1
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Bedoya K, Buetas L, Rozès N, Mas A, Portillo MC. Influence of different stress factors during the elaboration of grape must's pieddecuve on the dynamics of yeast populations during alcoholic fermentation. Food Microbiol 2024; 123:104571. [PMID: 39038885 DOI: 10.1016/j.fm.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
The pieddecuve (PdC) technique involves using a portion of grape must to undergo spontaneous fermentation, which is then used to inoculate a larger volume of must. This allows for promoting autochthonous yeasts present in the must, which can respect the typicality of the resulting wine. However, the real impact of this practice on the yeast population has not been properly evaluated. In this study, we examined the effects of sulphur dioxide (SO2), temperature, ethanol supplementation, and time on the dynamics and selection of yeasts during spontaneous fermentation to be used as PdC. The experimentation was conducted in a synthetic medium and sterile must using a multi-species yeast consortium and in un-inoculated natural grape must. Saccharomyces cerevisiae dominated both the PdC and fermentations inoculated with commercial wine yeast, displaying similar population growth regardless of the tested conditions. However, using 40 mg/L of SO2 and 1% (v/v) ethanol during spontaneous fermentation of Muscat of Alexandria must allowed the non-Saccharomyces to be dominant during the first stages, regardless of the temperature tested. These findings suggest that it is possible to apply the studied parameters to modulate the yeast population during spontaneous fermentation while confirming the effectiveness of the PdC methodology in controlling alcoholic fermentation.
Collapse
Affiliation(s)
- Katherine Bedoya
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Luis Buetas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Nicolas Rozès
- Biotecnologia Microbiana dels Aliments, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Albert Mas
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - M Carmen Portillo
- Biotecnología Enològica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, 43007, Tarragona, Spain.
| |
Collapse
|
3
|
Hu S, Bourgonje AR, Gacesa R, Jansen BH, Björk JR, Bangma A, Hidding IJ, van Dullemen HM, Visschedijk MC, Faber KN, Dijkstra G, Harmsen HJM, Festen EAM, Vich Vila A, Spekhorst LM, Weersma RK. Mucosal host-microbe interactions associate with clinical phenotypes in inflammatory bowel disease. Nat Commun 2024; 15:1470. [PMID: 38368394 PMCID: PMC10874382 DOI: 10.1038/s41467-024-45855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amber Bangma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iwan J Hidding
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lieke M Spekhorst
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Papadopoulou E, Bekris F, Vasileiadis S, Krokida A, Rouvali T, Veskoukis AS, Liadaki K, Kouretas D, Karpouzas DG. Vineyard-mediated factors are still operative in spontaneous and commercial fermentations shaping the vinification microbial community and affecting the antioxidant and anticancer properties of wines. Food Res Int 2023; 173:113359. [PMID: 37803700 DOI: 10.1016/j.foodres.2023.113359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
The grapevine and vinification microbiota have a strong influence on the characteristics of the produced wine. Currently we have a good understanding of the role of vineyard-associated factors, like cultivar, vintage and terroir in shaping the grapevine microbiota. Notwithstanding, their endurance along the vinification process remains unknown. Thus, the main objective of our study was to determine how these factors influence (a) microbial succession during fermentation (i.e., bacterial and fungal) and (b) the antioxidant, antimutagenic and anticancer potential of the produced wines. These were evaluated under different vinification strategies (i.e., spontaneous V1, spontaneous with preservatives V2, commercial V3), employed at near full-scale level by local wineries, for two cultivars (Roditis and Sideritis), two terroir types, and two vintages. Cultivar and vintage were strong and persistent determinants of the vinification microbiota, unlike terroir whose effect became weaker from the vineyard, and early fermentation stages, where non-Saccharomyces yeasts, filamentous fungi (i.e., Aureobasidium, Cladosporium, Lachancea, Alternaria, Aspergillus, Torulaspora) and acetic acid bacteria (AAB) (Gluconobacter, Acetobacter, Komagataeibacter) dominated, to late fermentation stages where Saccharomyces and Oenococcus become prevalent. Besides vineyard-mediated factors, the vinification process employed was the strongest determinant of the fungal community compared to the bacterial community were effects varied per cultivar. Vintage and vinification type were the strongest determinants of the antioxidant, antimutagenic and anticancer potential of the produced wines. Further analysis identified significant positive correlations between members of the vinification microbiota like the yeasts Torulaspora debrueckii and Lachancea quebecensis with the anticancer and the antioxidant properties of wines in both cultivars. These findings could be exploited towards a microbiota-modulated vinification process to produce high-quality wines with desirable properties and enhanced regional identity.
Collapse
Affiliation(s)
- Elena Papadopoulou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, 41500 Viopolis - Larissa, Greece
| | - Fotiοs Bekris
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, 41500 Viopolis - Larissa, Greece
| | - Sotirios Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, 41500 Viopolis - Larissa, Greece
| | | | | | - Aristidis S Veskoukis
- University of Thessaly, Department of Nutrition and Dietetics, 42132 Trikala, Greece
| | - Kalliopi Liadaki
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, 41500 Viopolis - Larissa, Greece
| | - Demetrios Kouretas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Animal Physiology, 41500 Viopolis - Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, 41500 Viopolis - Larissa, Greece.
