanism is not completely clear. SIRT2, an NAD+-dependent deacetylase predominantly localized in the cytoplasm, was proven to play an important and paradoxical role in regulating ischemic stroke and neurodegenerative disease. This review summarizes the comprehensive mechanism of the crucial pathological functions of SIRT2 in apoptosis, necroptosis, autophagy, neuroinflammation, and immune response. Elaborating on the mechanism by which SIRT2 participates in neuroinflammation and neuroimmunology-associated disorders is beneficial to discover novel effective drugs for diseases, varying from vascular disorders to neurodegenerative diseases.
Collapse
|
8
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
9
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
10
|
Tomas-Roig J, Ramasamy S, Zbarsky D, Havemann-Reinecke U, Hoyer-Fender S. Psychosocial stress and cannabinoid drugs affect acetylation of α-tubulin (K40) and gene expression in the prefrontal cortex of adult mice. PLoS One 2022; 17:e0274352. [PMID: 36129937 PMCID: PMC9491557 DOI: 10.1371/journal.pone.0274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders. Here, we studied the effect of psychosocial stress and the administration of cannabinoid receptor type 1 drugs on α-tubulin acetylation in different brain regions of mice. We found significantly decreased tubulin acetylation in the prefrontal cortex in stressed mice. The impact of cannabinoid drugs on stress-induced microtubule disturbance was investigated by administration of the cannabinoid receptor agonist WIN55,212–2 and/or antagonist rimonabant. In both, control and stressed mice, the administration of WIN55,212–2 slightly increased the tubulin acetylation in the prefrontal cortex whereas administration of rimonabant acted antagonistically indicating a cannabinoid receptor type 1 mediated effect. The analysis of gene expression in the prefrontal cortex showed a consistent expression of ApoE attributable to either psychosocial stress or administration of the cannabinoid agonist. Additionally, ApoE expression inversely correlated with acetylated tubulin levels when comparing controls and stressed mice treated with WIN55,212–2 whereas rimonabant treatment showed the opposite.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| | - Shyam Ramasamy
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Diana Zbarsky
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| |
Collapse
|
11
|
Heinzl N, Koziel K, Maritschnegg E, Berger A, Pechriggl E, Fiegl H, Zeimet AG, Marth C, Zeillinger R, Concin N. A comparison of four technologies for detecting p53 aggregates in ovarian cancer. Front Oncol 2022; 12:976725. [PMID: 36158680 PMCID: PMC9493009 DOI: 10.3389/fonc.2022.976725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor protein p53 is mutated in half of all cancers and has been described to form amyloid-like structures, commonly known from key proteins in neurodegenerative diseases. Still, the clinical relevance of p53 aggregates remains largely unknown, which may be due to the lack of sensitive and specific detection methods. The aim of the present study was to compare the suitability of four different methodologies to specifically detect p53 aggregates: co-immunofluorescence (co-IF), proximity ligation assay (PLA), co-immunoprecipitation (co-IP), and the p53-Seprion-ELISA in cancer cell lines and epithelial ovarian cancer tissue samples. In 7 out of 10 (70%) cell lines, all applied techniques showed concordance. For the analysis of the tissue samples co-IF, co-IP, and p53-Seprion-ELISA were compared, resulting in 100% concordance in 23 out of 30 (76.7%) tissue samples. However, Co-IF lacked specificity as there were samples, which did not show p53 staining but abundant staining of amyloid proteins, highlighting that this method demonstrates that proteins share the same subcellular space, but does not specifically detect p53 aggregates. Overall, the PLA and the p53-Seprion-ELISA are the only two methods that allow the quantitative measurement of p53 aggregates. On the one hand, the PLA represents the ideal method for p53 aggregate detection in FFPE tissue, which is the gold-standard preservation method of clinical samples. On the other hand, when fresh-frozen tissue is available the p53-Seprion-ELISA should be preferred because of the shorter turnaround time and the possibility for high-throughput analysis. These methods may add to the understanding of amyloid-like p53 in cancer and could help stratify patients in future clinical trials targeting p53 aggregation.
Collapse
Affiliation(s)
- Nicole Heinzl
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Koziel
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Maritschnegg
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Astrid Berger
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Elisabeth Pechriggl
- Institute for Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Alain G. Zeimet
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Marth
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| | - Nicole Concin
- Department of Gynecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
- *Correspondence: Nicole Concin, ; Robert Zeillinger,
| |
Collapse
|
12
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post-translational modifications on microtubule stability: Insights and regulations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119241. [PMID: 35181405 DOI: 10.1016/j.bbamcr.2022.119241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
Microtubules (MTs) mediate various cellular functions such as structural support, chromosome segregation, and intracellular transport. To achieve this, the pivotal properties of MTs have to be changeable and tightly controlled. This is enabled by a high variety of tubulin posttranslational modifications, which influence MT properties directly, via altering the MT lattice structurally, or indirectly by changing MT interaction partners. Here, the distinction between these direct and indirect effects of MT PTMs are exemplified by acetylation of the luminal α-tubulin K40 resulting in decreased rigidity of MTs, and by MT detyrosination which decreases interaction with depolymerizing proteins, thus causing more stable MTs. We discuss how these PTMs are reversed and regulated, e.g. on the level of enzyme transcription, localization, and activity via various signalling pathways including the conventional calcium-dependent proteases calpains and how advances in microscopy techniques and development of live-sensors facilitate the understanding of MT PTM interaction and effects.
