1
|
Asare PF, Jayapal M, Tai A, Maiolo S, Chapman S, Morton J, Hopkins E, Reynolds PN, Hodge S, Tran HB. Mechanisms underlying the roles of leukocytes in the progression of cystic fibrosis. Exp Lung Res 2024; 50:208-220. [PMID: 39543807 DOI: 10.1080/01902148.2024.2424201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Recent advances in cystic fibrosis (CF) treatments have led to improved survival, with life expectancy for Australians living with CF at 57yo. As life expectancy improves, long-term cardiovascular disease risk factors (as for the general population) will become an issue in these patients. We hypothesized that increased leukocyte expression of vasoconstriction and pro-fibrotic mediators may contribute to CF severity in adults with CF. We recruited 13 adult and 24 pediatric healthy controls, and 53 adults and 9 children living with CF. Leukocyte expression/release of endothelin-1 (ET1) and members of the TGF-β/Smad signaling were measured by multifluorescence quantitative confocal microscopy, Western blotting, ELISA, and real-time quantitative polymerase chain reaction. The association between plasma ET1 levels and lung function was assessed. Leukocytes from adults living with CF expressed higher ET1 levels (p = 0.0033), and TGF-β (p = 0.0031); the phosphorylation ratio increased for Smad2/3 (p = 0.0136) but decreased for Smad1/5/8 (p = 0.0007), vs. control subjects. Plasma ET1 levels were significantly increased in adults with CF with FEV1<50% (p = 0.002) vs. controls, and adults with CF with normal lung function. The release of ET1 in adult plasma inversely correlated with CF severity (-0.609, p = 0.046). Our data indicates that upregulated ET1 and TGF-β/Smad signaling in leukocytes may contribute to CF severity, highlighting the need for further investigations into their impact on the clinical outcomes of people living with CF.
Collapse
Affiliation(s)
- Patrick F Asare
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Minnu Jayapal
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Andrew Tai
- Women's and Children's Hospital, Adelaide, South Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia
| | - Suzanne Maiolo
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Sally Chapman
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Judith Morton
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Emily Hopkins
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Paul N Reynolds
- School of Medicine, University of Adelaide, Adelaide, South Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Sandra Hodge
- School of Medicine, University of Adelaide, Adelaide, South Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Hai Bac Tran
- School of Medicine, University of Adelaide, Adelaide, South Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital & School of Medicine, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
2
|
Deng Y, Ding C, Yang H, Zhang M, Xiao Y, Wang H, Li J, Xiao T, Lv Z. First in vitro and in vivo evaluation of recombinant IL-1β protein as a potential immunomodulator against viral infection in fish. Int J Biol Macromol 2024; 255:128192. [PMID: 37979760 DOI: 10.1016/j.ijbiomac.2023.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
IL-1β is an important proinflammatory cytokine with multifaceted modulatory roles in immune responses. In fish, recombinant IL-1β has been employed in the control of bacterial diseases, while the antiviral mechanisms of IL-1β remain largely unknown, and the efficacy of recombinant IL-1β as an immunomodulator to prevent viral diseases is still not determined. This study evaluated the immunomodulatory effects of recombinant grass carp IL-1β against grass carp reovirus (GCRV) in vitro and in vivo. Firstly, the mature form (Ser111-Lys270) of grass carp IL-1β was identified, and its recombinant protein (designated as rgcIL-1β) was prepared through prokaryotic expression. Then, an in vitro evaluation model for rgcIL-1β activity was established in the CIK cells, with the appropriate concentration (600 ng/mL) and effect time (1 h). In vitro, rgcIL-1β could not only induce the production of proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α but also a series of antiviral factors including IFN-1, IFN-2, IFN-γ, and ISG15. Mechanistically, transcriptome analysis and western blotting confirmed that rgcIL-1β activated multiple transcriptional factors, including NF-κB, IRF1, IRF3, and IRF8, and the signal pathways associated with inflammatory cytokines and antiviral factors expression. Expectedly, rgcIL-1β treatment significantly inhibited GCRV replication in vitro. In vivo administration of rgcIL-1β via intraperitoneal pre-injection significantly aroused an antiviral response to restrict GCRV replication and intense tissue inflammation in grass carp, demonstrating the immunomodulatory effects of rgcIL-1β. More importantly, rgcIL-1β administrated with 10 ng/g and 1 ng/g could improve the survival rate of grass carp during GCRV infection. This study represents the first time to comprehensively reveal the immunomodulatory and antiviral mechanisms of IL-1β in fish and may also pave the way for further developing recombinant IL-1β as an immunotherapy for the prevention and control of fish viral diseases.