| |
Collapse
|
5
|
Khan KA, Ganeshprasad DN, Sachin HR, Shouche YS, Ghramh HA, Sneharani AH. Gut microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Front Vet Sci 2023; 10:1149876. [PMID: 37252382 PMCID: PMC10213700 DOI: 10.3389/fvets.2023.1149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Honey bee gut microbiota have an important role in host health, nutrition, host-symbiont interaction, and interaction behavior with the surrounding environment. Recent discoveries of strain-level variation, characteristics of protective and nutritional capabilities, and reports of eco-physiological significance to the microbial community have emphasized the importance of honey bee gut microbiota. Many regions of Asia and Africa are inhabited by the dwarf honey bee, Apis florea. Studying its microflora and potential for pollination is therefore of foremost importance. Methods In the present investigation, we aimed to explore the gut bacteriobiome composition of two distinct honey bee species, Apis florea and Apis cerana indica using high throughput sequencing. Functional predictions of bee gut bacterial communities using PICRUSt2 was carried out. Results and discussion The phylum Proteobacteria dominated the bacterial community in both A. cerana indica (50.1%) and A. florea (86.7%), followed by Firmicutes (26.29 and 12.81%), Bacteroidetes (23.19 and 0.04%) and Actinobacteria (0.4 and 0.02%) respectively. The gut bacteria of A. cerana indica was more diverse than that of A. florea. The observed variations in bacterial genomic diversity among these critical pollinator species may have been influenced by the apiary management techniques, ecological adaptation factors or habitat size. These variations can have a significant effect in understanding host-symbiont interactions and functioning of gut microbiota highlighting the importance of metagenomic survey in understanding microbial community ecology and evolution. This is the first comparative study on variation in bacterial diversity between two Asian honey bees.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Applied College, Mahala Campus, King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - D. N. Ganeshprasad
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - H. R. Sachin
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - A. H. Sneharani
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| |
Collapse
|
6
|
Ohwofasa A, Dhami M, Tian B, Winefield C, On SL. Environmental influences on microbial community development during organic pinot noir wine production in outdoor and indoor fermentation conditions. Heliyon 2023; 9:e15658. [PMID: 37206017 PMCID: PMC10189187 DOI: 10.1016/j.heliyon.2023.e15658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
The role of microbial diversity in influencing the organoleptic properties of wine and other fermented products is well est ablished, and understanding microbial dynamics within fermentation processes can be critical for quality assurance and product innovation. This is especially true for winemakers using spontaneous fermentation techniques, where environmental factors may play an important role in consistency of product. Here, we use a metabarcoding approach to investigate the influence of two environmental systems used by an organic winemaker to produce wines; vineyard (outdoors) and winery (indoors) to the bacterial and fungal communities throughout the duration of a spontaneous fermentation of the same batch of Pinot Noir grapes. Bacterial (RANOSIM = 0.5814, p = 0.0001) and fungal (RANOSIM = 0.603, p = 0.0001) diversity differed significantly across the fermentation stages in both systems. Members of the Hyphomicrobium genus were found in winemaking for the first time, as a bacterial genus that can survive alcoholic fermentation. Our results also indicate that Torulaspora delbrueckii and Fructobacillus species might be sensitive to environmental systems. These results clearly reflect the substantial influence that environmental conditions exert on microbial populations at every point in the process of transforming grape juice to wine via fermentation, and offer new insights into the challenges and opportunities for wine production in an ever-changing global climate.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen L.W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
- Corresponding author. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
7
|
Santiago JM, Kadyampakeni DM, Fox JP, Wright AL, Guzmán SM, Ferrarezi RS, Rossi L. Grapefruit Root and Rhizosphere Responses to Varying Planting Densities, Fertilizer Concentrations and Application Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1659. [PMID: 37111884 PMCID: PMC10144146 DOI: 10.3390/plants12081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Huanglongbing (HLB) disease has caused a severe decline in citrus production globally over the past decade. There is a need for improved nutrient regimens to better manage the productivity of HLB-affected trees, as current guidelines are based on healthy trees. The aim of this study was to evaluate the effects of different fertilizer application methods and rates with different planting densities on HLB-affected citrus root and soil health. Plant material consisted of 'Ray Ruby' (Citrus × paradisi) grapefruit trees grafted on 'Kuharske' citrange (Citrus × sinensis × Citrus trifoliata). The study consisted of 4 foliar fertilizer treatments, which included 0×, 1.5×, 3× and 6× the University of Florida Institute of Food and Agriculture (UF/IFAS) recommended guidelines for B, Mn and Zn. Additionally, 2 ground-applied fertilizer treatments were used, specifically controlled-release fertilizer (CRF1): 12-3-14 + B, Fe, Mn and Zn micronutrients at 1× UF/IFAS recommendation, and (CRF2): 12-3-14 + 2× Mg + 3× B, Fe, Mn and Zn micronutrients, with micronutrients applied as sulfur-coated products. The planting densities implemented were low (300 trees ha-1), medium (440 trees ha-1) and high (975 trees ha-1). The CRF fertilizer resulted in greater soil nutrient concentrations through all of the time sampling points, with significant differences in soil Zn and Mn. Grapefruit treated with ground-applied CRF2 and 3× foliar fertilizers resulted in the greatest bacterial alpha and beta diversity in the rhizosphere. Significantly greater abundances of Rhizobiales and Vicinamibacterales were found in the grapefruit rhizosphere of trees treated with 0× UF/IFAS foliar fertilizer compared to higher doses of foliar fertilizers.
Collapse
Affiliation(s)
- John M. Santiago
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Davie M. Kadyampakeni
- Citrus Research and Education Center, Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - John-Paul Fox
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Alan L. Wright
- Indian River Research and Education Center, Soil, Water and Ecosystem Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Sandra M. Guzmán
- Indian River Research and Education Center, Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | | | - Lorenzo Rossi
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| |
Collapse
|
8
|
Ito K, Niwa R, Yamagishi Y, Kobayashi K, Tsuchida Y, Hoshino G, Nakagawa T, Watanabe T. A unique case in which Kimoto-style fermentation was completed with Leuconostoc as the dominant genus without transitioning to Lactobacillus. J Biosci Bioeng 2023; 135:451-457. [PMID: 37003936 DOI: 10.1016/j.jbiosc.2023.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
The Kimoto-style fermentation starter is a traditional preparation method of sake brewing. In this process, specific microbial transition patterns have been observed within nitrate-reducing bacteria and lactic acid bacteria during the production process of the fermentation starter. We have characterized phylogenetic compositions and diversity of the bacterial community in a sake brewery performing the Kimoto-style fermentation. Comparing the time-series changes with other sake breweries previously reported, we found a novel type of Kimoto-style fermentation in which the microbial transition differed significantly from other breweries during the fermentation step. Specifically, the lactic acid bacteria, Leuconostoc spp. was a predominant species in the late stage in the preparation process of fermentation starter, on the other hand, Lactobacillus spp., which plays a pivotal role in other breweries, was not detected in this analysis. The discovery of this new variation of microbiome transition in Kimoto-style fermentation has further deepened our understanding of the diversity of sake brewing.
Collapse
Affiliation(s)
- Kohei Ito
- BIOTA Inc., Neribei-cho, Kanda, Chiyoda-ku, Tokyo 101-0022, Japan.
| | - Ryo Niwa
- BIOTA Inc., Neribei-cho, Kanda, Chiyoda-ku, Tokyo 101-0022, Japan; Graduate School of Medicine, Kyoto University, Yoshidahon-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
| | - Yuta Yamagishi
- BIOTA Inc., Neribei-cho, Kanda, Chiyoda-ku, Tokyo 101-0022, Japan; Department of Life Science, College of Science, Rikkyo University, Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Ken Kobayashi
- BIOTA Inc., Neribei-cho, Kanda, Chiyoda-ku, Tokyo 101-0022, Japan
| | - Yuji Tsuchida
- Tsuchida Sake Brewery, Kawaba-mura, Tone-gun, Gunma 378-0102, Japan
| | - Genki Hoshino
- Tsuchida Sake Brewery, Kawaba-mura, Tone-gun, Gunma 378-0102, Japan
| | - Tomoyuki Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, Yanagito, Gifu-shi, Gifu 501-1193, Japan
| | - Takashi Watanabe
- Gunma Industrial Technology Center, Kamesato-machi, Maebashi-shi, Gunma 379-2147, Japan
| |
Collapse
|
9
|
Epiphitic Microbiome of Alvarinho Wine Grapes from Different Geographic Regions in Portugal. BIOLOGY 2023; 12:biology12020146. [PMID: 36829425 PMCID: PMC9952175 DOI: 10.3390/biology12020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Geographic location and, particularly, soil and climate exert influence on the typicality of a wine from a specific region, which is often justified by the terroir, and these factors also influence the epiphytic flora associated with the surface of the grape berries. In the present study, the microbiome associated with the surface of berries obtained from ten vineyards of the Alvarinho variety located in different geographical locations in mainland Portugal was determined and analyzed. The removal of microbial flora from the surface of the berries was carried out by washing and sonication, after which the extraction and purification of the respective DNA was carried out. High-throughput short amplicon sequencing of the fungal ITS region and the bacterial 16S region was performed, allowing for the determination of the microbial consortium associated with Alvarinho wine grapes. Analysis of α-diversity demonstrated that parcels from the Monção and Melgaço sub-region present a significantly (p < 0.05) lower fungal diversity and species richness when compared to the plots analyzed from other regions/sub-regions. The ubiquitous presence of Metschnikowia spp., a yeast with enologic potential interest in all parcels from Monção and Melgaço, was also observed.
