1
|
Sampaio C, Cusicanqui Méndez DA, Buzalaf MAR, Pessan JP, Cruvinel T. Influence of different growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilm and their effects on enamel demineralization. BIOFOULING 2024:1-11. [PMID: 39377107 DOI: 10.1080/08927014.2024.2410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
This study compared the influence of growth conditions on the composition and acidogenicity of saliva-derived microcosm biofilms and enamel demineralization. Biofilms grown in sucrose-supplemented modified McBain medium, containing 25/50 mmol/L PIPES (buffer), under anaerobiosis/microaerophilia, for 3 and 7 days were evaluated for their acidogenicity, microbial composition, matrix, and enamel mineral content. The viability of total lactobacilli was higher in the group containing 25 mmol/L PIPES grown under anaerobiosis, which also showed lower pH values. The viability of total streptococci and total microorganisms was significantly higher at 7 days in the groups with 50 mmol/L PIPES than at 3 days, regardless of the incubation atmosphere. No significant differences were observed in lactic acid, calcium, superficial hardness loss, or lesion depth. In conclusion, the incubation atmosphere, buffer content in the growth media, and duration of biofilm formation displayed species-varied influence on microcosm biofilms, without causing significant changes in acid metabolism or enamel demineralization.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
2
|
Sampaio C, Méndez DAC, Buzalaf MAR, Pessan JP, Cruvinel T. Arginine and sodium fluoride affect the microbial composition and reduce biofilm metabolism and enamel mineral loss in an oral microcosm model. J Dent 2024; 145:104997. [PMID: 38621525 DOI: 10.1016/j.jdent.2024.104997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.
Collapse
Affiliation(s)
- Caio Sampaio
- Department of Preventive and Restorative Dentistry, São Paulo State University, School of Dentistry, Araçatuba, Brazil
| | - Daniela Alejandra Cusicanqui Méndez
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária SP, Bauru 17012-901, Brazil
| | | | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, São Paulo State University, School of Dentistry, Araçatuba, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Alameda Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária SP, Bauru 17012-901, Brazil.
| |
Collapse
|
3
|
Bahrami S, Feizabadi MM, Mosavari N, Sotoodehnejad F, Eslampanah M. Efficacy of light chain 3-fused protein multi epitope in protection of mice challenged with Mycobacterium tuberculosis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:659-664. [PMID: 38174093 PMCID: PMC10759770 DOI: 10.30466/vrf.2023.1975747.3702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2023] [Indexed: 01/05/2024]
Abstract
The new strategy for vaccine development such as the fused protein multi-epitope capable of preventing the reactivation of latent tuberculosis infection (LTBi) can be an effective strategy for controlling tuberculosis (TB) worldwide. This study was conducted to evaluate the immunity of experimentally infected BALB/c mice with Mycobacterium tuberculosis after injection of DNA construct. Nineteen female BALB/c mice were divided into three groups and injected with 0.50 mL of M. tuberculosis. After 3 weeks, lung and spleen samples from the infected mice were examined. The protective effects of light chain 3-fused protein multi-epitope against TB were evaluated for post-exposure and therapeutic exposure. The lungs and spleens of the mice were aseptically removed after death for histopathology analysis. The bacterial colonies were counted, and the cells were stained after 3 weeks of incubation. No significant differences were observed between the post-exposure and therapeutic exposure groups. The pathological changes in the lung tissue of mice in these groups included an increase in the thickness of interalveolar septa, hyperemia, and intraparenchymal pulmonary hemorrhage centers (positive control), scattered hyperemic areas (negative control), and hyperemia in the interstitial tissue, scattered hyperemic areas in the lung parenchyma and lymphocytic infiltration centers (experimental group). Flow cytometry of the post-exposure and therapeutic exposure models showed insignificant changes in all three groups. It seems necessary to develop a post-exposure and therapeutic exposure vaccine strategy that focuses on LTBi to prevent the progression of the active disease. In this regard, multi-epitope vaccines should be designed to induce both cellular and humoral immunity.
Collapse
Affiliation(s)
- Somayeh Bahrami
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran;
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran;
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran;
| | - Nader Mosavari
- Bovine Tuberculosis Reference Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research,Education and Extension Organization (AREEO), Tehran, Iran;
| | - Fattah Sotoodehnejad
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran;
| | - Mohammad Eslampanah
- Department of Pathology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
4
|
Hu J, Huang W, Wang Y, Jin J, Li Y, Chen J, Zheng Y, Deng S. Atmospheric cold plasma: A potential technology to control Shewanella putrefaciens in stored shrimp. Int J Food Microbiol 2023; 390:110127. [PMID: 36806858 DOI: 10.1016/j.ijfoodmicro.2023.110127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
This work aimed to investigate the inactivation mechanism of atmospheric cold plasma (ACP) against Shewanella putrefaciens both in PBS and sterile shrimp juice (SSJ). Reductions in cell density, cell viability, and biofilm formation activity were observed after ACP treatment. ACP cyclical treatment (1 min, 5 times) was more efficient than a one-time treatment (5 min, 1 time). After ACP cyclical treatment, the cell counts and cell viability of S. putrefaciens in PBS were decreased by 3.41 log CFU/mL and 85.30 %, respectively. As for SSJ group, the antibacterial efficiency of ACP declined, but the antibacterial effect of ACP cyclical treatment was still stronger than that of ACP one-time treatment. The biofilm formation activity of S. putrefaciens in PBS was almost completely inhibited, while it gradually returned to normal level with the prolonged of storage time for the SSJ counterpart. The rapid decrease in AKP activity after ACP treatment indicated the damage to cell wall integrity, which was also demonstrated by TEM. In addition, cell membrane and DNA damage of the strain also occurred after ACP treatment. The ROS fluorescence intensity in PBS was higher for the one-time treatment group, while the cyclical treatment group exhibited higher and more stable ozone levels. It was also detected that the total nitric oxide concentration in bacterial suspension depended on the dose of ACP treatment time. ACP treatment (35 kV) for 5 min, especially cyclical treatment, displayed its antibacterial properties on packaged shrimp contaminated with high concentration of S. putrefaciens. ACP cyclical treatment reduced surface bacterial counts of whole shrimps by 0.52 log CFU/mL, while ACP one-time treatment only achieved a decrease of 0.18 log CFU/mL. Therefore, ACP treatment could be considered as a potential alternative to enhance microbial control in food processing.