Collapse
Affiliation(s)
- Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yu Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Ratvaj M, Maruščáková IC, Popelka P, Fečkaninová A, Koščová J, Chomová N, Mareš J, Malý O, Žitňan R, Faldyna M, Mudroňová D. Feeding-Regime-Dependent Intestinal Response of Rainbow Trout after Administration of a Novel Probiotic Feed. Animals (Basel) 2023; 13:1892. [PMID: 37370408 DOI: 10.3390/ani13121892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Intensive fish farming is associated with a high level of stress, causing immunosuppression. Immunomodulators of natural origin, such as probiotics or phytoadditives, represent a promising alternative for increasing the immune function of fish. In this study, we tested the autochthonous trout probiotic strain L. plantarum R2 in a newly developed, low-cost application form ensuring the rapid revitalization of bacteria. We tested continuous and cyclic feeding regimes with regard to their effect on the intestinal immune response and microbiota of rainbow trout. We found that during the continuous application of probiotic feed, the immune system adapts to the immunomodulator and there is no substantial stimulation of the intestinal immune response. During the cyclic treatment, after a 3-week break in probiotic feeding and the reintroduction of probiotics, there was a significant stimulation of the gene expression of molecules associated with both cellular and humoral immunity (CD8, TGF-β, IL8, TLR9), without affecting the gene expression for IL1 and TNF-α. We can conclude that, in aquaculture, this probiotic feed can be used with a continuous application, which does not cause excessive immunostimulation, or with a cyclic application, which provides the opportunity to stimulate the immunity of trout, for example, in periods of stress.
Collapse
Affiliation(s)
- Marek Ratvaj
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivana Cingeľová Maruščáková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology, and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jan Mareš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Ondřej Malý
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University, 61300 Brno, Czech Republic
| | - Rudolf Žitňan
- Research Institute for Animal Production Nitra, National Agricultural and Food Center, 95141 Lužianky, Slovakia
| | - Martin Faldyna
- Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
4
|
Wei H, Qiu X, Lv M, Liu X. Expression analysis of grass carp Foxp3 and its biologic effects on CXCL-8 transcription in non-lymphoid cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 134:104447. [PMID: 35597302 DOI: 10.1016/j.dci.2022.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Teleost Forkhead box protein P3 (Foxp3) expression was discovered not only in regulatory T cells (Tregs) but also in other cells. Compared to the extensive study on its roles in lymphoid cells, the expression pattern and biological roles of Foxp3 in non-lymphoid cells have not been elucidated in both mammals and fish species. In the present study, grass carp Foxp3 (gcFoxp3) mRNA expression was detected in different cell types, showing that it has a moderate expression level in peripheral blood leukocytes (PBLs), head kidney leukocytes (HKLs) and grass carp fibroblast-like kidney cells (CIK cells). Interestingly, gcFoxp3 mRNA and protein expression could be significantly stimulated by polyinosinic-polycytidylic acid (poly I:C) in CIK cells, indicating its participation in poly I:C-induced immune response in non-lymphoid cells. To further investigate the function of gcFoxp3, its overexpression plasmid was constructed and transfected into CIK cells. After 24 h of transfection, grass carp C-X-C chemokine ligand (CXCL) 8 (gcCXCL-8) mRNA expression was elevated, implying the modulatory role of gcFoxp3 in gcCXCL-8 mRNA expression. This notion was further supported by the features of gcCXCL-8 promoter which contained a putative Foxp3 binding site at -2196 to -2190 region. Poly I:C or overexpression of gcFoxp3 obviously stimulated gcCXCL-8 promoter activity and deletion of gcFoxp3 binding region on the promoter abolished this stimulation, revealing that Foxp3 is pivotal for transcription of CXCL-8 induced by poly I:C. In conclusion, our results collectively demonstrate expression pattern of teleost Foxp3, and illuminate novel immune function of fish Foxp3 in regulating chemokine transcription in non-lymphoid cells.