Collapse
|
10
|
Martiniuk JT, Hamilton J, Dodsworth T, Measday V. Grape-associated fungal community patterns persist from berry to wine on a fine geographical scale. FEMS Yeast Res 2023; 23:6967134. [PMID: 36592956 PMCID: PMC9876423 DOI: 10.1093/femsyr/foac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Wine grape fungal community composition is influenced by abiotic factors including geography and vintage. Compositional differences may correlate with different wine metabolite composition and sensory profiles, suggesting a microbial role in the shaping of a wine's terroir, or regional character. While grape and wine-associated fungal community composition has been studied extensively at a regional and sub-regional scale, it has not been explored in detail on fine geographical scales over multiple harvests. Over two years, we examined the fungal communities on Vitis Vinifera cv. Pinot noir grape berry surfaces, in crushed grapes, and in lab spontaneous fermentations from three vineyards within a < 1 km radius in Canada's Okanagan Valley wine region. We also evaluated the effect of winery environment exposure on fungal community composition by sampling grapes crushed and fermented in the winery at commercial scale. Spatiotemporal community structure was evident among grape berry surface, crushed grape and fermentation samples, with each vineyard exhibiting a distinct fungal community signature. Crushed grape fungal populations were richer in fermentative yeast species compared to grape berry surface fungal populations. Our study suggests that, as on a regional level, fungal populations may contribute to fine-scale -terroir,' with significant implications for single-vineyard wines.
Collapse
Affiliation(s)
- Jonathan T Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thomas Dodsworth
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vivien Measday
- Corresponding author: Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada. E-mail:
| |
Collapse
|
11
|
Bai C, Gao G, Tang X, Shao K, Hu Y, Xia J, Liu J. Contrasting diversity patterns and community assembly mechanisms of bacterioplankton among different aquatic habitats in Lake Taihu, a large eutrophic shallow lake in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120342. [PMID: 36240961 DOI: 10.1016/j.envpol.2022.120342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication leads to the degradation of lake habitat types from macrophyte-dominated habitats (MDH) to algae-dominated habitats (ADH), which is a common environmental problem faced by many lakes. However, the variations in diversities and community assembly processes of bacterioplankton in the process of lake eutrophication have not been thoroughly elucidated. Here, we contrasted bacterial diversity patterns and processes of community assembly among ADH, MDH, and other habitats (OH) of Lake Taihu, a large shallow eutrophic lake in China with strong wind-induced disturbances. We found that the bacterial diversity patterns and potential functions between ADH and MDH were significantly different. Moreover, the contributions of purely environmental variables to the bacterial diversity patterns of all habitat types were much higher than those of spatial variables. However, the relative importance of stochasticity in the bacterial community assembly of each habitat type was much higher than that of determinism. Intriguingly, 'undominated' stochastic processes shape the diversity patterns of bacterioplankton in ADH, MDH, and OH of Lake Taihu. These findings demonstrate that the degradation of lake habitats caused by eutrophication can profoundly change the diversity and potential function patterns of the bacterioplankton community in lake ecosystems. Although the distinct diversity patterns of the bacterioplankton among the different aquatic habitats in Lake Taihu can be affected by deterministic processes (local environmental variables), they were dominated by stochastic processes (drift). Our study confirms that strong, disordered, wind-induced disturbances in shallow lakes could lead to strong hydrologic mixing, thus increasing the randomness of bacterial community assembly in each habitat.
Collapse
Affiliation(s)
- Chengrong Bai
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, PR China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, PR China
| | - Jingtao Liu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256600, PR China
| |
Collapse
|
12
|
Extracellular DNAses Facilitate Antagonism and Coexistence in Bacterial Competitor-Sensing Interference Competition. Appl Environ Microbiol 2022; 88:e0143722. [PMID: 36374088 PMCID: PMC9746292 DOI: 10.1128/aem.01437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last 4 decades, the rate of discovery of novel antibiotics has decreased drastically, ending the era of fortuitous antibiotic discovery. A better understanding of the biology of bacteriogenic toxins potentially helps to prospect for new antibiotics. To initiate this line of research, we quantified antagonists from two different sites at two different depths of soil and found the relative number of antagonists to correlate with the bacterial load and carbon-to-nitrogen (C/N) ratio of the soil. Consecutive studies show the importance of antagonist interactions between soil isolates and the lack of a predicted role for nutrient availability and, therefore, support an in situ role in offense for the production of toxins in environments of high bacterial loads. In addition, the production of extracellular DNAses (exDNases) and the ability to antagonize correlate strongly. Using an in domum-developed probabilistic cellular automaton model, we studied the consequences of exDNase production for both coexistence and diversity within a dynamic equilibrium. Our model demonstrates that exDNase-producing isolates involved in amensal interactions act to stabilize a community, leading to increased coexistence within a competitor-sensing interference competition environment. Our results signify that the environmental and biological cues that control natural-product formation are important for understanding antagonism and community dynamics, structure, and function, permitting the development of directed searches and the use of these insights for drug discovery. IMPORTANCE Ever since the first observation of antagonism by microorganisms by Ernest Duchesne (E. Duchesne, Contribution à l'étude de la concurrence vitale chez les microorganisms. Antagonism entre les moisissures et les microbes, These pour obtenir le grade de docteur en medicine, Lyon, France, 1897), many scientists successfully identified and applied bacteriogenic bioactive compounds from soils to cure infection. Unfortunately, overuse of antibiotics and the emergence of clinical antibiotic resistance, combined with a lack of discovery, have hampered our ability to combat infections. A deeper understanding of the biology of toxins and the cues leading to their production may elevate the success rate of the much-needed discovery of novel antibiotics. We initiated this line of research and discovered that bacterial reciprocal antagonism is associated with exDNase production in isolates from environments with high bacterial loads, while diversity may increase in environments of lower bacterial loads.