Collapse
Affiliation(s)
- Jiajie Hu
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Weijiao Huang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yihong Wang
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Jin
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Yuwei Li
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China
| | - Jing Chen
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China.
| | - Yan Zheng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, 316022 Zhoushan, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316022 Zhoushan, China
| |
Collapse
|
5
|
Liang W, Zhang W, Li C. Vibrio splendidus virulence to Apostichopus japonicus is mediated by hppD through glutamate metabolism and flagellum assembly. Virulence 2022; 13:458-470. [PMID: 35259068 PMCID: PMC8920201 DOI: 10.1080/21505594.2022.2046949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vibrio splendidus is the main opportunistic pathogen that causes skin ulcer syndrome in Apostichopus japonicus. hppDIn the present study, mutant V. splendidus with an in-frame deletion of hppDV.s. (MTVs) was constructed. The median lethal doses of wild-type V. splendidus (WTVs) and MTVs were 5.129 × 106 and 2.606 × 1010 CFU mL−1, respectively. RNA-Seq was performed using WTVs and MTVs cells at different growth stages to explore the mechanisms of the pathogenesis mediated by hppDV.s. Gene Ontology analysis showed that the expression levels of 105 genes involved in amino acid metabolism and protein binding were remarkably different between MTVs and WTVs. Kyoto Encyclopedia of Genes and Genomes analysis showed that the pathways of glutamate metabolism and flagellum assembly involved in biofilm formation and swarming motility were suppressed in MTVs. Correspondingly, the swarming motility, biofilm formation and colonisation of MTVs were remarkably decreased compared with those of WTVs. The results showed that 4-hppD catalyses tyrosine into fumarate, which could enhance glutamate metabolism and ATP production; promote flagellum assembly through the TCA cycle and lead to higher swarming, biofilm formation and colonisation abilities, to contribute to the pathogenesis of V. splendidus.
Collapse
Affiliation(s)
- Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China
| |
Collapse
|
6
|
Willemse D, Kaushal D. Using genomic DNA copies to enumerate Mycobacterium tuberculosis load in macaque tissue samples. Tuberculosis (Edinb) 2021; 129:102102. [PMID: 34139570 DOI: 10.1016/j.tube.2021.102102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
It is important to accurately quantify Mycobacterium tuberculosis (Mtb) load in laboratory-based tuberculosis (TB) research. This study aims to determine if real-time quantitative PCR (qPCR) and digital PCR (dPCR) can be used instead of colony forming unit (CFU) enumeration, to quantify Mtb load in rhesus and cynomolgus macaque tissue samples. Tissue samples of actively infected high Mtb-burden rhesus and cynomolgus macaques were selected from historic sample collections. CFUs were enumerated by plating, and Chelex-extracted genomic DNA used to quantify bacterial load by qPCR and dPCR. Three genes, sigA, 16S and CFP10, were assessed for their ability to quantify Mtb. All genes showed comparable quantification of Mtb between 2 and 20 000 copies/μl in the qPCR and 5-4000 copies/μl in the dPCR assay. The highest bacterial load was observed with dPCR, followed by qPCR, and CFU enumeration. Although the CFU count was consistently lower than the genomic copy numbers predicted by qPCR and dPCR, a significant correlation was observed. Quantification of Mtb by PCR was, however, only possible in higher-Mtb-load samples, suggesting that qPCR and dPCR quantification assays can predict bacterial load in actively infected and higher-Mtb-burden macaque tissue samples.
Collapse
Affiliation(s)
- Danicke Willemse
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227, Texas, USA.
| |
Collapse
|
7
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
8
|
Arrieta-Villegas C, Vidal E, Martín M, Verdés J, Moll X, Espada Y, Singh M, Villarreal-Ramos B, Domingo M, Pérez de Val B. Immunogenicity and Protection against Mycobacterium caprae Challenge in Goats Vaccinated with BCG and Revaccinated after One Year. Vaccines (Basel) 2020; 8:vaccines8040751. [PMID: 33322064 PMCID: PMC7770602 DOI: 10.3390/vaccines8040751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccination has been proposed as a supplementary tool for the control of tuberculosis in livestock. The long-term immunogenicity elicited by bacillus Calmette–Guerin (BCG) and the efficacy of revaccination were investigated in thirty goat kids distributed into three groups: unvaccinated controls, BCG (vaccinated at week 0) and BCG-BCG (vaccinated at weeks 0 and 56). Sixty-four weeks after the first vaccination, all animals were challenged with Mycobacterium caprae and examined post-mortem (pathology and bacterial load) at week 73. Antigen-specific interferon-gamma (IFN-γ) release was measured throughout the experiment. At week 59, peripheral blood mononuclear cells were stained for CD4, CD45RO and IFN-γ to determine the presence of antigen-specific cells secreting IFN-γ. The BCG-BCG group showed reductions in rectal temperatures, M. caprae DNA load in pulmonary lymph nodes (LN), the volume of lesions in pulmonary LN, mineralization in lungs, and higher weight gains compared to unvaccinated controls. IFN-γ responses were undetectable from 32 weeks after primary vaccination until revaccination, when the BCG-BCG group showed detectable IFN-γ production and a greater percentage of antigen-specific CD4+CD45RO+IFNγ+ and CD4−CD45RO+IFNγ+ cells compared to the BCG and control groups, which may be an indicator of the mechanisms of protection. Thus, re-vaccination of goats with BCG appears to prolong protection against infection with M. caprae.