Collapse
Affiliation(s)
- Julia Bär
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Yannes Popp
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Michael Bucher
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| | - Marina Mikhaylova
- RG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany; Guest Group "Neuronal Protein Transport", Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
14
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
15
|
Lundt S, Ding S. NAD + Metabolism and Diseases with Motor Dysfunction. Genes (Basel) 2021; 12:1776. [PMID: 34828382 PMCID: PMC8625820 DOI: 10.3390/genes12111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases result in the progressive deterioration of the nervous system, with motor and cognitive impairments being the two most observable problems. Motor dysfunction could be caused by motor neuron diseases (MNDs) characterized by the loss of motor neurons, such as amyotrophic lateral sclerosis and Charcot-Marie-Tooth disease, or other neurodegenerative diseases with the destruction of brain areas that affect movement, such as Parkinson's disease and Huntington's disease. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in the human body and is involved with numerous cellular processes, including energy metabolism, circadian clock, and DNA repair. NAD+ can be reversibly oxidized-reduced or directly consumed by NAD+-dependent proteins. NAD+ is synthesized in cells via three different paths: the de novo, Preiss-Handler, or NAD+ salvage pathways, with the salvage pathway being the primary producer of NAD+ in mammalian cells. NAD+ metabolism is being investigated for a role in the development of neurodegenerative diseases. In this review, we discuss cellular NAD+ homeostasis, looking at NAD+ biosynthesis and consumption, with a focus on the NAD+ salvage pathway. Then, we examine the research, including human clinical trials, focused on the involvement of NAD+ in MNDs and other neurodegenerative diseases with motor dysfunction.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA;
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Zhao Y, Xie L, Shen C, Qi Q, Qin Y, Xing J, Zhou D, Qi Y, Yan Z, Lin X, Dai R, Lin J, Yu W. SIRT2-knockdown rescues GARS-induced Charcot-Marie-Tooth neuropathy. Aging Cell 2021; 20:e13391. [PMID: 34053152 PMCID: PMC8208790 DOI: 10.1111/acel.13391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
Charcot‐Marie‐Tooth disease is the most common inherited peripheral neuropathy. Dominant mutations in the glycyl‐tRNA synthetase (GARS) gene cause peripheral nerve degeneration and lead to CMT disease type 2D. The underlying mechanisms of mutations in GARS (GARSCMT2D) in disease pathogenesis are not fully understood. In this study, we report that wild‐type GARS binds the NAD+‐dependent deacetylase SIRT2 and inhibits its deacetylation activity, resulting in the acetylated α‐tubulin, the major substrate of SIRT2. The catalytic domain of GARS tightly interacts with SIRT2, which is the most CMT2D mutation localization. However, CMT2D mutations in GARS cannot inhibit SIRT2 deacetylation, which leads to a decrease of acetylated α‐tubulin. Genetic reduction of SIRT2 in the Drosophila model rescues the GARS‐induced axonal CMT neuropathy and extends the life span. Our findings demonstrate the pathogenic role of SIRT2‐dependent α‐tubulin deacetylation in mutant GARS‐induced neuropathies and provide new perspectives for targeting SIRT2 as a potential therapy against hereditary axonopathies.
Collapse
Affiliation(s)
- Yingying Zhao
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Liangguo Xie
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Chao Shen
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Qian Qi
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Yicai Qin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Juan Xing
- School of Basic Medical Science Southwest Medical University Luzhou China
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Zhiqiang Yan
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Rongyang Dai
- School of Basic Medical Science Southwest Medical University Luzhou China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering School of Life Sciences Zhongshan Hospital Fudan University Shanghai China
- School of Basic Medical Science Southwest Medical University Luzhou China
| |
Collapse
|
18
|
Bobrowska A, Donmez G, Weiss A, Guarente L, Bates G. Correction: SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington's Disease Phenotypes In Vivo. PLoS One 2021; 16:e0248926. [PMID: 33765019 PMCID: PMC7993610 DOI: 10.1371/journal.pone.0248926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0034805.].
Collapse
|
19
|
Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021; 22:3107. [PMID: 33803627 PMCID: PMC8003096 DOI: 10.3390/ijms22063107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Maria S Aymerich
- Departamento de Bioquímica y Genética, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Rosa M Tordera
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Elena Puerta
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
20
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
21
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
22
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
23
|
Birolini G, Valenza M, Di Paolo E, Vezzoli E, Talpo F, Maniezzi C, Caccia C, Leoni V, Taroni F, Bocchi VD, Conforti P, Sogne E, Petricca L, Cariulo C, Verani M, Caricasole A, Falqui A, Biella G, Cattaneo E. Striatal infusion of cholesterol promotes dose-dependent behavioral benefits and exerts disease-modifying effects in Huntington's disease mice. EMBO Mol Med 2020; 12:e12519. [PMID: 32959531 PMCID: PMC7539329 DOI: 10.15252/emmm.202012519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
A variety of pathophysiological mechanisms are implicated in Huntington's disease (HD). Among them, reduced cholesterol biosynthesis has been detected in the HD mouse brain from pre-symptomatic stages, leading to diminished cholesterol synthesis, particularly in the striatum. In addition, systemic injection of cholesterol-loaded brain-permeable nanoparticles ameliorates synaptic and cognitive function in a transgenic mouse model of HD. To identify an appropriate treatment regimen and gain mechanistic insights into the beneficial activity of exogenous cholesterol in the HD brain, we employed osmotic mini-pumps to infuse three escalating doses of cholesterol directly into the striatum of HD mice in a continuous and rate-controlled manner. All tested doses prevented cognitive decline, while amelioration of disease-related motor defects was dose-dependent. In parallel, we found morphological and functional recovery of synaptic transmission involving both excitatory and inhibitory synapses of striatal medium spiny neurons. The treatment also enhanced endogenous cholesterol biosynthesis and clearance of mutant Huntingtin aggregates. These results indicate that cholesterol infusion to the striatum can exert a dose-dependent, disease-modifying effect and may be therapeutically relevant in HD.