Collapse
Affiliation(s)
- He Wei
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, People's Republic of China; Department of Gastroenterology, The Second Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China.
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xuelian Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Lv M, Qiu X, Wang J, Wang Y, Liu Q, Zhou H, Zhang A, Wang X. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils. FISH & SHELLFISH IMMUNOLOGY 2022; 124:472-479. [PMID: 35483596 DOI: 10.1016/j.fsi.2022.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Granzyme (Gzm) B and perforin, both as cytotoxic proteins, can collaborate to induce the death of target cells as well as the microbes. They were originally discovered in cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and confer the cytotoxic activities of these cells. In the present study, the coding sequences of a granzyme b-like (gcgzmbl) and a perforin-like (gcprfl) genes were cloned from grass carp (Ctenopharyngodon idellus) and their specific antibodies were subsequently prepared and validated. The mRNA and protein expression of these two cytotoxic proteins in grass carp peripheral blood neutrophils was demonstrated by quantitative PCR (qPCR) and immunofluorescence staining, respectively. In the same cell model, expression of gcGzmbl and gcPrfl was stimulated by grass carp interleukin (Il)-2 in a dose- and time-dependent manners and Erk, NF-κB and Stat5 pathways were found to be involved in the regulation of Il-2 on the genes' expression. Additionally, glycolysis was proved to play a role in the stimulation of Il-2 on gcGzmbl and gcPrfl expression in peripheral blood neutrophils. As combating the invading microorganisms is one of the main functions of neutrophils, the roles of gcGzmbl and gcPrfl in the anti-bacterial activities of grass carp peripheral blood neutrophils were explored. Results showed that immunoneutralization of gcGzmbl or gcPrfl significantly attenuated the antimicrobial abilities of the neutrophils enhanced by Il-2. These findings shed a light on the expression, regulation and functions of granzyme B- and perforin-like proteins in fish peripheral blood neutrophils and enrich the understanding of Il-2 function in fish innate immunity.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jiankang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qingqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
6
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
7
|
Ma X, Bi Q, Kong Y, Xu H, Liang M, Mai K, Zhang Y. Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111118. [PMID: 34793954 DOI: 10.1016/j.cbpa.2021.111118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Qiu X, Sun H, Wang D, Ren J, Wang X, Zhang A, Yang K, Zhou H. Stimulus-Specific Expression, Selective Generation and Novel Function of Grass Carp ( Ctenopharyngodon idella) IL-12 Isoforms: New Insights Into the Heterodimeric Cytokines in Teleosts. Front Immunol 2021; 12:734535. [PMID: 34603315 PMCID: PMC8481787 DOI: 10.3389/fimmu.2021.734535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Interleukin-12 (IL-12) is a heterodimeric cytokine composed of a p35 subunit specific to IL-12 and a p40 subunit shared with IL-23. In this study, we unveiled the existence of two p35 paralogues in grass carp (named gcp35a and gcp35b). Notably, gcp35a and gcp35b displayed distinct inducible expression patterns, as poly I:C merely induced the gene expression of gcp35a but not gcp35b, while recombinant grass carp interferon-gamma (rgcIfn-γ) only enhanced the transcription of gcp35b but not gcp35a. Moreover, the signaling mechanisms responsible for the inducible expression of gcp35a and gcp35b mRNA were elucidated. Because of the existence of three grass carp p40 genes (gcp40a, gcp40b and gcp40c) and two p35 paralogues, six gcIl-12 isoforms were predicted by 3D modeling. Results showed that gcp40a and gcp40b but not gcp40c had the potential for forming heterodimers with both gcp35 paralogues via the disulfide bonds. Non-reducing electrophoresis experiments further disclosed that only gcp40b but not gcp40a or gcp40c could form heterodimers with gcp35 to produce secretory heterodimeric gcp35a/gcp40b (gcIl-12AB) and gcp35b/gcp40b (gcIl-12BB), which prompted us to prepare their recombinant proteins. These two recombinant proteins exhibited their extensive regulation on Ifn-γ production in various immune cells. Intriguingly, both gcIl-12 isoforms significantly enhanced the transcription of il-17a/f1 and il-22 in lymphocytes, and their regulation on il-17a/f1 expression was mediated by Stat3/Rorγt signaling, supporting the potential of gcIl-12 isoforms for inducing Th17-like responses. Additionally, stimulatory effects of gcIl-12 isoforms on il-17a/f1 and ifn-γ expression were attenuated by gcTgf-β1 via suppressing the activation of Stat3 signaling, implying that their signaling could be manipulated. In brief, our works provide new insights into the inducible expression pattern, heterodimeric generation and functional novelty of Il-12 isoforms in teleosts.