Collapse
Affiliation(s)
- Claudia Arrieta-Villegas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; (E.V.); (M.M.); (M.D.); (B.P.d.V.)
- Correspondence:
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; (E.V.); (M.M.); (M.D.); (B.P.d.V.)
| | - Maite Martín
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; (E.V.); (M.M.); (M.D.); (B.P.d.V.)
| | - Judit Verdés
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (J.V.); (X.M.); (Y.E.)
| | - Xavier Moll
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (J.V.); (X.M.); (Y.E.)
| | - Yvonne Espada
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (J.V.); (X.M.); (Y.E.)
| | - Mahavir Singh
- Lionex Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany;
| | - Bernardo Villarreal-Ramos
- Animal and Plant Health Agency (APHA), Addlestone KT15 3NB, UK;
- Department of Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth SY23 3DA, UK
| | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; (E.V.); (M.M.); (M.D.); (B.P.d.V.)
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Bernat Pérez de Val
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus UAB, 08193 Bellaterra, Spain; (E.V.); (M.M.); (M.D.); (B.P.d.V.)
| |
Collapse
|
9
|
Wulandari L, Amin M, Soedarto, Soegiarto G, Ishiwata K. Sequential Co-infection of Heligmosomoides polygyrus and Mycobacterium tuberculosis Determine Lung Macrophage Polarization and Histopathological Changes. Indian J Tuberc 2020; 68:340-349. [PMID: 34099199 DOI: 10.1016/j.ijtb.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tuberculosis is a chronic infection caused by Mycobacterium tuberculosis (M.tb), which needs proper macrophage activation for control. It has been debated whether the co-infection with helminth will affect the immune response to mycobacterial infection. OBJECTIVE To determine the effect of sequential co-infection of Heligmosomoides polygyrus (H.pg) nematodes and M.tb on T cell responses, macrophages polarization and lung histopathological changes. METHOD This study used 49 mice divided into 7 treatment groups, with different sequence of infection of M.tb via inhalation and H.pg via oral ingestion for 8 and 16 weeks. T cells response in the lung, intestine, and peripheral blood were determined by flow cytometry. Cytokines (IL-4, IFN-γ, TGB-β1, and IL-10) were measured in peripheral blood using ELISA. Lung macrophage polarization were determined by the expression of iNOS (M1) or Arginase 1 (M2). Mycobacterial count were done in lung tissue. Lung histopathology were measured using Dorman's semiquantitative score assessing peribronchiolitis, perivasculitis, alveolitis, and granuloma formation. RESULT M.tb infection induced Th1 response and M1 macrophage polarization, while H.pg infection induced Th2 and M2 polarization. In sequential co-infection, the final polarization of macrophage was dictated by the sequence of co-infection. However, all groups with M.tb infection showed the same degree of mycobacterial count in lung tissues and lung tissue histopathological changes. CONCLUSION Sequential co-infection of H.pg and M.tb induces different T cell response which leads to different macrophage polarization in lung tissue. Helminth infection induced M2 lung macrophage polarization, but did not cause different mycobacterial count nor lung histopathological changes.
Collapse
Affiliation(s)
- Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Amin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Soedarto
- Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Gatot Soegiarto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Kenji Ishiwata
- Department of Tropical Medicine, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Redox homeostasis as a target for new antimycobacterial agents. Int J Antimicrob Agents 2020; 56:106148. [PMID: 32853674 DOI: 10.1016/j.ijantimicag.2020.106148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Despite early treatment with antimycobacterial combination therapy, drug resistance continues to emerge. Maintenance of redox homeostasis is essential for Mycobacterium avium (M. avium) survival and growth. The aim of the present study was to investigate the antimycobacterial activity of two pro-glutathione (pro-GSH) drugs that are able to induce redox stress in M. avium and to modulate cytokine production by macrophages. Hence, we investigated two molecules shown to possess antiviral and immunomodulatory properties: C4-GSH, an N-butanoyl GSH derivative; and I-152, a prodrug of N-acetyl-cysteine (NAC) and β-mercaptoethylamine (MEA). Both molecules showed activity against replicating M. avium, both in the cell-free model and inside macrophages. Moreover, they were even more effective in reducing the viability of bacteria that had been kept in water for 7 days, proving to be active both against replicating and non-replicating bacteria. By regulating the macrophage redox state, I-152 modulated cytokine production. In particular, higher levels of interferon-gamma (IFN-γ), interleukin 1 beta (IL-1β), IL-18 and IL-12, which are known to be crucial for the control of intracellular pathogens, were found after I-152 treatment. Our results show that C4-GSH and I-152, by inducing perturbation of redox equilibrium, exert bacteriostatic and bactericidal activity against M. avium. Moreover, I-152 can boost the host response by inducing the production of cytokines that serve as key regulators of the Th1 response.