Collapse
Affiliation(s)
- Giulia Birolini
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Marta Valenza
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Eleonora Di Paolo
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Elena Vezzoli
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
- Present address:
Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Francesca Talpo
- Department of Biology and BiotechnologiesUniversity of PaviaPaviaItaly
| | - Claudia Maniezzi
- Department of Biology and BiotechnologiesUniversity of PaviaPaviaItaly
| | - Claudio Caccia
- Unit of Medical Genetics and NeurogeneticsFondazione I.R.C.C.S. Istituto Neurologico Carlo BestaMilanItaly
| | - Valerio Leoni
- School of Medicine and SurgeryMonza and Laboratory of Clinical PathologyHospital of DesioASST‐MonzaUniversity of Milano‐BicoccaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione I.R.C.C.S. Istituto Neurologico Carlo BestaMilanItaly
| | - Vittoria D Bocchi
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Paola Conforti
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| | - Elisa Sogne
- Biological and Environmental Science & Engineering (BESE) DivisionNABLA LabKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Lara Petricca
- Neuroscience UnitTranslational and Discovery Research DepartmentIRBM S.p.ARomeItaly
| | - Cristina Cariulo
- Neuroscience UnitTranslational and Discovery Research DepartmentIRBM S.p.ARomeItaly
| | - Margherita Verani
- Neuroscience UnitTranslational and Discovery Research DepartmentIRBM S.p.ARomeItaly
| | - Andrea Caricasole
- Neuroscience UnitTranslational and Discovery Research DepartmentIRBM S.p.ARomeItaly
| | - Andrea Falqui
- Biological and Environmental Science & Engineering (BESE) DivisionNABLA LabKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Gerardo Biella
- Department of Biology and BiotechnologiesUniversity of PaviaPaviaItaly
| | - Elena Cattaneo
- Department of BiosciencesUniversity of MilanMilanItaly
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi”MilanItaly
| |
Collapse
|
24
|
Zhang L, Kim S, Ren X. The Clinical Significance of SIRT2 in Malignancies: A Tumor Suppressor or an Oncogene? Front Oncol 2020; 10:1721. [PMID: 33014852 PMCID: PMC7506103 DOI: 10.3389/fonc.2020.01721] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a member of the sirtuin protein family. It is a Class III histone deacetylase (HDACs) and predominantly localized to the cytosol. SIRT2 deacetylates histones and a number of non-histone proteins and plays a pivotal role in various physiologic processes. Previously, SIRT2 has been considered indispensable during carcinogenesis; however, there is now a significant controversy regarding whether SIRT2 is an oncogene or a tumor suppressor. The purpose of this review is to summarize the physiological functions of SIRT2 and its mechanisms in cancer. We will focus on five malignancies (breast cancer, non-small cell lung cancer, hepatocellular carcinoma, colorectal cancer, and glioma) to describe the current status of SIRT2 research and discuss the clinical evaluation of SIRT2 expression and the use of SIRT2 inhibitors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Sungjune Kim
- Department of Radiation Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xiubao Ren
- National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
25
|
Landles C, Milton RE, Ali N, Flomen R, Flower M, Schindler F, Gomez-Paredes C, Bondulich MK, Osborne GF, Goodwin D, Salsbury G, Benn CL, Sathasivam K, Smith EJ, Tabrizi SJ, Wanker EE, Bates GP. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model. Brain Commun 2020; 2:fcaa066. [PMID: 32954323 PMCID: PMC7425396 DOI: 10.1093/braincomms/fcaa066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is caused by the expansion of a CAG repeat within exon 1 of the HTT gene, which is unstable, leading to further expansion, the extent of which is brain region and peripheral tissue specific. The identification of DNA repair genes as genetic modifiers of Huntington's disease, that were known to abrogate somatic instability in Huntington's disease mouse models, demonstrated that somatic CAG expansion is central to disease pathogenesis, and that the CAG repeat threshold for pathogenesis in specific brain cells might not be known. We have previously shown that the HTT gene is incompletely spliced generating a small transcript that encodes the highly pathogenic exon 1 HTT protein. The longer the CAG repeat, the more of this toxic fragment is generated, providing a pathogenic consequence for somatic expansion. Here, we have used the R6/2 mouse model to investigate the molecular and behavioural consequences of expressing exon 1 HTT with 90 CAGs, a mutation that causes juvenile Huntington's disease, compared to R6/2 mice carrying ∼200 CAGs, a repeat expansion of a size rarely found in Huntington's disease patient's blood, but which has been detected in post-mortem brains as a consequence of somatic CAG repeat expansion. We show that nuclear aggregation occurred earlier in R6/2(CAG)90 mice and that this correlated with the onset of transcriptional dysregulation. Whereas in R6/2(CAG)200 mice, cytoplasmic aggregates accumulated rapidly and closely tracked with the progression of behavioural phenotypes and with end-stage disease. We find that aggregate species formed in the R6/2(CAG)90 brains have different properties to those in the R6/2(CAG)200 mice. Within the nucleus, they retain a diffuse punctate appearance throughout the course of the disease, can be partially solubilized by detergents and have a greater seeding potential in young mice. In contrast, aggregates from R6/2(CAG)200 brains polymerize into larger structures that appear as inclusion bodies. These data emphasize that a subcellular analysis, using multiple complementary approaches, must be undertaken in order to draw any conclusions about the relationship between HTT aggregation and the onset and progression of disease phenotypes.