Collapse
Affiliation(s)
- Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Zhang S, Zhang R, Ma T, Qiu X, Wang X, Zhang A, Zhou H. Identification and functional characterization of tumor necrosis factor receptor 1 (TNFR1) of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 58:24-32. [PMID: 27620818 DOI: 10.1016/j.fsi.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/14/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) exerts its regulatory effects by binding one of two TNF receptors, TNF-α receptor 1 (TNFR1) or TNFR2. In this study, we isolated and identified the cDNA sequence of grass carp TNFR1 (gcTNFR1). Similar to its homologs in other fish species, the putative protein of gcTNFR1 possessed an extracellular region containing three TNF homology domains, a transmembrane region and a cytoplasmic region with a conserved death domain. Consistent with the widespread expression of mammalian TNFR1, gcTNFR1 transcripts ubiquitously expressed in spleen, thymus, liver, heart, gill, intestine, brain and head kidney with the highest expression levels in head kidney. To reveal its inductive expression patterns in inflammatory response, effect of in vivo bacterial infection on gcTNFR1 gene expression was examined, showing a rapid increase of gcTNFR1 expression in head kidney, gill, liver and intestine, which is consistent with the role of TNF-α as an early response gene during immune challenges. To define the functional role of gcTNFR1, recombinant extracellular region of gcTNFR1 (rgcTNFR1) was prepared and used to perform in vitro binding assay, demonstrating its ability to interact with recombinant grass carp TNF-α (rgcTNF-α). Furthermore, to characterize the function of gcTNFR1 in affecting rgcTNF-α actions, the effect of overexpressing gcTNFR1 on rgcTNF-α-induced grass carp IL-1β (gcIL-1β) promoter activity was determined in COS7 cells. Results showed that gcTNFR1 was involved in the regulation of rgcTNF-α on gcIL-1β transcription. Consistently, rgcTNFR1 was effective in attenuating the effect of rgcTNF-α on IL-1β mRNA expression in grass carp head kidney leukocytes, providing evidence for the involvement of TNFR1 in TNF-α signaling in grass carp. These data facilitate a better understanding of TNF-α receptor signaling in grass carp.
Collapse
MESH Headings
- Aeromonas hydrophila/physiology
- Amino Acid Sequence
- Animals
- Carps/classification
- Carps/genetics
- Carps/immunology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/microbiology
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression Regulation
- Gram-Negative Bacterial Infections/genetics
- Gram-Negative Bacterial Infections/immunology
- Gram-Negative Bacterial Infections/microbiology
- Gram-Negative Bacterial Infections/veterinary
- Head Kidney/immunology
- Immunity, Innate/genetics
- Leukocytes/immunology
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Sequence Alignment
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Rui Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Tengyue Ma
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Yang X, Wen C, Gao Y, Qin L, Zhang S, Zhang A, Yang K, Zhou H. Grass carp TGF-β1 impairs IL-1β signaling in the inflammatory responses: Evidence for the potential of TGF-β1 to antagonize inflammation in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:121-127. [PMID: 26826426 DOI: 10.1016/j.dci.2016.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
In the present study, effects of TGF-β1 on IL-1β signaling during inflammatory response were examined in grass carp. In grass carp head kidney leukocytes (HKLs), LPS significantly induced the mRNA expression of grass carp TGF-β1 (gcTGF-β1) and IL-1β, indicating the involvement of TGF-β1 and IL-1β in inflammatory process. Using anti-IL-1β antibody to neutralize the endogenous IL-1β, we found that stimulation of IL-1β mRNA expression by LPS was independent on IL-1β itself. Interestingly, recombinant gcTGF-β1 (rgcTGF-β1) suppressed basal and LPS-stimulated IL-1β mRNA expression in spite of immunoneutralizing endogenous IL-1β or not. Given that IL-1β receptor signaling molecule and natural IL-1β inhibitors are the important regulators in IL-1β signaling and activity, the effect of LPS on these molecules' expression was determined in HKLs. Results showed that LPS significantly enhanced the mRNA levels of IL-1 receptor type I (IL-1RI) and II (IL-1RII), IL-1R accessory protein (IL-1Racp) and novel IL-1 family member (nIL-1F). Moreover, the induction of IL-1RII, IL-1Racp