Collapse
|
11
|
Dai F, Zhang W, Zhuang Q, Shao Y, Zhao X, Lv Z, Li C. Dihydrolipoamide dehydrogenase of Vibrio splendidus is involved in adhesion to Apostichopus japonicus. Virulence 2020; 10:839-848. [PMID: 31647357 PMCID: PMC6816312 DOI: 10.1080/21505594.2019.1682761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vibrio splendidus is one of the most opportunistic marine pathogens and infects many important marine animals, including the sea cucumber Apostichopus japonicus. In this study, two genes named DLD1 and DLD2, encoding dihydrolipoamide dehydrogenase (DLD) homologues in pathogenic V. splendidus, were cloned, and conditionally expressed in Escherichia coli BL21 (DE3). The enzymatic activities of DLD1 and DLD2 showed that they both belonged to the NADH oxidase family. Both DLD1 and DLD2 were located on the outer membrane of V. splendidus as detected by whole-cell ELISA. To study the adhesion function of DLD1 and DLD2, polyclonal antibodies were prepared, and antibody block assay was performed to detect the normal function of the two proteins. DLD1 and DLD2 were determined to play important roles in adhesion to different matrices and the adhesive ability of V. splendidus reduced more than 50% when DLD1 or DLD2 was defective.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Qiuting Zhuang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University , Ningbo , PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , PR China
| |
Collapse
|
12
|
Mustafa T, Wergeland I, Baba K, Pathak S, Hoosen AA, Dyrhol-Riise AM. Mycobacterial antigens in pleural fluid mononuclear cells to diagnose pleural tuberculosis in HIV co-infected patients. BMC Infect Dis 2020; 20:459. [PMID: 32611401 PMCID: PMC7329517 DOI: 10.1186/s12879-020-05165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Extra pulmonary manifestation of tuberculosis (TB) accounts for approximately one-half of TB cases in HIV-infected individuals with pleural TB as the second most common location. Even though mycobacteria are cleared, mycobacterial antigens may persist in infected tissues, causing sustained inflammation and chronicity of the disease. The aim of this study was to explore various mycobacterial antigens in pleural effusions, the impact of HIV infection and CD4+ T-cell depletion on the presence of antigens, and the diagnostic potential of antigens for improved and rapid diagnosis of pleural TB. Methods Pleural fluid specimens were collected from patients presenting with clinically suspected pleural TB, and processed routinely for culture, cytology, and adenosine deaminase activity analysis. HIV status and CD4+ T-cell counts were recorded. Pleural fluid mononuclear cells (PFMC) were isolated, and cell smears were stained with acid-fast staining and immunocytochemistry for various mycobacterial antigens. Real-time and nested-PCR were performed. Patients were categorized as pleural TB or non-TB cases using a composite reference standard. Performance of the mycobacterial antigens as diagnostic test was assessed. Results A total of 41 patients were enrolled, of which 32 were classified as pleural TB and 9 as non-TB. Thirteen patients had culture confirmed pleural TB, 26 (81%) were HIV-TB co-infected, and 64% had < 100 CD4+ T-cells/microL. Both secreted and cell-wall mycobacterial antigens were detected in PFMC. Lipoarabinomannan (LAM) was the most frequently detected antigen. There was no direct correlation between positive culture and antigens. Cases with low CD4+ T-cell counts had higher bacterial and antigen burden. By combining detection of secreted antigen or LAM, the sensitivity and specificity to diagnose pleural TB was 56 and 78%, respectively, as compared to 41 and 100% for culture, 53 and 89% for nested PCR, and 6 and 100% for real-time PCR. Conclusion Mycobacterial antigens were detectable in PFMC from tuberculous pleural effusions, even in cases where viable mycobacteria or bacterial DNA were not always detected. Thus, a combination of secreted antigen and LAM detection by immunocytochemistry may be a complement to acid-fast staining and contribute to rapid and accurate diagnosis of pleural TB.
Collapse
Affiliation(s)
- Tehmina Mustafa
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, P.O. box 7804, N-5020, Bergen, Norway. .,Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Ida Wergeland
- Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kamaldeen Baba
- Department of Microbiological Pathology, Medunsa Campus, University of Limpopo, Mankweng, South Africa.,Department of Pathology and Laboratory Medicine, King Abdullah bin Abdulaziz University Hospital, Princess Noura bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sharad Pathak
- Department of Respiratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anwar A Hoosen
- Department of Microbiological Pathology, Medunsa Campus, University of Limpopo, Mankweng, South Africa.,Pathcare - Vermaak & Partners Pathologists and Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Anne Margarita Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Carraro R, Dalla Rovere G, Ferraresso S, Carraro L, Franch R, Toffan A, Pascoli F, Patarnello T, Bargelloni L. Development of a real-time PCR assay for rapid detection and quantification of Photobacterium damselae subsp. piscicida in fish tissues. JOURNAL OF FISH DISEASES 2018; 41:247-254. [PMID: 28857188 DOI: 10.1111/jfd.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The availability of a rapid and accurate method for the diagnosis of Photobacterium damselae subsp. piscicida (Phdp), able to discriminate its strictly correlated subsp. damselae (Phdd), formally known as Vibrio damsela, is essential for managing fish pasteurellosis outbreaks in farmed fish. A single-step, high-sensitivity real-time PCR assay for simultaneous detection and quantification of P. damselae was designed targeting partial of the sequence of the bamB gene and tested for specificity and sensitivity on laboratory-generated samples as well as on experimentally infected seabream tissue samples. With a limit of detection (LOD) of one copy in pure bacterial DNA, the sensitivity was higher than all methods previously reported. Validation in target and non-target bacterial species proved the assay was able to discriminate Phdd-Phdp subspecies from diverse hosts/geographical origins and between non-target species. In addition, two SNPs in the target amplicon region determine two distinctive qPCR dissociation curves distinguishing between Phdp-Phdd. This is the first time that a molecular method for P. damselae diagnosis combines detection, quantification and subspecies identification in one step. The assay holds the potential to improve the knowledge of infection dynamics and the development of better strategies to control an important fish disease.