Collapse
Affiliation(s)
- Christian Landles
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Rebecca E Milton
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Nadira Ali
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Rachel Flomen
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Michael Flower
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Franziska Schindler
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany and Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Marie K Bondulich
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Daniel Goodwin
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Grace Salsbury
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Caroline L Benn
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK.,LoQus23 Therapeutics, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Kirupa Sathasivam
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Edward J Smith
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany and Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, Queen Square, WC1N 3BG, UK
| |
Collapse
|
26
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
27
|
Nekooki-Machida Y, Hagiwara H. Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 2020; 53:191-197. [PMID: 32632910 DOI: 10.1007/s00795-020-00260-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Acetylation is a well-studied post-translational modification (PTM) of tubulin. Acetylated tubulin is present in the centrioles, primary cilia, and flagella, which contain long-lived stable microtubules. Tubulin acetylation plays an important role in cellular activities including cell polarity, cell migration, vesicle transport, and cell development. Cryo-electron microscopy reconstructions have revealed conformational changes in acetylated tubulin, revealing a reduction in intermonomer interactions among tubulins and an increase in microtubule elasticity. The kinetics of conformational changes in acetylated tubulin may elucidate microtubule functions in these cellular activities. Abnormal tubulin acetylation has been implicated in neurodegenerative disorders, ciliopathies, and cancers. Thus, it is important to elucidate the mechanisms underlying tubulin acetylation and its effects on cellular activity to understand these diseases and to design potential therapeutic strategies. This review discusses the cellular distribution and dynamics of acetylated tubulin and its role in regulating cellular activities.
Collapse
Affiliation(s)
- Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
28
|
Salamon A, Maszlag-Török R, Veres G, Boros FA, Vágvölgyi-Sümegi E, Somogyi A, Vécsei L, Klivényi P, Zádori D. Cerebellar Predominant Increase in mRNA Expression Levels of Sirt1 and Sirt3 Isoforms in a Transgenic Mouse Model of Huntington's Disease. Neurochem Res 2020; 45:2072-2081. [PMID: 32524313 PMCID: PMC7423862 DOI: 10.1007/s11064-020-03069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023]
Abstract
The potential role of Sirt1 and Sirt2 subtypes of Sirtuins (class III NAD+-dependent deacetylases) in the pathogenesis of Huntington’s disease (HD) has been extensively studied yielding some controversial results. However, data regarding the involvement of Sirt3 and their variants in HD are considerably limited. The aim of this study was to assess the expression pattern of Sirt1 and three Sirt3 mRNA isoforms (Sirt3-M1/2/3) in the striatum, cortex and cerebellum in respect of the effect of gender, age and the presence of the transgene using the N171-82Q transgenic mouse model of HD. Striatal, cortical and cerebellar Sirt1-Fl and Sirt3-M1/2/3 mRNA levels were measured in 8, 12 and 16 weeks old N171-82Q transgenic mice and in their wild-type littermates. Regarding the striatum and cortex, the presence of the transgene resulted in a significant increase in Sirt3-M3 and Sirt1 mRNA levels, respectively, whereas in case of the cerebellum the transgene resulted in increased expression of all the assessed subtypes and isoforms. Aging exerted minor influence on Sirt mRNA expression levels, both in transgene carriers and in their wild-type littermates, and there was no interaction between the presence of the transgene and aging. Furthermore, there was no difference between genders. The unequivocal cerebellar Sirtuin activation with presumed compensatory role suggests that the cerebellum might be another key player in HD in addition to the most severely affected striatum. The mitochondrially acting Sirt3 may serve as an interesting novel therapeutic target in this deleterious condition.
Collapse
Affiliation(s)
- Andras Salamon
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Rita Maszlag-Török
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Fanni Annamária Boros
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Evelin Vágvölgyi-Sümegi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Anett Somogyi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| |
Collapse
|
29
|
Shen S, Svoboda M, Zhang G, Cavasin MA, Motlova L, McKinsey TA, Eubanks JH, Bařinka C, Kozikowski AP. Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Med Chem Lett 2020; 11:706-712. [PMID: 32435374 DOI: 10.1021/acsmedchemlett.9b00560] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Tubastatin A, a tetrahydro-γ-carboline-capped selective HDAC6 inhibitor (HDAC6i), was rationally designed 10 years ago, and has become the best investigated HDAC6i to date. It shows efficacy in various neurological disease animal models, as HDAC6 plays a crucial regulatory role in axonal transport deficits, protein aggregation, as well as oxidative stress. In this work, we provide new insights into this HDAC6i by investigating the molecular basis of its interactions with HDAC6 through X-ray crystallography, determining its functional capability to elevate the levels of acetylated α-tubulin in vitro and in vivo, correlating PK/PD profiles to determine effective doses in plasma and brain, and finally assessing its therapeutic potential toward psychiatric diseases through use of the SmartCube screening platform.
Collapse
Affiliation(s)
- Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Michal Svoboda
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guangming Zhang
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Lucia Motlova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - James H. Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | |
Collapse
|
30
|
Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti TD, Chen D. Mitochondrial Stress-Initiated Aberrant Activation of the NLRP3 Inflammasome Regulates the Functional Deterioration of Hematopoietic Stem Cell Aging. Cell Rep 2020; 26:945-954.e4. [PMID: 30673616 PMCID: PMC6371804 DOI: 10.1016/j.celrep.2018.12.101] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
Aging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD+-dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously. With age, reduced SIRT2 expression and increased mitochondrial stress lead to aberrant activation of the NLRP3 inflammasome in HSCs. SIRT2 overexpression, NLRP3 inactivation, or caspase 1 inactivation improves the maintenance and regenerative capacity of aged HSCs. These results suggest that mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome is a reversible driver of the functional decline of HSC aging and highlight the importance of inflammatory signaling in regulating HSC aging.