Collapse
|
13
|
Tian J, Yin X, Zhang J. Effects of wilting during a cloudy day and storage temperature on the fermentation quality and microbial community of Napier grass silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4384-4391. [PMID: 35075653 DOI: 10.1002/jsfa.11792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wilting affects the chemical compositions and epiphytic microorganisms of grasses to some extent, thereby influencing the fermentation characteristics of silage. The present study investigated the effects of wilting during a cloudy day and ensiling temperature (20, 30 and 40 °C) on the fermentation of Napier grass (Pennisetum purpureum). RESULTS Wilting during a cloudy day significantly decreased the water-soluble carbohydrate content (P < 0.05) and significantly increased pH, counts of lactic acid bacteria and aerobic bacteria in grass (P < 0.05). Wilting increased the relative abundance of the Enterobacteriaceae family, as well as genera such as Acinetobacter, Pantoea and Lactococcus, and also decreased that of Sphingomonas and Methylobacterium, in fresh grass. Although ensiling increased the relative abundance of Lactobacillus, a Enterobacteriaceae genus was the dominant microorganism in Napier grass before ensiling and after ensiling. Wilting increased pH, acetic acid, butyric acid and NH3 -N contents, and also reduced the lactic acid content, of Napier grass silage. Additionally, the fermentation quality of silages at 30 °C was poorer, irrespective of wilting, as indicated by high pH, high butyric acid and NH3 -N contents, high relative abundance of Clostridium and Bifidobacterium, and a low lactic acid content. Ensiling at 40 °C enhanced lactic acid bacteria fermentation and also suppressed clostridial fermentation and the growth of microorganisms in silages. CONCLUSION Napier grass should be ensiled immediately after being harvested during a cloudy day and ensiling at 30 °C should be avoided to prevent poor fermentation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Tian
- South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Xiang Yin
- South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Jianguo Zhang
- South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
14
|
Bourgonje AR, Roo-Brand G, Lisotto P, Sadaghian Sadabad M, Reitsema RD, de Goffau MC, Faber KN, Dijkstra G, Harmsen HJM. Patients With Inflammatory Bowel Disease Show IgG Immune Responses Towards Specific Intestinal Bacterial Genera. Front Immunol 2022; 13:842911. [PMID: 35693832 PMCID: PMC9174456 DOI: 10.3389/fimmu.2022.842911] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Inflammatory bowel disease (IBD) is characterized by a disturbed gut microbiota composition. Patients with IBD have both elevated mucosal and serum levels of IgG-antibodies directed against bacterial antigens, including flagellins. In this study, we aimed to determine to which intestinal bacteria the humoral immune response is directed to in patients with IBD. Methods Fecal and serum samples were collected from patients with IBD (n=55) and age- and sex-matched healthy controls (n=55). Fecal samples were incubated with autologous serum and IgG-coated fractions were isolated by magnetic-activated cell sorting (MACS) and its efficiency was assessed by flow cytometry. The bacterial composition of both untreated and IgG-coated fecal samples was determined by 16S rRNA-gene Illumina sequencing. Results IgG-coated fecal samples were characterized by significantly lower microbial diversity compared to the fecal microbiome. Both in patients with IBD and controls, serum IgG responses were primarily directed to Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Veillonella and Enterobacteriaceae, as well as against specific Lachnospiraceae bacteria, including Coprococcus and Dorea (all P<0.001), and to Ruminococcus gnavus-like bacteria (P<0.05). In contrast, serological IgG responses against typical commensal, anaerobic and colonic microbial species were rather low, e.g. to the Lachnospiraceae members Roseburia and Blautia, to Faecalibacterium, as well as to Bacteroides. Patients with IBD showed more IgG-coating of Streptococcus, Lactobacillus, and Lactococcus bacteria compared to healthy controls (all P<0.05). No differences in IgG-coated bacterial fractions were observed between Crohn's disease and ulcerative colitis, between active or non-active disease, nor between different disease locations. Conclusion The IgG immune response is specifically targeted at distinct intestinal bacterial genera that are typically associated with the small intestinal microbiota, whereas responses against more colonic-type commensals are lower, which was particularly the case for patients with IBD. These findings may be indicative of a strong immunological exposure to potentially pathogenic intestinal bacteria in concordance with relative immune tolerance against commensal bacteria.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Geesje Roo-Brand
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paola Lisotto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mehdi Sadaghian Sadabad
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rosanne D Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marcus C de Goffau
- Department of Vascular Medicine, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands.,Wellcome Genome Campus, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Wang M, Wang J, Chen J, Philipp C, Zhao X, Wang J, Liu Y, Suo R. Effect of Commercial Yeast Starter Cultures on Cabernet Sauvignon Wine Aroma Compounds and Microbiota. Foods 2022; 11:foods11121725. [PMID: 35741923 PMCID: PMC9222704 DOI: 10.3390/foods11121725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Commercial Saccharomyces cerevisiae plays an important role in the traditional winemaking industry. In this study, the correlation of microbial community and aroma compound in the process of alcohol fermentation of Cabernet Sauvignon by four different commercial starters was investigated. The results showed that there was no significant difference in the fermentation parameters of the four starters, but there were differences in microbial diversity among the different starters. The wine samples fermented by CEC01 had higher microbial abundance. GC-MS detected a total of 58 aromatic compounds from the fermentation process by the experimental yeasts. There were 25 compounds in the F6d variant, which was higher than in other samples. The PCA score plot showed that 796 and F15 yeast-fermented wines had similar aromatic characteristic compositions. According to partial least squares (PLS, VIP > 1.0) analysis and Spearman’s correlation analysis, 11, 8, 8 and 10 microbial genera were identified as core microorganisms in the fermentation of 796, CEC01, CECA and F15 starter, respectively. Among them, Leuconostoc, Lactobacillus, Sphingomonas and Pseudomonas played an important role in the formation of aroma compounds such as Ethyl caprylate, Ethyl caprate and Ethyl-9-decenoate. These results can help us to have a better understanding of the effects of microorganisms on wine aroma and provide a theoretical basis for improving the flavor quality of Cabernet Sauvignon wine.
Collapse
Affiliation(s)
- Meiqi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiarong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Jiawei Chen
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Christian Philipp
- Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau, Wienerstraße 74, 3400 Klosterneuburg, Austria;
| | - Xiaoning Zhao
- China Great Wall Wine Co., Ltd., Zhangjiakou 075400, China; (J.C.); (X.Z.)
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
- Correspondence: ; Tel.: +86-13503129927
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (M.W.); (J.W.); (J.W.); (R.S.)
| |
Collapse
|
16
|
Chaïb A, Claisse O, Delbarre E, Bosviel J, Le Marrec C. Assessment of the lysogenic status in the lactic acid bacterium O. oeni during the spontaneous malolactic fermentation of red wines. Food Microbiol 2022; 103:103947. [DOI: 10.1016/j.fm.2021.103947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 11/14/2021] [Indexed: 11/04/2022]
|
17
|
Ganeshprasad DN, Lone JK, Jani K, Shouche YS, Khan KA, Sayed S, Shukry M, Dar SA, Mushtaq M, Sneharani AH. Gut Bacterial Flora of Open Nested Honeybee, Apis florea. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.837381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Honeybees are eusocial insects with close interaction with their surrounding environment. Gut microbiota in honeybees play a significant role in host health, biology, and interaction behavior with the surrounding environment. Apis florea, a wild bee, is the most primitive among all honeybees and is indigenous to the Indian subcontinent. Previous reports on reared honeybee species provide information on the gut microbiome. No such studies are reported on the gut microbiota of the wild honeybee species. This study aimed at studying the gut microbiome of the wild honeybee species, A. florea. The study reports the analysis and the identification of gut bacteria in the wild honeybee species, A. florea, employing culture-based and culture-independent methods. Cultured bacteria were identified and characterized by MALDI-TOF MS and 16S rRNA sequencing. A comprehensive analysis and identification of non-culturable bacteria were performed by 16S rRNA amplicon next-generation sequencing. This approach splits gut bacteria into four bacterial phyla, four families, and 10 genera in major. The dominant taxa identified in A. florea belonged to the family Enterobacteriaceae (79.47%), Lactobacillaceae (12.75%), Oxalobacteraceae (7.45%), and Nocardiaceae (0.13%). The prevailing bacteria belonged to Enterobacter, Lactobacillus, Escherichia-Shigella, Massilia, Klebsiella, Citrobacter, Pantoea, Serratia, Rhodococcus, and Morganella genera, belonging to phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. This study observed the occurrence of a few bacteria that are not previously reported for their occurrence in other species of the Apis genus, making this investigation highly relevant with regard to the bee microbiome.