Collapse
Affiliation(s)
- R Carraro
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - G Dalla Rovere
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - S Ferraresso
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - L Carraro
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - R Franch
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - A Toffan
- Fish Virology Department, National Reference Laboratory for Fish, Crustacean and Mollusc Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - F Pascoli
- Fish Virology Department, National Reference Laboratory for Fish, Crustacean and Mollusc Diseases, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy
| |
Collapse
|
14
|
Gaudreault C, Salvas J, Sirois J. Savitzky-Golay smoothing and differentiation for polymerase chain reaction quantification. Biochem Cell Biol 2017; 96:380-389. [PMID: 29190123 DOI: 10.1139/bcb-2016-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In quantitative PCR (qPCR), replicates can minimize the impact of intra-assay variation; however, inter-assay variations must be minimized to obtain a robust quantification method. The method proposed in this study uses Savitzky-Golay smoothing and differentiation (SGSD) to identify a derivative-maximum-based cycle of quantification. It does not rely on curve modeling, as is the case with many existing techniques. PCR fluorescence data sets challenged for inter-assay variations (different thermocycler units, different reagents batches, different operators, different standard curves, and different labs) were used for the evaluation. The algorithm was compared with a four-parameter logistic model (4PLM) method, the Cy0 method, and the threshold method. The SGSD method compared favourably with all methods in terms of inter-assay variation. SGSD was statistically different from the 4PLM (P = 0.03), Cy0 (P = 0.05), and threshold (P = 0.004) methods on relative error comparison basis. For intra-assay variations, SGSD outperformed the threshold method (P = 0.005) and equalled the 4PLM and Cy0 methods (P > 0.05) on relative error basis. Our results demonstrate that the SGSD method could potentially be an alternative to sigmoid modeling based methods (4PLM and Cy0) when PCR data are challenged for inter-assay variations.
Collapse
Affiliation(s)
- Charles Gaudreault
- a Université de Sherbrooke, Engineering Faculty, 2500 boul. de l'université, QC J1K 2R1, Canada
| | - Joanny Salvas
- b Process Analytical Science Group, Pfizer Montréal, 1025 boul. Marcel-Laurin, Montréal, QC H4R 1J6, Canada
| | - Joël Sirois
- a Université de Sherbrooke, Engineering Faculty, 2500 boul. de l'université, QC J1K 2R1, Canada
| |
Collapse
|
15
|
Agrimonti C, Bottari B, Sardaro MLS, Marmiroli N. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products. Crit Rev Food Sci Nutr 2017; 59:423-442. [DOI: 10.1080/10408398.2017.1375893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Caterina Agrimonti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Benedetta Bottari
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Maria Luisa Savo Sardaro
- Department of Food and Drug Science, University of Parma, Parma, Italy; Department of Nutrition and Gastronomy, University San Raffaele Roma Srl, Rome, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PLoS One 2016; 11:e0166917. [PMID: 27893834 PMCID: PMC5125646 DOI: 10.1371/journal.pone.0166917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
In pigs, Chlamydia suis has been associated with respiratory disease, diarrhea and conjunctivitis, but there is a high rate of inapparent C. suis infection found in the gastrointestinal tract of pigs. Tetracycline resistance in C. suis has been described in the USA, Italy, Switzerland, Belgium, Cyprus and Israel. Tetracyclines are commonly used in pig production due to their broad-spectrum activity and relatively low cost. The aim of this study was to isolate clinical C. suis samples in cell culture and to evaluate their antibiotic susceptibility in vitro under consideration of antibiotic treatment on herd level. Swab samples (n = 158) identified as C. suis originating from 24 farms were further processed for isolation, which was successful in 71% of attempts with a significantly higher success rate from fecal swabs compared to conjunctival swabs. The farms were divided into three treatment groups: A) farms without antibiotic treatment, B) farms with prophylactic oral antibiotic treatment of the whole herd consisting of trimethoprime, sulfadimidin and sulfathiazole (TSS), or C) farms giving herd treatment with chlortetracycline with or without tylosin and sulfadimidin (CTS). 59 isolates and their corresponding clinical samples were selected and tested for the presence or absence of the tetracycline resistance class C gene [tet(C)] by conventional PCR and isolates were further investigated for their antibiotic susceptibility in vitro. The phenotype of the investigated isolates was either classified as tetracycline sensitive (Minimum inhibitory concentration [MIC] < 2 μg/ml), intermediate (2 μg/ml ≤ MIC < 4 μg/ml) or resistant (MIC ≥ 4 μg/ml). Results of groups and individual pigs were correlated with antibiotic treatment and time of sampling (beginning/end of the fattening period). We found clear evidence for selective pressure as absence of antibiotics led to isolation of only tetracycline sensitive or intermediate strains whereas tetracycline treatment resulted in a greater number of tetracycline resistant isolates.