Collapse
Affiliation(s)
- Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hou-Hsien Chiang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Jiyung J Shin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, Tan M, Ohkubo R, Mu WC, Zhao S, Wu H, Chen D. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab 2020; 31:580-591.e5. [PMID: 32032542 PMCID: PMC7104778 DOI: 10.1016/j.cmet.2020.01.009] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/13/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
It is well documented that the rate of aging can be slowed, but it remains unclear to which extent aging-associated conditions can be reversed. How the interface of immunity and metabolism impinges upon the diabetes pandemic is largely unknown. Here, we show that NLRP3, a pattern recognition receptor, is modified by acetylation in macrophages and is deacetylated by SIRT2, an NAD+-dependent deacetylase and a metabolic sensor. We have developed a cell-based system that models aging-associated inflammation, a defined co-culture system that simulates the effects of inflammatory milieu on insulin resistance in metabolic tissues during aging, and aging mouse models; and demonstrate that SIRT2 and NLRP3 deacetylation prevent, and can be targeted to reverse, aging-associated inflammation and insulin resistance. These results establish the dysregulation of the acetylation switch of the NLRP3 inflammasome as an origin of aging-associated chronic inflammation and highlight the reversibility of aging-associated chronic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ming He
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hou-Hsien Chiang
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Zhifang Zheng
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Qi Qiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Li Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mingdian Tan
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Rika Ohkubo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Shimin Zhao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Schiedel M, Daub H, Itzen A, Jung M. Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. Chembiochem 2020; 21:1161-1166. [PMID: 31692222 PMCID: PMC7217041 DOI: 10.1002/cbic.201900527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
We have discovered the sirtuin-rearranging ligands (SirReals) to be highly potent and selective inhibitors of the NAD+ -dependent lysine deacetylase Sirt2. Using a biotinylated SirReal in combination with biolayer interferometry, we previously observed a slow dissociation rate of the inhibitor-enzyme complex; this had been postulated to be the key to the high affinity and selectivity of SirReals. However, to attach biotin to the SirReal core, we introduced a triazole as a linking moiety; this was shown by X-ray co-crystallography to interact with Arg97 of the cofactor binding loop. Herein, we aim to elucidate whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. We used the novel label-free switchSENSE® technology, which is based on electrically switchable DNA nanolevers, to prove that the long residence time of the SirReals is indeed caused by the core scaffold.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany.,Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Herwin Daub
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany.,Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.,Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
33
|
Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases. Trends Pharmacol Sci 2019; 40:1021-1039. [PMID: 31704173 DOI: 10.1016/j.tips.2019.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRT1-7), a class of NAD+-dependent deacylases, are central regulators of metabolic homeostasis and stress responses. While numerous salutary effects associated with sirtuin activation, especially SIRT1, are well documented, other reports show health benefits resulting from sirtuin inhibition. Furthermore, conflicting findings have been obtained regarding the pathophysiological role of specific sirtuin isoforms, suggesting that sirtuins act as 'double-edged swords'. Here, we provide an integrated overview of the different findings on the role of mammalian sirtuins in neurodegenerative and cardiometabolic disorders and attempt to dissect the reasons behind these different effects. Finally, we discuss how addressing these obstacles may provide a better understanding of the complex sirtuin biology and improve the likelihood of identifying effective and selective drug targets for a variety of human disorders.
Collapse
|
34
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
35
|
Wenzel ED, Speidell A, Flowers SA, Wu C, Avdoshina V, Mocchetti I. Histone deacetylase 6 inhibition rescues axonal transport impairments and prevents the neurotoxicity of HIV-1 envelope protein gp120. Cell Death Dis 2019; 10:674. [PMID: 31515470 PMCID: PMC6742654 DOI: 10.1038/s41419-019-1920-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Despite successful antiretroviral drug therapy, a subset of human immunodeficiency virus-1 (HIV)-positive individuals still display synaptodendritic simplifications and functional cognitive impairments referred to as HIV-associated neurocognitive disorders (HANDs). The neurological damage observed in HAND subjects can be experimentally reproduced by the HIV envelope protein gp120. However, the complete mechanism of gp120-mediated neurotoxicity is not entirely understood. Gp120 binds to neuronal microtubules and decreases the level of tubulin acetylation, suggesting that it may impair axonal transport. In this study, we utilized molecular and pharmacological approaches, in addition to microscopy, to examine the relationship between gp120-mediated tubulin deacetylation, axonal transport, and neuronal loss. Using primary rat cortical neurons, we show that gp120 decreases acetylation of tubulin and increases histone deacetylase 6 (HDAC6), a cytoplasmic enzyme that regulates tubulin deacetylation. We also demonstrate that the selective HDAC6 inhibitors tubacin and ACY-1215, which prevented gp120-mediated deacetylation of tubulin, inhibited the ability of gp120 to promote neurite shortening and cell death. We further observed by co-immunoprecipitation and confirmed with mass spectroscopy that exposure of neurons to gp120 decreases the association between tubulin and motor proteins, a well-established consequence of tubulin deacetylation. To assess the physiological consequences of this effect, we examined the axonal transport of brain-derived neurotrophic factor (BDNF). We report that gp120 decreases the velocity of BDNF transport, which was restored to baseline levels when neurons were exposed to HDAC6 inhibitors. Overall, our data suggest that gp120-mediated tubulin deacetylation causes impairment of axonal transport through alterations to the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology and Physiology, Washington, DC, 20057, USA
| | - Andrew Speidell
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology and Physiology, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
36
|
Swyter S, Schiedel M, Monaldi D, Szunyogh S, Lehotzky A, Rumpf T, Ovádi J, Sippl W, Jung M. New chemical tools for probing activity and inhibition of the NAD +-dependent lysine deacylase sirtuin 2. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0083. [PMID: 29685963 DOI: 10.1098/rstb.2017.0083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases capable of cleaving off acetyl as well as other acyl groups from the ɛ-amino group of lysines in histones and other substrate proteins. They have been reported as promising drug targets, and thus modulators of their activity are needed as molecular tools to uncover their biological function and as potential therapeutics. Here, we present new assay formats that complement existing assays for sirtuin biochemistry and cellular target engagement. Firstly, we report the development of a homogeneous fluorescence-based activity assay using unlabelled acylated peptides. Upon deacylation, the free lysine residue reacts with fluorescamine to form a fluorophore. Secondly, using click chemistry with a TAMRA-azide on a propargylated sirtuin inhibitor, we prepared the first fluorescently labelled small-molecule inhibitor of Sirt2. This is used in a binding assay, which is based on fluorescence polarization. We used it successfully to map potential inhibitor-binding sites and also to show cellular Sirt2 engagement. By means of these new assays, we were able to identify and characterize novel Sirt2 inhibitors out of a focused library screen. The binding of the identified Sirt2 inhibitors was rationalized by molecular docking studies. These new chemical tools thus can enhance further sirtuin research.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Sören Swyter