and nIL-1F by LPS was IL-1β-dependent since IL-1β immunoneutralization abolished these inductions, implying the involvement of IL-1β auto-induction in these effects. Consistently, TGF-β1 could block basal IL-1RI and nIL-1F mRNA expression, and LPS-induced IL-1RI, IL-1Racp and nIL-1F mRNA expression, suggesting these molecules as the regulatory sites for TGF-β1 to modulate IL-1β signaling. Subsequent in vivo studies showed that bacterial challenge significantly up-regulated IL-1β mRNA expression with a rapid and transient pattern and TGF-β1 mRNA expression with a relatively time-delayed kinetics in head kidney. These expression patterns coincide with their pro-inflammatory and anti-inflammatory roles, respectively. As expected, rgcTGF-β1 could suppress bacterial-induced IL-1β mRNA expression, strengthening the anti-inflammatory role of TGF-β1 in vivo. Taken together, these results to our knowledge provide the first evidence for inducible TGF-β1 expression in inflammatory process, as well as the induction of inflammatory stimuli on IL-1β expression and signaling. In turn, TGF-β1 suppressed the proinflammatory process in vitro and in vivo presumably via interfering IL-1β expression and signaling in inflammatory response, highlighting the potential of TGF-β1 in the control of inflammation in fish.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiao Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Chao Wen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yajun Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shengnan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
12
|
Dolan BP, Fisher KM, Colvin ME, Benda SE, Peterson JT, Kent ML, Schreck CB. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha. FISH & SHELLFISH IMMUNOLOGY 2016; 48:136-144. [PMID: 26581919 DOI: 10.1016/j.fsi.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biomedical Sciences, 105 Magruder Hall, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97333, USA.
| | - Kathleen M Fisher
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael E Colvin
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Susan E Benda
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Carl B Schreck
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
13
|
Wei H, Yin L, Feng S, Wang X, Yang K, Zhang A, Zhou H. Dual-parallel inhibition of IL-10 and TGF-β1 controls LPS-induced inflammatory response via NF-κB signaling in grass carp monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2015; 44:445-452. [PMID: 25804490 DOI: 10.1016/j.fsi.2015.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
In fish, the knowledge on the regulation of inflammatory responses is limited. In the present study, LPS rapidly increased the mRNA levels of grass carp pro-inflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxides synthase (iNOS) and IL-8 in monocytes/macrophages, indicating the occurrence of innate inflammatory responses in fish as seen in mammals. Intriguingly, the gene expression and protein secretion of grass carp IL-10 (gcIL-10) and TGF-β1 (gcTGF-β1) were induced by LPS in the same cell model, promoting us to clarify their roles in regulating inflammatory response. Results revealed that grass carp IL-10 polyclonal antibody (anti-gcIL-10 pAb) and grass carp TGF-β1 monoclonal antibody (anti-gcTGF-β1 mAb) could amplify the stimulation of LPS on the mRNA levels of tnfα, il1β, inos and il8, suggesting the inhibitory tone of endogenous IL-10 and TGF-β1 in LPS-challenged immune responses. This notion was further supported by the fact that recombinant grass carp IL-10 (rgcIL-10) and recombinant grass carp TGF-β1 (rgcTGF-β1) attenuated LPS-stimulated tnfα, il1β, inos and il8 gene expression in monocytes/macrophages. Further study revealed that rgcIL-10 and rgcTGF-β1 impaired NF-κB activation by blocking LPS-induced grass carp IκBα (gcIκBα) protein degradation in the cells. In addition, the correlation between gcIL-10 and gcTGF-β1 in this regulation was examined by immunoneutralization, unveiling that anti-gcTGF-β1 mAb and anti-gcIL-10 pAb were unable to alter the inhibitory effects of rgcIL-10 and rgcTGF-β1 on pro-inflammatory factors expression in grass carp monocytes/macrophages, respectively. This dual and parallel effect of gcIL-10 and gcTGF-β1 strengthened their importance in controlling inflammatory responses. Taken together, our findings shed a light on the functional role, regulatory mechanism and relationship of fish IL-10 and TGF-β1 in regulating inflammatory response.