Collapse
|
17
|
Barua AG, Raj H, Konch P, Hussain P, Barua CC. Evaluation of in vivo antimycobacterial activity of some folklore medicinal plants and enumeration of colony forming unit in murine model. Indian J Pharmacol 2016; 48:526-530. [PMID: 27721538 PMCID: PMC5051246 DOI: 10.4103/0253-7613.190737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives: The present study was carried out to investigate the in vivo antimycobacterial activity of methanol extract of Alstonia scholaris and Mucuna imbricata in murine model. Materials and Methods: Female BALB/c mice were infected with the Mycobacterium tuberculosis H37Rv suspension. Extracts were administered orally for 2 weeks from 7th day postinfection at a dose of 200 mg/kg and rifampicin at 20 mg/kg as standard. The synergistic groups were 10 and 100 mg/kg for rifampicin and extract, respectively. Results: The final body weight of mycobacteria-infected group was significantly reduced (15.41 ± 0.42, P < 0.01), but following treatment with the plant extract plus rifampicin could elevate the body weight. Colony forming unit (CFU) count of lung (8.71 ± 0.01) and spleen (8.59 ± 0.01) was significantly higher in infected and untreated group (P < 0.01). It was observed that activity of the synergistic group displayed powerful and maximum response against tuberculosis (TB) infection with lower CFU counts. Histopathology study showed cells such as lymphocytes, epithelioid, Langhans giant cell, and fibrous tissue proliferation in lungs; depletion of lymphocytes in the spleen. Conclusions: The data indicate that methanol extract of A. scholaris has potential antimycobacterial activity, and the synergistic group consisting of rifampicin and A. scholaris could be a rational choice for the treatment of TB.
Collapse
Affiliation(s)
- Acheenta Gohain Barua
- Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | - Himangshu Raj
- Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | - Pranab Konch
- Department of Veterinary Pathology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | - P Hussain
- Department of Veterinary Public Health, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| | - Chandana C Barua
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India
| |
Collapse
|
18
|
Abstract
The emerging field of proteomics has contributed greatly to improving our understanding of the human pathogen Mycobacterium tuberculosis over the last two decades. In this chapter we provide a comprehensive overview of mycobacterial proteome research and highlight key findings. First, studies employing a combination of two-dimensional gel electrophoresis and mass spectrometry (MS) provided insights into the proteomic composition, initially of the whole bacillus and subsequently of subfractions, such as the cell wall, cytosol, and secreted proteins. Comparison of results obtained under various culture conditions, i.e., acidic pH, nutrient starvation, and low oxygen tension, aiming to mimic facets of the intracellular lifestyle of M. tuberculosis, provided initial clues to proteins relevant for intracellular survival and manipulation of the host cell. Further attempts were aimed at identifying the biological functions of the hypothetical M. tuberculosis proteins, which still make up a quarter of the gene products of M. tuberculosis, and at characterizing posttranslational modifications. Recent technological advances in MS have given rise to new methods such as selected reaction monitoring (SRM) and data-independent acquisition (DIA). These targeted, cutting-edge techniques combined with a public database of specific MS assays covering the entire proteome of M. tuberculosis allow the simple and reliable detection of any mycobacterial protein. Most recent studies attempt not only to identify but also to quantify absolute amounts of single proteins in the complex background of host cells without prior sample fractionation or enrichment. Finally, we will discuss the potential of proteomics to advance vaccinology, drug discovery, and biomarker identification to improve intervention and prevention measures for tuberculosis.
Collapse
|
19
|
Detection of Biofilm in Wounds as an Early Indicator for Risk for Tissue Infection and Wound Chronicity. Ann Plast Surg 2016; 76:127-31. [DOI: 10.1097/sap.0000000000000440] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Clonal Diversification and Changes in Lipid Traits and Colony Morphology in Mycobacterium abscessus Clinical Isolates. J Clin Microbiol 2015; 53:3438-47. [PMID: 26292297 DOI: 10.1128/jcm.02015-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
The smooth-to-rough colony morphology shift in Mycobacterium abscessus has been implicated in loss of glycopeptidolipid (GPL), increased pathogenicity, and clinical decline in cystic fibrosis (CF) patients. However, the evolutionary phenotypic and genetic changes remain obscure. Serial isolates from nine non-CF patients with persistent M. abscessus infection were characterized by colony morphology, lipid profile via thin-layer chromatography and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), sequencing of eight genes in the GPL locus, and expression level of fadD23, a key gene involved in the biosynthesis of complex lipids. All 50 isolates were typed as M. abscessus subspecies abscessus and were clonally related within each patient. Rough isolates, all lacking GPL, predominated at later disease stages, some showing variation within rough morphology. While most (77%) rough isolates harbored detrimental mutations in mps1 and mps2, 13% displayed previously unreported mutations in mmpL4a and mmpS4, the latter yielding a putative GPL precursor. Two isolates showed no deleterious mutations in any of the eight genes sequenced. Mixed populations harboring different GPL locus mutations were detected in 5 patients, demonstrating clonal diversification, which was likely overlooked by conventional acid-fast bacillus (AFB) culture methods. Our work highlights applications of MALDI-TOF MS beyond identification, focusing on mycobacterial lipids relevant in virulence and adaptation. Later isolates displayed accumulation of triacylglycerol and reduced expression of fadD23, sometimes preceding rough colony onset. Our results indicate that clonal diversification and a shift in lipid metabolism, including the loss of GPL, occur during chronic lung infection with M. abscessus. GPL loss alone may not account for all traits associated with rough morphology.