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| | - Matthias Schiedel
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany.,Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Daria Monaldi
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany.,Department of Chromatin Regulation, Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany .,Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
37
|
Ferreira GM, Magalhães JGD, Maltarollo VG, Kronenberger T, Ganesan A, Emery FDS, Trossini GHG. QSAR studies on the human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. J Biomol Struct Dyn 2019; 38:354-363. [PMID: 30789810 DOI: 10.1080/07391102.2019.1574603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sirtuin 2 is a key enzyme in gene expression regulation that is often associated with tumor proliferation control and therefore is a relevant anticancer drug target. Anilinobenzamide derivatives have been discussed as selective sirtuin 2 inhibitors and can be developed further. In the present study, hologram and three-dimensional quantitative structure-activity relationship (HQSAR and 3D-QSAR) analyses were employed for determining structural contributions of a compound series containing human sirtuin-2-selective inhibitors that were then correlated with structural data from the literature. The final QSAR models were robust and predictive according to statistical validation (q2 and r2pred values higher than 0.85 and 0.75, respectively) and could be employed further to generate fragment contribution and contour maps. 3D-QSAR models together with information about the chemical properties of sirtuin 2 inhibitors can be useful for designing novel bioactive ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Glaucio Monteiro Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | - Vinícius Gonçalves Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Arasu Ganesan
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Flávio da Silva Emery
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
38
|
Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions. Mol Neurobiol 2019; 56:5643-5653. [DOI: 10.1007/s12035-019-1472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
39
|
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS One 2018; 13:e0208634. [PMID: 30533032 PMCID: PMC6289500 DOI: 10.1371/journal.pone.0208634] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023] Open
Abstract
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| | - Ashley S. Williams
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Curtis C. Hughey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Deanna P. Bracy
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Freyja D. James
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - Muhammad A. Ansari
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
| | - David Gius
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - David H. Wasserman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN, United States of America
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN, United States of America
| |
Collapse
|
40
|
Mongelli A, Gaetano C. Controversial Impact of Sirtuins in Chronic Non-Transmissible Diseases and Rehabilitation Medicine. Int J Mol Sci 2018; 19:ijms19103080. [PMID: 30304806 PMCID: PMC6213918 DOI: 10.3390/ijms19103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration or complete healing. The molecular basis of this exciting outcome—however, remain largely obscure. Epigenetics, exploring at the interface between environmental signals and the remodeling of chromatin structure, promises to shed light on this intriguing matter possibly contributing to the identification of novel therapeutic targets. In this review, we shall focalize on the role of sirtuins (Sirts) a class III histone deacetylases (HDACs), which function has been frequently associated, often with a controversial role, to the pathogenesis of aging-associated pathophysiological conditions, including cancer, cardiovascular, muscular, neurodegenerative, bones and respiratory diseases. Numerous studies, in fact, demonstrate that Sirt-dependent pathways are activated upon physical and cognitive exercises linking mitochondrial function, DNA structure remodeling and gene expression regulation to designed medical therapies leading to tangible beneficial outcomes. However, in similar conditions, other studies assign to sirtuins a negative pathophysiological role. In spite of this controversial effect, it is doubtless that studying sirtuins in chronic diseases might lead to an unprecedented improvement of life quality in the elderly.
Collapse
Affiliation(s)
| | - Carlo Gaetano
- ICS Maugeri S.p.A., SB, via Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
41
|
Maritschnegg E, Heinzl N, Wilson S, Deycmar S, Niebuhr M, Klameth L, Holzer B, Koziel K, Concin N, Zeillinger R. Polymer-Ligand-Based ELISA for Robust, High-Throughput, Quantitative Detection of p53 Aggregates. Anal Chem 2018; 90:13273-13279. [DOI: 10.1021/acs.analchem.8b02373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Elisabeth Maritschnegg
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicole Heinzl
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Stuart Wilson
- Microsens Biotechnologies, London BioScience Innovation Centre, 2 Royal College Street, NW1 0NH London, United Kingdom
| | - Simon Deycmar
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Markus Niebuhr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lukas Klameth
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Barbara Holzer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katarzyna Koziel
- Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Nicole Concin
- Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center − Gynecologic Cancer Unit, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
42
|
Wang X, Buechler NL, Woodruff AG, Long DL, Zabalawi M, Yoza BK, McCall CE, Vachharajani V. Sirtuins and Immuno-Metabolism of Sepsis. Int J Mol Sci 2018; 19:ijms19092738. [PMID: 30216989 PMCID: PMC6164482 DOI: 10.3390/ijms19092738] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 02/01/2023] Open
Abstract
Sepsis and septic shock are the leading causes of death in non-coronary intensive care units worldwide. During sepsis-associated immune dysfunction, the early/hyper-inflammatory phase transitions to a late/hypo-inflammatory phase as sepsis progresses. The majority of sepsis-related deaths occur during the hypo-inflammatory phase. There are no phase-specific therapies currently available for clinical use in sepsis. Metabolic rewiring directs the transition from hyper-inflammatory to hypo-inflammatory immune responses to protect homeostasis during sepsis inflammation, but the mechanisms underlying this immuno-metabolic network are unclear. Here, we review the roles of NAD+ sensing Sirtuin (SIRT) family members in controlling immunometabolic rewiring during the acute systemic inflammatory response associated with sepsis. We discuss individual contributions among family members SIRT 1, 2, 3, 4 and 6 in regulating the metabolic switch between carbohydrate-fueled hyper-inflammation to lipid-fueled hypo-inflammation. We further highlight the role of SIRT1 and SIRT2 as potential "druggable" targets for promoting immunometabolic homeostasis and increasing sepsis survival.