Collapse
|
18
|
Carbonero-Pacheco J, Moreno-García J, Moreno J, García-Martínez T, Mauricio JC. Revealing the Yeast Diversity of the Flor Biofilm Microbiota in Sherry Wines Through Internal Transcribed Spacer-Metabarcoding and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. Front Microbiol 2022; 12:825756. [PMID: 35222316 PMCID: PMC8864117 DOI: 10.3389/fmicb.2021.825756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Flor yeast velum is a biofilm formed by certain yeast strains that distinguishes biologically aged wines such as Sherry wine from southern Spain from others. Although Saccharomyces cerevisiae is the most common species, 5.8 S-internal transcribed spacer (ITS) restriction fragment length polymorphism analyses have revealed the existence of non-Saccharomyces species. In order to uncover the flor microbiota diversity at a species level, we used ITS (internal transcribed spacer 1)-metabarcoding and matrix-assisted laser desorption/Ionization time of flight mass spectrometry techniques. Further, to enhance identification effectiveness, we performed an additional incubation stage in 1:1 wine:yeast extract peptone dextrose (YPD) before identification. Six species were identified: S. cerevisiae, Pichia manshurica, Pichia membranifaciens, Wickerhamomyces anomalus, Candida guillermondii, and Trichosporon asahii, two of which were discovered for the first time (C. guillermondii and Trichosporon ashaii) in Sherry wines. We analyzed wines where non-Saccharomyces yeasts were present or absent to see any potential link between the microbiota and the chemical profile. Only 2 significant volatile chemicals (out of 13 quantified), ethanol and ethyl lactate, and 2 enological parameters (out of 6 quantified), such as pH and titratable acidity, were found to differ in long-aged wines. Although results show a low impact where the non-Saccharomyces yeasts are present, these yeasts isolated from harsh environments (high ethanol and low nutrient availability) could have a potential industrial interest in fields such as food microbiology and biofuel production.
Collapse
Affiliation(s)
- Juan Carbonero-Pacheco
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
19
|
Rivas GA, Valdés La Hens D, Delfederico L, Olguin N, Bravo-Ferrada BM, Tymczyszyn EE, Semorile L, Brizuela NS. Molecular tools for the analysis of the microbiota involved in malolactic fermentation: from microbial diversity to selection of lactic acid bacteria of enological interest. World J Microbiol Biotechnol 2022; 38:19. [PMID: 34989896 DOI: 10.1007/s11274-021-03205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Winemaking is a complex process involving two successive fermentations: alcoholic fermentation, by yeasts, and malolactic fermentation (MLF), by lactic acid bacteria (LAB). During MLF, LAB can contribute positively to wine flavor through decarboxylation of malic acid with acidity reduction and other numerous enzymatic reactions. However, some microorganisms can have a negative impact on the quality of the wine through processes such as biogenic amine production. For these reasons, monitoring the bacterial community profiles during MLF can predict and control the quality of the final product. In addition, the selection of LAB from a wine-producing area is necessary for the formulation of native malolactic starter cultures well adapted to local winemaking practices and able to enhance the regional wine typicality. In this sense, molecular biology techniques are fundamental tools to decipher the native microbiome involved in MLF and to select bacterial strains with potential to function as starter cultures, given their enological and technological characteristics. In this context, this work reviews the different molecular tools (both culture-dependent and -independent) that can be applied to the study of MLF, either in bacterial isolates or in the microbial community of wine, and of its dynamics during the process.
Collapse
Affiliation(s)
- Gabriel Alejandro Rivas
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Danay Valdés La Hens
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Lucrecia Delfederico
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Nair Olguin
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Bárbara Mercedes Bravo-Ferrada
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Emma Elizabeth Tymczyszyn
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Liliana Semorile
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Natalia Soledad Brizuela
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Microbial diversity of the soil, rhizosphere and wine from an emerging wine-producing region of Argentina. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Kamilari E, Mina M, Karallis C, Tsaltas D. Metataxonomic Analysis of Grape Microbiota During Wine Fermentation Reveals the Distinction of Cyprus Regional terroirs. Front Microbiol 2021; 12:726483. [PMID: 34630353 PMCID: PMC8494061 DOI: 10.3389/fmicb.2021.726483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Wine production in Cyprus has strong cultural ties with the island's tradition, influencing local and foreign consumers' preferences and contributing significantly to Cyprus' economy. A key contributor to wine quality and sensorial characteristics development is the microbiota that colonizes grapes and performs alcoholic fermentation. Still, the microbial patterns of wines produced in different geographic regions (terroir) in Cyprus remain unknown. The present study investigated the microbial diversity of five terroirs in Cyprus, two from the PGI Lemesos region [Kyperounta (PDO Pitsilia) and Koilani (PDO Krasochoria)], and three from the PGI Pafos region [Kathikas (PDO Laona Akamas), Panayia, and Statos (PDO Panayia)], of two grape varieties, Xynisteri and Maratheftiko, using high-throughput amplicon sequencing. Through a longitudinal analysis, we examined the evolution of the bacterial and fungal diversity during spontaneous alcoholic fermentation. Both varieties were characterized by a progressive reduction in their fungal alpha diversity (Shannon index) throughout the process of fermentation. Additionally, the study revealed a distinct separation among different terroirs in total fungal community composition (beta-diversity) for the variety Xynisteri. Also, Kyperounta terroir had a distinct total fungal beta-diversity from the other terroirs for Maratheftiko. Similarly, a significant distinction was demonstrated in total bacterial diversity between the PGI Lemesos region and the PGI Pafos terroirs for grape juice of the variety Xynisteri. Pre-fermentation, the fungal diversity for Xynisteri and Maratheftiko was dominated by the genera Hanseniaspora, Aureobasidium, Erysiphe, Aspergillus, Stemphylium, Penicillium, Alternaria, Cladosporium, and Mycosphaerella. During and post-fermentation, the species Hanseniaspora nectarophila, Saccharomyces cerevisiae, Hanseniaspora guilliermondii, and Aureobasidium pullulans, became the predominant in most must samples. Regarding the bacterial diversity, Lactobacillus and Streptococcus were the predominant genera for both grape varieties in all stages of fermentation. During fermentation, an increase was observed in the relative abundance of some bacteria, such as Acetobacter, Gluconobacter, and Oenococcus oeni. Finally, the study revealed microbial biomarkers with statistically significant higher relative representation, associated with each geographic region and each grape variety, during the different stages of fermentation. The present study's findings provide an additional linkage between the grape microbial community and the wine terroir.