Collapse
|
21
|
Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 2015; 6:705. [PMID: 26236291 PMCID: PMC4500986 DOI: 10.3389/fmicb.2015.00705] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix, or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.
Collapse
Affiliation(s)
- Pilar Sanchez-Vizuete
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Belen Orgaz
- Department of Nutrition, Food Science and Technology, Faculty of Veterinary, Complutense University de MadridMadrid, Spain
| | - Stéphane Aymerich
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Dominique Le Coq
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
- CNRS, Jouy-en-JosasFrance
| | - Romain Briandet
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| |
Collapse
|
22
|
Sijan Z, Antkiewicz DS, Heo J, Kado NY, Schauer JJ, Sioutas C, Shafer MM. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter. ENVIRONMENTAL TOXICOLOGY 2015; 30:836-851. [PMID: 24497439 DOI: 10.1002/tox.21961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/09/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ≥ 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNFα was upregulated in half of the samples and downregulated in the other half. Overall, this PM-induced cytokine expression assay could be effectively integrated into health studies and air quality monitoring programs to better understand relationships between specific PM components, oxidative stress activity and inflammatory signaling potential.
Collapse
Affiliation(s)
- Zana Sijan
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dagmara S Antkiewicz
- Department of Environmental Toxicology, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, 53718, USA
| | - Jongbae Heo
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Norman Y Kado
- Department of Environmental Toxicology, University of California-Davis, Davis, California, USA
- California Environmental Protection Agency, Air Resources Board, Sacramento, California, USA
| | - James J Schauer
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Environmental Toxicology, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, 53718, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Martin M Shafer
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin 53718, USA
| |
Collapse
|
23
|
Yu H, Meng H, Zhou F, Ni X, Shen S, Das UN. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 2015; 11:385-94. [PMID: 25995756 PMCID: PMC4424255 DOI: 10.5114/aoms.2015.50970] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Inflammation is associated with promotion of the initiation of various malignancies, partly due to bacterial infection-induced microenvironmental changes. However, the exact association between microbiota in urine, seminal fluid and the expressed prostatic secretions and benign prostatic hypertrophy and prostate cancer is not clear. MATERIAL AND METHODS In the present study, we investigated the type of microbiota in the expressed prostatic secretions (EPS) of patients with prostate cancer and benign prostatic hyperplasia (BPH) by the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method using universal bacterial primers. In order to understand the possible association between various bacteria and prostate cancer, quantitative real-time PCR assay was performed to quantify the amount of strains of bacteria in urine, EPS and seminal fluid. RESULTS The prostate cancer group had a significantly increased number of Bacteroidetes bacteria, Alphaproteobacteria, Firmicutes bacteria, Lachnospiraceae, Propionicimonas, Sphingomonas, and Ochrobactrum, and a decrease in Eubacterium and Defluviicoccus compared to the BPH group. The number of Escherichia coli in the prostate cancer group was significantly decreased in urine and increased in the EPS and seminal fluid, while the number of Enterococcus was significantly increased in the seminal fluid with little change in urine and EPS. CONCLUSIONS Based on these results, we suggest that there are significant changes in the microbial population in EPS, urine and seminal fluid of subjects with prostate cancer and BPH, indicating a possible role for these bacteria in these two conditions.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hongzhou Meng
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Ni
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengrong Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
24
|
Snyder AK, Hinshaw JM, Welch TJ. Diagnostic tools for rapid detection and quantification of Weissella ceti NC36 infections in rainbow trout. Lett Appl Microbiol 2015; 60:103-110. [PMID: 25470116 DOI: 10.1111/lam.12365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
Abstract
Weissellosis of rainbow trout is caused by the Gram-positive bacteria Weissella ceti and has been reported in China, Brazil and the United States. This disease can result in high mortality in market-sized fish and thus can cause significant economic loss. Thus far, phenotypic characterization and 16S rRNA sequencing have been used to confirm a Weissellosis diagnosis. Here, we present the development of PCR-based diagnostic tools for the rapid identification and quantification of W. ceti within bacteriological culture and infected tissues. A duplex PCR, which amplifies both genus- and strain-specific targets, positively identifies isolates as W. ceti NC36. A qPCR assay was also developed to quantify pathogen load from infected tissues, using a W. ceti NC36 unique locus. A proof of concept study was performed to demonstrate that quantification using traditional plate count methods and qPCR were significantly correlated when assessed from infected brain and spleen tissue. These tools were also used to confirm diagnosis of Weissellosis in a commercial rainbow trout farm during an outbreak investigation. These are the first diagnostic tools developed for identification and quantification of W. ceti infection within rainbow trout, contributing to rapid Weissellosis diagnosis, enhanced pathogen surveillance and epidemiological studies.
Collapse
Affiliation(s)
- A K Snyder
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, USA
| | - J M Hinshaw
- Department of Applied Ecology, North Carolina State University, Mills River, NC, USA
| | - T J Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, USA
| |
Collapse
|
25
|
Brudal E, Lampe EO, Reubsaet L, Roos N, Hegna IK, Thrane IM, Koppang EO, Winther-Larsen HC. Vaccination with outer membrane vesicles from Francisella noatunensis reduces development of francisellosis in a zebrafish model. FISH & SHELLFISH IMMUNOLOGY 2015; 42:50-57. [PMID: 25449706 DOI: 10.1016/j.fsi.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.