Collapse
Affiliation(s)
- Xianfeng Wang
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Nancy L Buechler
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Alan G Woodruff
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - David L Long
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Manal Zabalawi
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Barbara K Yoza
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Charles E McCall
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Vidula Vachharajani
- Departments of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- Departments of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
43
|
Fernández-Barrera J, Alonso MA. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell Mol Life Sci 2018; 75:3181-3191. [PMID: 29947928 PMCID: PMC11105221 DOI: 10.1007/s00018-018-2855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The acetylation of the lysine 40 residue of α-tubulin was described more than 30 years ago and has been the subject of intense research ever since. Although the exact function of this covalent modification of tubulin in the cell remains unknown, it has been established that tubulin acetylation confers resilience to mechanical stress on the microtubules. Formins have a dual role in the fate of the actin and tubulin cytoskeletons. On the one hand, they catalyze the formation of actin filaments, and on the other, they bind microtubules, act on their stability, and regulate their acetylation and alignment with actin fibers. Recent evidence indicates that formins coordinate the actin cytoskeleton and tubulin acetylation by modulating the levels of free globular actin (G-actin). G-actin, in turn, controls the activity of the myocardin-related transcription factor-serum response factor transcriptional complex that regulates the expression of the α-tubulin acetyltransferase 1 (α-TAT1) gene, which encodes the main enzyme responsible for tubulin acetylation. The effect of formins on tubulin acetylation is the combined result of their ability to activate α-TAT1 gene transcription and of their capacity to regulate microtubule stabilization. The contribution of these two mechanisms in different formins is discussed, particularly with respect to INF2, a formin that is mutated in hereditary human renal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
44
|
Baldo B, Gabery S, Soylu-Kucharz R, Cheong RY, Henningsen JB, Englund E, McLean C, Kirik D, Halliday G, Petersén Å. SIRT1 is increased in affected brain regions and hypothalamic metabolic pathways are altered in Huntington disease. Neuropathol Appl Neurobiol 2018; 45:361-379. [PMID: 30019499 DOI: 10.1111/nan.12514] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/11/2018] [Indexed: 01/03/2023]
Abstract
AIMS Metabolic dysfunction is involved in modulating the disease process in Huntington disease (HD) but the underlying mechanisms are not known. The aim of this study was to investigate if the metabolic regulators sirtuins are affected in HD. METHODS Quantitative real-time polymerase chain reactions were used to assess levels of SIRT1-3 and downstream targets in post mortem brain tissue from HD patients and control cases as well as after selective hypothalamic expression of mutant huntingtin (HTT) using recombinant adeno-associated viral vectors in mice. RESULTS We show that mRNA levels of the metabolic regulator SIRT1 are increased in the striatum and the cerebral cortex but not in the less affected cerebellum in post mortem HD brains. Levels of SIRT2 are only increased in the striatum and SIRT3 is not affected in HD. Interestingly, mRNA levels of SIRT1 are selectively increased in the lateral hypothalamic area (LHA) and ventromedial hypothalamus (VMH) in HD. Further analyses of the LHA and VMH confirmed pathological changes in these regions including effects on SIRT1 downstream targets and reduced mRNA levels of orexin (hypocretin), prodynorphin and melanin-concentrating hormone (MCH) in the LHA and of brain-derived neurotrophic factor (BDNF) in the VMH. Analyses after selective hypothalamic expression of mutant HTT suggest that effects on BDNF, orexin, dynorphin and MCH are early and direct, whereas changes in SIRT1 require more widespread expression of mutant HTT. CONCLUSIONS We show that SIRT1 expression is increased in HD-affected brain regions and that metabolic pathways are altered in the HD hypothalamus.
Collapse
Affiliation(s)
- B Baldo
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - S Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Soylu-Kucharz
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - J B Henningsen
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - E Englund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - C McLean
- Department of Pathology, Alfred Hospital, Melbourne, Vic, Australia
| | - D Kirik
- B.R.A.I.N.S. Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - G Halliday
- Brain and Mind Centre, Sydney Medical School, UNSW Medicine and NeuRA, The University of Sydney, Sydney, NSW, Australia
| | - Å Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Upregulation of histone deacetylase 2 in laser capture nigral microglia in Parkinson's disease. Neurobiol Aging 2018; 68:134-141. [PMID: 29803514 DOI: 10.1016/j.neurobiolaging.2018.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been widely reported to have considerable therapeutic potential in a host of neurodegenerative diseases. However, HDAC inhibitor selectivity and specificity in specific cell classes have been a source of much debate. To address the role of HDAC2 in specific cell classes, and in disease, we examined glial protein and mRNA levels in the substantia nigra (SN) of Parkinson's disease (PD) and normal controls (NCs) by immunohistochemistry and laser captured microdissection followed by quantitative real time polymerase chain reaction. Differential expression analysis in immunohistochemically defined laser capture microglia revealed significant upregulation of HDAC2 in the PD SN compared to NC subjects. Complementary in vivo evidence reveals significant upregulation of HDAC2 protein levels in PD SN microglia compared to NC subjects. Correspondingly, human immortalized telencephalic/mesencephalic microglial cells reveal significant upregulation of HDAC2 in the presence of the potent microglial activator lipopolysaccharide. These data provide evidence that selective inhibition of HDAC2 in PD SN microglia could be a promising approach to treat microglial-initiated nigral dopaminergic neuronal cell loss in PD.