Collapse
Affiliation(s)
- He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
14
|
Yang X, Wei H, Qin L, Zhang S, Wang X, Zhang A, Du L, Zhou H. Reciprocal interaction between fish TGF-β1 and IL-1β is responsible for restraining IL-1β signaling activity in grass carp head kidney leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:197-204. [PMID: 25092146 DOI: 10.1016/j.dci.2014.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
In the present study, we found that recombinant grass carp IL-1β (rgcIL-1β) simultaneously up-regulated grass carp IL-1β (gcIL-1β) and TGF-β1 (gcTGF-β1) expression via NF-κB and MAPK signaling in grass carp head kidney leukocytes (HKLs), promoting us to clarify whether TGF-β1 is an effective antagonist in IL-1β expression and activity. Our results showed that a stimulation of gcIL-1β on its own expression was noted within 6 h, but gcTGF-β1 neutralizing antibody prolonged gcIL-1β autostimulation up to 12 h, indicating a possible inhibitory role of gcTGF-β1 in regulating gcIL-1β effect. This notion was reinforced by the fact that recombinant grass carp TGF-β1 (rgcTGF-β1) could impede rgcIL-1β-induced gcIL-1β gene expression and secretion in a reciprocal manner. Further studies revealed that rgcTGF-β1 was able to attenuate rgcIL-1β-induced mRNA expression of its own receptor signaling molecules and the activation of NF-κB. By contrast, rgcIL-1β significantly amplified rgcTGF-β1-mediated gcTGF-β1 type I receptor (ALK5) expression and Smad2 phosphorylation in the same cell model. Taken together, these data shed light on an intrinsic mechanism for controlling inflammatory response by the reciprocal interaction between TGF-β1 and IL-1β in teleost.
Collapse
Affiliation(s)
- Xiao Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengnan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
16
|
Yang X, Wang S, Du L, Yang K, Wang X, Zhang A, Zhou H. Molecular and functional characterization of IL-1 receptor type 2 in grass carp: a potent inhibitor of IL-1β signaling in head kidney leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:738-745. [PMID: 23999049 DOI: 10.1016/j.dci.2013.08.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
IL-1 receptor type 2 (IL-1R2) is known as one of natural IL-1β singling inhibitors in mammals. However, the functional role of IL-1R2 in fish remains largely unknown. In this study, grass carp (Ctenopharyngodon idellus) IL-1R2 (gcIL-1R2) was identified and functionally characterized. Similar to its fish homologs, the deduced protein of gcIL-1R2 possessed two Ig-like domains in its extracellular region but lacked an intracellular signaling domain. The involvement of gcIL-1R2 in immune response was demonstrated by investigating its expression profiles in head kidney and head kidney leukocytes (HKLs) following in vivo bacterial infection and in vitro LPS treatment, respectively. Moreover, recombinant grass carp IL-1β (rgcIL-1β) was able to stimulate gcIL-1R2 mRNA expression with a rapid kinetics. This stimulation was possibly dependent on p38, JNK, p42/44 and NF-κB pathways in grass carp HKLs, revealing a new regulatory point of IL-1β signaling at receptor level in fish. Furthermore, recombinant protein of the gcIL-1R2 extracellular region (rgcIL-1R2) was demonstrated to interact with rgcIL-1β by using ELISA, elucidating the binding specificity of gcIL-1R2. Importantly, the stimulatory effect of rgcIL-1β on its own mRNA expression was blocked by rgcIL-1R2 in a dose-dependent manner in grass carp HKLs, providing the evidence for a functional role of IL-1R2 in IL-1β signaling in teleost. These findings suggested that teleost IL-1R2 may serve as a local naturally occurring inhibitor involving in IL-1β signaling as seen in mammals.
Collapse
Affiliation(s)
- Xiao Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Functional expression and characterization of grass carp IL-10: An essential mediator of TGF-β1 immune regulation in peripheral blood lymphocytes. Mol Immunol 2013; 53:313-20. [DOI: 10.1016/j.molimm.2012.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/14/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022]
|