Collapse
Affiliation(s)
- Espen Brudal
- Section for Microbiology, Immunology and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway; Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Elisabeth O Lampe
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida K Hegna
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Ida Marie Thrane
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway
| | - Erling O Koppang
- Section for Anatomy and Pathology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033 Oslo, Norway
| | - Hanne C Winther-Larsen
- Laboratory for Microbial Dynamics (LaMDa), School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
26
|
Cheng N, Porter MA, Frick LW, Nguyen Y, Hayden JD, Young EF, Braunstein MS, Hull-Ryde EA, Janzen WP. Filtration improves the performance of a high-throughput screen for anti-mycobacterial compounds. PLoS One 2014; 9:e96348. [PMID: 24788852 PMCID: PMC4008622 DOI: 10.1371/journal.pone.0096348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/06/2014] [Indexed: 11/28/2022] Open
Abstract
The tendency for mycobacteria to aggregate poses a challenge for their use in microplate based assays. Good dispersions have been difficult to achieve in high-throughput screening (HTS) assays used in the search for novel antibacterial drugs to treat tuberculosis and other related diseases. Here we describe a method using filtration to overcome the problem of variability resulting from aggregation of mycobacteria. This method consistently yielded higher reproducibility and lower variability than conventional methods, such as settling under gravity and vortexing.
Collapse
Affiliation(s)
- Nancy Cheng
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Melissa A. Porter
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lloyd W. Frick
- DMPK Advisors, Chapel Hill, North Carolina, United States of America
| | - Yvonne Nguyen
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jennifer D. Hayden
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ellen F. Young
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Miriam S. Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Emily A. Hull-Ryde
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - William P. Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Cancer Genetics Program, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Alnimr AM, Hassan MI. Potential of two nucleic acid amplification assays for quantifying mycobacterial load in respiratory and non-respiratory specimens: a prospective study. Diagn Microbiol Infect Dis 2014; 78:237-41. [DOI: 10.1016/j.diagmicrobio.2013.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/16/2013] [Accepted: 11/16/2013] [Indexed: 11/25/2022]
|
28
|
Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents 2014; 43:154-60. [DOI: 10.1016/j.ijantimicag.2013.08.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/23/2022]
|
29
|
The critical role of DNA extraction for detection of mycobacteria in tissues. PLoS One 2013; 8:e78749. [PMID: 24194951 PMCID: PMC3806855 DOI: 10.1371/journal.pone.0078749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/17/2013] [Indexed: 12/05/2022] Open
Abstract
Background Nucleic acid-based methods offer promise for both targeted and exploratory investigations of microbes in tissue samples. As the starting material for such studies is a mixture of host and microbial DNA, we have critically evaluated the DNA extraction step to determine the quantitative and qualitative parameters that permit faithful molecular detection of mycobacteria in infected tissue. Specifically, we assessed: 1) tissue disruption procedures; 2) DNA extraction protocols; and 3) inhibition of bacterial PCR by host DNA. Principal Findings Regarding DNA extraction, we found that 1) grinding was not necessary if bead-beating is done, 2) the reference mycobacterial DNA extraction method recovered more pure DNA than commercial spin column kits, 3) lysozyme digestion of 1 hour was sufficient, and 4) repeated steps of phenol:chloroform:isoamyl alcohol offered minimal gain in DNA quality. By artificially mixing mycobacterial DNA with DNA extracted from uninfected mice, we found that bacterial real-time quantitative PCR was only reliable when the quantity of host DNA was < 3 µg in a final volume of 25 µl and the quality was high (260/280 nm ratio = 1.89±0.08). Findings from spiked DNA studies were confirmed using DNA extracted from mice infected with different intracellular pathogens (M. tuberculosis, M. avium subsp. paratuberculosis). Conclusions Our findings point to the most appropriate methods for extracting DNA from tissue samples for the purpose of detecting and quantifying mycobacteria. These data also inform on the limits of detection for two mycobacterial species and indicate that increasing the sample mass to improve analytic sensitivity comes at the cost of inhibition of PCR by host DNA.
Collapse
|
30
|
Àlvarez G, González M, Isabal S, Blanc V, León R. Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 2013; 3:1. [PMID: 23289803 PMCID: PMC3549832 DOI: 10.1186/2191-0855-3-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/29/2012] [Indexed: 01/27/2023] Open
Abstract
Real-time PCR (qPCR) is a widely used technique in analysing environmental and clinical microbiological samples. However, its main limitation was its inability to discriminate between live and dead cells. Recently, propidium monoazide (PMA) together with qPCR has been used to overcome this problem, with good results for different bacterial species in different types of samples. Our objective was to implement this technique for analysing mortality in multi-species oral biofilms formed in vitro with five oral bacteria: Streptococcus oralis, Streptococcus gordonii, Veillonella parvula, Fusobacterium nucleatum and Prevotella intermedia. We also tested its effectiveness on biofilms treated with an antiseptic solution containing 0.07% w/w cetylpyridinium chloride (CPC). Standardisation of the qPCR-PMA method was performed on pure, heat-killed planktonic cultures of each species, detecting mortality higher than 4 log in S. oralis, S. gordonii and F. nucleatum and higher than 2 for V. parvula and P. intermedia. We obtained similar results for all species when using CPC. When we analysed biofilms with qPCR-PMA, we found that the mortality in the non-CPC treated multi-species biofilms was lower than 1 log for all species. After treatment with CPC, the viability reduction was higher than 4 log in S. oralis and S. gordonii, higher than 3 log in F. nucleatum and P. intermedia and approximately 2 in V. parvula. In short, we standardised the conditions for using qPCR-PMA in 5 oral bacterial species and proved its usefulness for quantification of live and dead cells in multi-species oral biofilms formed in vitro, after use of an antiseptic.
Collapse
|