Collapse
|
47
|
Thangaraj MP, Furber KL, Sobchishin L, Ji S, Doucette JR, Nazarali AJ. Does Sirt2 Regulate Cholesterol Biosynthesis During Oligodendroglial Differentiation In Vitro and In Vivo? Cell Mol Neurobiol 2018; 38:329-340. [PMID: 28828594 DOI: 10.1007/s10571-017-0537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
Abstract
Sirtuin2 (SIRT2) is a deacetylase enzyme predominantly expressed in myelinating glia of the central nervous system (CNS). We have previously demonstrated that Sirt2 expression enhances oligodendrocyte (OL) differentiation and arborization in vitro, but the molecular targets of SIRT2 in OLs remain speculative. SIRT2 has been implicated in cholesterol biosynthesis by promoting the nuclear translocation of sterol regulatory element binding protein (SREBP)-2. We investigated this further in CNS myelination by examining the role of Sirt2 in cholesterol biosynthesis in vivo and in vitro employing Sirt2 -/- mice, primary OL cells and CG4-OL cells. Our results demonstrate that expression of cholesterol biosynthetic genes in the CNS white matter or cholesterol content in purified myelin fractions did not differ between Sirt2 -/- and age-matched wild-type mice. Cholesterol biosynthetic gene expression profiles and total cholesterol content were not altered in primary OLs from Sirt2 -/- mice and in CG4-OLs when Sirt2 was either down-regulated with RNAi or overexpressed. In addition, Sirt2 knockdown or overexpression in CG4-OLs had no effect on SREBP-2 nuclear translocation. Our results indicate that Sirt2 does not impact the expression of genes encoding enzymes involved in cholesterol biosynthesis, total cholesterol content, or nuclear translocation of SREBP-2 during OL differentiation and myelination.
Collapse
Affiliation(s)
- Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Fourcade S, Morató L, Parameswaran J, Ruiz M, Ruiz‐Cortés T, Jové M, Naudí A, Martínez‐Redondo P, Dierssen M, Ferrer I, Villarroya F, Pamplona R, Vaquero A, Portero‐Otín M, Pujol A. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell 2017; 16:1404-1413. [PMID: 28984064 PMCID: PMC5676070 DOI: 10.1111/acel.12682] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a member of a family of NAD+‐dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle‐aged, 13‐month‐old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2−/− mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.
Collapse
Affiliation(s)
- Stéphane Fourcade
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Laia Morató
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Tatiana Ruiz‐Cortés
- Biogenesis Research Group Agrarian Sciences Faculty University of Antioquia Medellin Colombia
| | - Mariona Jové
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Alba Naudí
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Paloma Martínez‐Redondo
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC) Bellvitge Biomedical Research Institute (IDIBELL) 08908 L'Hospitalet de Llobregat, Barcelona Spain
| | - Mara Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain
- Department of Experimental and Health Sciences Universidad Pompeu Fabra Barcelona Spain
- CIBERER U716 Center for Biomedical Research on Rare Diseases Barcelona Spain
| | - Isidre Ferrer
- Institute of Neuropathology University of Barcelona L'Hospitalet de Llobregat, Barcelona Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) ISCIII Madrid Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology University of Barcelona Av. Diagonal 643 08028 Barcelona, Catalonia Spain
- The Institute of Biomedicine of the University of Barcelona (IBUB) Barcelona Spain
- Center for Biomedical Research on Physiopathology of Obesity and Nutrition (CIBEROBN) Barcelona Spain
| | - Reinald Pamplona
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC) Bellvitge Biomedical Research Institute (IDIBELL) 08908 L'Hospitalet de Llobregat, Barcelona Spain
| | - Manel Portero‐Otín
- Experimental Medicine Department University of Lleida‐IRBLleida Lleida Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory Institute of Neuropathology IDIBELL Barcelona Spain
- CIBERER U759 Center for Biomedical Research on Rare Diseases Barcelona Spain
- Catalan Institution of Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
50
|
Bernier M, Wahl D, Ali A, Allard J, Faulkner S, Wnorowski A, Sanghvi M, Moaddel R, Alfaras I, Mattison JA, Tarantini S, Tucsek Z, Ungvari Z, Csiszar A, Pearson KJ, de Cabo R. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet. Aging (Albany NY) 2017; 8:899-916. [PMID: 27070252 PMCID: PMC4931843 DOI: 10.18632/aging.100942] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/30/2016] [Indexed: 01/19/2023]
Abstract
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.
Collapse
Affiliation(s)
- Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Devin Wahl
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Joanne Allard
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.,Department of Physiology and Biophysics, Howard University, College of Medicine, Washington, DC 20059, USA
| | - Shakeela Faulkner
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, 20-093 Lublin, Poland.,Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mitesh Sanghvi
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Irene Alfaras
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Stefano Tarantini
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Zsuzsanna Tucsek
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|