Collapse
Affiliation(s)
- Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Minas Mina
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
- Kyperounda Winery, P. Photiades Group, Nicosia, Cyprus
| | | | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
22
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
23
|
Otten AT, Bourgonje AR, Peters V, Alizadeh BZ, Dijkstra G, Harmsen HJM. Vitamin C Supplementation in Healthy Individuals Leads to Shifts of Bacterial Populations in the Gut-A Pilot Study. Antioxidants (Basel) 2021; 10:antiox10081278. [PMID: 34439526 PMCID: PMC8389205 DOI: 10.3390/antiox10081278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbes are crucial to human health, but microbial composition is often disturbed in a number of human diseases. Accumulating evidence points to nutritional modulation of the gut microbiota as a potentially beneficial therapeutic strategy. Vitamin C (ascorbic acid) may be of particular interest as it has known antioxidant and anti-inflammatory properties. In this study, we investigated whether supplementation with high-dose vitamin C may favourably affect the composition of the gut microbiota. In this pilot study, healthy human participants received 1000 mg vitamin C supplementation daily for two weeks. Gut microbiota composition was analysed before and after intervention by performing faecal 16S rRNA gene sequencing. In total, 14 healthy participants were included. Daily supplementation of high-dose vitamin C led to an increase in the relative abundances of Lachnospiraceae (p < 0.05), whereas decreases were observed for Bacteroidetes (p < 0.01), Enterococci (p < 0.01) and Gemmiger formicilis (p < 0.05). In addition, trends for bacterial shifts were observed for Blautia (increase) and Streptococcus thermophilus (decrease). High-dose vitamin C supplementation for two weeks shows microbiota-modulating effects in healthy individuals, with several beneficial shifts of bacterial populations. This may be relevant as these bacteria have anti-inflammatory properties and strongly associate with gut health.
Collapse
Affiliation(s)
- Antonius T. Otten
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Vera Peters
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (A.T.O.); (A.R.B.); (V.P.); (G.D.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-361-3480
| |
Collapse
|
24
|
Heida FH, Kooi EMW, Wagner J, Nguyen TY, Hulscher JBF, van Zoonen AGJF, Bos AF, Harmsen HJM, de Goffau MC. Weight shapes the intestinal microbiome in preterm infants: results of a prospective observational study. BMC Microbiol 2021; 21:219. [PMID: 34289818 PMCID: PMC8293572 DOI: 10.1186/s12866-021-02279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The intestinal microbiome in preterm infants differs markedly from term infants. It is unclear whether the microbiome develops over time according to infant specific factors. METHODS We analysed (clinical) metadata - to identify the main factors influencing the microbiome composition development - and the first meconium and faecal samples til the 4th week via 16 S rRNA amplican sequencing. RESULTS We included 41 infants (gestational age 25-30 weeks; birth weight 430-990 g. Birth via Caesarean section (CS) was associated with placental insufficiency during pregnancy and lower BW. In meconium samples and in samples from weeks 2 and 3 the abundance of Escherichia and Bacteroides (maternal faecal representatives) were associated with vaginal delivery while Staphylococcus (skin microbiome representative) was associated with CS. Secondly, irrespective of the week of sampling or the mode of birth, a transition was observed as children children gradually increased in weight from a microbiome dominated by Staphylococcus (Bacilli) towards a microbiome dominated by Enterobacteriaceae (Gammaproteobacteria). CONCLUSIONS Our data show that the mode of delivery affects the meconium microbiome composition. They also suggest that the weight of the infant at the time of sampling is a better predictor for the stage of progression of the intestinal microbiome development/maturation than postconceptional age as it less confounded by various infant-specific factors.
Collapse
Affiliation(s)
- Fardou H Heida
- Division of Obstetrics & Gynecology, Isala Klinieken, University of Groningen, Zwolle, the Netherlands. .,Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Elisabeth M W Kooi
- Division of Neonatology Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Josef Wagner
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Australia
| | - Thi-Yen Nguyen
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan B F Hulscher
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne G J F van Zoonen
- Division of Pediatric Surgery Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arend F Bos
- Division of Neonatology Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hermie J M Harmsen
- Division of Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcus C de Goffau
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Parasites and Microboes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
25
|
Zhang Y, Sun L, Zhu R, Zhang S, Liu S, Wang Y, Wu Y, Liao X, Mi J. Absence of Circadian Rhythm in Fecal Microbiota of Laying Hens under Common Light. Animals (Basel) 2021; 11:2065. [PMID: 34359193 PMCID: PMC8300245 DOI: 10.3390/ani11072065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The circadian rhythm of gut microbiota is an important biological rhythm that plays a crucial role in host health. However, few studies have determined the associations between the circadian rhythm and gut microbiota in laying hens. The present experiment investigated the circadian rhythm of fecal microbiota in laying hens. Feces samples were collected from 10 laying hens at nine different time points (06:00-12:00-18:00-00:00-06:00-12:00-18:00-00:00-06:00) to demonstrate the circadian rhythm of fecal microbiota. The results showed that the α and β diversity of the fecal microbiota fluctuated significantly at different time points. Beta nearest taxon index analysis suggested that assembly strategies of the abundant and rare amplicon sequence variant (ASV) sub-communities were different. Abundant ASVs preferred dispersal limitation (weak selection), and rare ASVs were randomly formed due to the "non-dominant" fractions. Highly robust fluctuations of fecal microbiota at the phylum level were found. For example, Firmicutes and Proteobacteria fluctuated inversely to each other, but the total ratio remained in a dynamic balance over 48 h. We identified that temporal dynamic changes had a significant effect on the relative abundance of the important bacteria in the feces microbial community using the random forest algorithm. Eight bacteria, Ruminococcus gnavus, Faecalibacterium, Ruminococcaceae, Enterococcus cecorum, Lachnospiraceae, Clostridium, Clostridiales, and Megamonas, showed significant changes over time. One unexpected finding was the fact that these eight bacteria belong to Firmicutes. The pathways showed significant fluctuation, including xenobiotic biodegradation and metabolism, carbohydrate metabolism, and amino acid metabolism, which were consistent with the metabolic functions of amino acids and carbohydrates from the feed. This study showed that the defecation time may be an important factor in the diversity, proportion, and functions of the feces microbial community. However, there was no circadian rhythm of microbial community assembly confirmed by JTK_Cycle analysis. These results might suggest there was no obvious circadian rhythm of fecal microbiota in laying hens under common light.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Lan Sun
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Run Zhu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shiyu Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Shuo Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yinbao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xindi Liao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiandui Mi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agriculture University, Guangzhou 510642, China; (Y.Z.); (L.S.); (R.Z.); (S.Z.); (S.L.); (Y.W.); (Y.W.)
- Ministry of Agriculture Key Laboratory of Tropical Agricultural Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
26
|
Martos S, Busoms S, Pérez-Martín L, Llugany M, Cabot C, Poschenrieder C. Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-metalliferous Soils. Front Microbiol 2021; 12:639997. [PMID: 34054748 PMCID: PMC8160108 DOI: 10.3389/fmicb.2021.639997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Noccaea brachypetala is a close relative of Noccaea caerulescens, a model plant species used in metal hyperaccumulation studies. In a previous survey in the Catalan Pyrenees, we found two occidental and two oriental N. brachypetala populations growing on non-metalliferous soils, with accumulated high concentrations of Cd and Zn. Our hypothesis was that the microbiome companion of the plant roots may influence the ability of these plants to absorb metals. We performed high-throughput sequencing of the bacterial and fungal communities in the rhizosphere soil and rhizoplane fractions. The rhizobiomes and shoot ionomes of N. brachypetala plants were analyzed along with those from other non-hyperaccumulator Brassicaceae species found at the same sampling locations. The analyses revealed that microbiome richness and relative abundance tended to increase in N. brachypetala plants compared to non-hyperaccumulator species, regardless of plant location. We confirmed that the root compartment is a key factor in describing the community composition linked to the cohabiting Brassicaceae species, and the rhizoplane fraction contained the specific and rare taxa associated with each species. N. brachypetala plants harbored a similar relative abundance of fungi compared to the other plant hosts, but there was a notable reduction in some specific taxa. Additionally, we observed an enrichment in the hyperaccumulator rhizoplane of previously described metal-tolerant bacteria and bacteria involved in nitrogen cycling. The bacteria involved in the nitrogen cycle could contribute indirectly to the hyperaccumulator phenotype by improving soil quality and fertility. Our results indicate that N. brachypetala captures a particular prokaryotic community from the soil. This particular prokaryotic community may benefit the extraction of metal ions and/or improve plant nutrition. Our research identified satellite groups associated with the root niche of a hyperaccumulator plant that may assist in improving biological strategies in heavy metal remediation.
Collapse
Affiliation(s)
- Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sílvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Catalina Cabot
- Department of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
27
|
Vyviurska O, Koljančić N, Thai HA, Gorovenko R, Špánik I. Classification of Botrytized Wines Based on Producing Technology Using Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography. Foods 2021; 10:foods10040876. [PMID: 33923559 PMCID: PMC8074103 DOI: 10.3390/foods10040876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
The enantiomeric ratio of chiral compounds is known as a useful tool to estimate wine quality as well as observe an influence of wine-producing technology. The incorporation of flow-modulated comprehensive two-dimensional gas chromatography in this type of analysis provides a possibility to improve the quality of results due to the enhancement of separation capacity and resolution. In this study, flow-modulated comprehensive two-dimensional gas chromatography was incorporated in enantioselective analysis to determine the influence of winemaking technology on specific features of botrytized wines. The samples included Tokaj essences (high-sugar wines), Tokaj botrytized wines and varietal wines (Furmint, Muscat Lunel, Lipovina) and wines maturated on grape peels. The obtained data was processed with hierarchic cluster analysis to reveal variations in composition and assess classification ability for botrytized wines. A significant difference between the samples was observed for the enantiomeric distribution of ethyl lactate and presence of monoterpene alcohols. The varietal wines were successfully separated from the other types, which showed more similar results and could be divided with additional parameters. We observed a correlation between the botrytized wines and the varietal wines fermented with grape skins. As to the essences produced from juice of botrytized grapes, the results were quite similar to those of the botrytized wines, even though monoterpenes were not detected in the extracts.
Collapse
|
28
|
Griggs RG, Steenwerth KL, Mills DA, Cantu D, Bokulich NA. Sources and Assembly of Microbial Communities in Vineyards as a Functional Component of Winegrowing. Front Microbiol 2021; 12:673810. [PMID: 33927711 PMCID: PMC8076609 DOI: 10.3389/fmicb.2021.673810] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Microbiomes are integral to viticulture and winemaking – collectively termed winegrowing – where diverse fungi and bacteria can exert positive and negative effects on grape health and wine quality. Wine is a fermented natural product, and the vineyard serves as a key point of entry for quality-modulating microbiota, particularly in wine fermentations that are conducted without the addition of exogenous yeasts. Thus, the sources and persistence of wine-relevant microbiota in vineyards critically impact its quality. Site-specific variations in microbiota within and between vineyards may contribute to regional wine characteristics. This includes distinctions in microbiomes and microbiota at the strain level, which can contribute to wine flavor and aroma, supporting the role of microbes in the accepted notion of terroir as a biological phenomenon. Little is known about the factors driving microbial biodiversity within and between vineyards, or those that influence annual assembly of the fruit microbiome. Fruit is a seasonally ephemeral, yet annually recurrent product of vineyards, and as such, understanding the sources of microbiota in vineyards is critical to the assessment of whether or not microbial terroir persists with inter-annual stability, and is a key factor in regional wine character, as stable as the geographic distances between vineyards. This review examines the potential sources and vectors of microbiota within vineyards, general rules governing plant microbiome assembly, and how these factors combine to influence plant-microbe interactions relevant to winemaking.
Collapse
Affiliation(s)
- Reid G Griggs
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Kerri L Steenwerth
- USDA-ARS, Crops Pathology and Genetics Research Unit, Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - David A Mills
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, Davis, CA, United States
| | - Nicholas A Bokulich
- Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Conacher CG, Luyt NA, Naidoo-Blassoples RK, Rossouw D, Setati ME, Bauer FF. The ecology of wine fermentation: a model for the study of complex microbial ecosystems. Appl Microbiol Biotechnol 2021; 105:3027-3043. [PMID: 33834254 DOI: 10.1007/s00253-021-11270-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022]
Abstract
The general interest in microbial ecology has skyrocketed over the past decade, driven by technical advances and by the rapidly increasing appreciation of the fundamental services that these ecosystems provide. In biotechnology, ecosystems have many more functionalities than single species, and, if properly understood and harnessed, will be able to deliver better outcomes for almost all imaginable applications. However, the complexity of microbial ecosystems and of the interactions between species has limited their applicability. In research, next generation sequencing allows accurate mapping of the microbiomes that characterise ecosystems of biotechnological and/or medical relevance. But the gap between mapping and understanding, to be filled by "functional microbiomics", requires the collection and integration of many different layers of complex data sets, from molecular multi-omics to spatial imaging technologies to online ecosystem monitoring tools. Holistically, studying the complexity of most microbial ecosystems, consisting of hundreds of species in specific spatial arrangements, is beyond our current technical capabilities, and simpler model systems with fewer species and reduced spatial complexity are required to establish the fundamental rules of ecosystem functioning. One such ecosystem, the ecosystem responsible for natural alcoholic fermentation, can provide an excellent tool to study evolutionarily relevant interactions between multiple species within a relatively easily controlled environment. This review will critically evaluate the approaches that are currently implemented to dissect the cellular and molecular networks that govern this ecosystem. KEY POINTS: • Evolutionarily isolated fermentation ecosystem can be used as an ecological model. • Experimental toolbox is gearing towards mechanistic understanding of this ecosystem. • Integration of multidisciplinary datasets is key to predictive understanding.
Collapse
Affiliation(s)
- C G Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - N A Luyt
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - R K Naidoo-Blassoples
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - D Rossouw
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - M E Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - F F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa.
| |
Collapse
|
30
|
Shifts in Bacterial Diversity During the Spontaneous Fermentation of Maize Meal as Revealed by Targeted Amplicon Sequencing. Curr Microbiol 2021; 78:1177-1187. [PMID: 33620555 DOI: 10.1007/s00284-021-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Maize meal was allowed to undergo uncontrolled fermentation in the laboratory, in simulation of the traditional method of fermentation as practised in most African households. During the fermentation process, samples were collected daily for 11 days. Physico-chemical analysis of the fermenting slurry and metagenomics analysis of the microbial community using 16S rRNA demonstrated an interrelationship between the changes in the properties of the fermentation environment and the successional interplay of the microbial community. The first 24 h of fermentation at pH of 6.5 was characterised by the proliferation of probiotic Lactobacillus and Bifidobacterium, with their relative abundance being 40.7% and 29.9%, respectively. However, prolonged fermentation and a drop in pH from 5.3 to 3.7 caused a decline and finally an absence of these probiotic bacteria which were replaced by Clostridium spp. with a relative abundance of between 97% and 99% from day 5 to day 11. This study demonstrated that prolonged fermentation of maize meal is not ideally suited for the proliferation of probiotic nutritionally beneficial bacteria.
Collapse
|
31
|
Plant Health and Sound Vibration: Analyzing Implications of the Microbiome in Grape Wine Leaves. Pathogens 2021; 10:pathogens10010063. [PMID: 33445765 PMCID: PMC7828301 DOI: 10.3390/pathogens10010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the plant microbiome is a key for plant health and controlling pathogens. Recent studies have shown that plants are responsive towards natural and synthetic sound vibration (SV) by perception and signal transduction, which resulted in resistance towards plant pathogens. However, whether or not native plant microbiomes respond to SV and the underlying mechanism thereof remains unknown. Within the present study we compared grapevine-associated microbiota that was perpetually exposed to classical music with a non-exposed control group from the same vineyard in Stellenbosch, South Africa. By analyzing the 16S rRNA gene and ITS fragment amplicon libraries we found differences between the core microbiome of SV-exposed leaves and the control group. For several of these different genera, e.g., Bacillus, Kocuria and Sphingomonas, a host-beneficial or pathogen-antagonistic effect has been well studied. Moreover, abundances of taxa identified as potential producers of volatile organic compounds that contribute to sensory characteristics of wines, e.g., Methylobacterium, Sphingomonas, Bacillus and Sporobolomyces roseus, were either increased or even unique within the core music-exposed phyllosphere population. Results show an as yet unexplored avenue for improved plant health and the terroir of wine, which are important for environmentally friendly horticulture and consumer appreciation. Although our findings explain one detail of the long-term positive experience to improve grapevine’s resilience by this unusual but innovative technique, more mechanistic studies are necessary to understand the whole interplay.
Collapse
|
32
|
Kable ME, Riazati N, Kirschke CP, Zhao J, Tepaamorndech S, Huang L. The Znt7-null mutation has sex dependent effects on the gut microbiota and goblet cell population in the mouse colon. PLoS One 2020; 15:e0239681. [PMID: 32991615 PMCID: PMC7523961 DOI: 10.1371/journal.pone.0239681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis of zinc, an essential element for living organisms, is tightly regulated by a family of zinc transporters. The zinc transporter 7, ZnT7, is highly expressed on the membrane of the Golgi complex of intestinal epithelial cells and goblet cells. It has previously been shown that Znt7 knockout leads to zinc deficiency and decreased weight gain in C57BL/6 mice on a defined diet. However, effects within the colon are unknown. Given the expression profile of Znt7, we set out to analyze the changes in mucin density and gut microbial composition in the mouse large intestine induced by Znt7 knockout. We fed a semi-purified diet containing 30 mg Zn/kg to Znt7-/- mice with their heterozygous and wild type littermates and found a sex specific effect on colonic mucin density, goblet cell number, and microbiome composition. In male mice Znt7 knockout led to increased goblet cell number and mucin density but had little effect on gut microbiome composition. However, in female mice Znt7 knockout was associated with decreased goblet cell number and mucin density, with increased proportions of the microbial taxa, Allobaculum, relative to wild type. The gut microbial composition was correlated with mucin density in both sexes. These findings suggest that a sex-specific relationship exists between zinc homeostasis, mucin production and the microbial community composition within the colon.
Collapse
Affiliation(s)
- Mary E. Kable
- Immunity and Disease Prevention Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| | - Niknaz Riazati
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Catherine P. Kirschke
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
| | - Junli Zhao
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Surapun Tepaamorndech
- Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Khlong Luang, Pathum Thani, Thailand
| | - Liping Huang
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- Obesity and Metabolism Research Unit, USDA-ARS, Western Human Nutrition Research Center, Davis, California, United States of America
- * E-mail: (MEK); (LH)
| |
Collapse
|
33
|
Bubeck AM, Preiss L, Jung A, Dörner E, Podlesny D, Kulis M, Maddox C, Arze C, Zörb C, Merkt N, Fricke WF. Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection. Sci Rep 2020; 10:13828. [PMID: 32796896 PMCID: PMC7427798 DOI: 10.1038/s41598-020-70535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its aromatic and qualitative complexity and variation. These properties are partially attributable to the bacterial involvement in the fermentation process. However, the organizational principles and dynamic changes of the bacterial wine microbiota remain poorly understood, especially in the context of red and white wine variations and environmental stress factors. Here, we determined relative and absolute bacterial microbiota compositions from six distinct cultivars during the first week of fermentation by quantitative and qualitative 16S rRNA gene amplification and amplicon sequencing. All wines harboured complex and variable bacterial communities, with Tatumella as the most abundant genus across all batches, but red wines were characterized by higher bacterial diversity and increased relative and absolute abundance of lactic and acetic acid bacteria (LAB/AAB) and bacterial taxa of predicted environmental origin. Microbial diversity was positively correlated with plant-derived DNA concentrations in the wine and Botrytis cinerea infection before harvest. Our findings suggest that exogenous factors, such as procedural differences between red and white wine production and environmental stress on grape integrity, can increase bacterial diversity and specific bacterial taxa in wine, with potential consequences for wine quality and aroma.
Collapse
Affiliation(s)
- Alena M Bubeck
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Lena Preiss
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Anna Jung
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Elisabeth Dörner
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Marija Kulis
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Cynthia Maddox
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Personal Genome Diagnostics, Baltimore, MD, USA
| | - Cesar Arze
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Ring Therapeutics, Cambridge, MA, USA
| | - Christian Zörb
- Department of Plant Quality and Viticulture, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Nikolaus Merkt
- Department of Plant Quality and Viticulture, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany. .,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
The Fungal Microbiome Is an Important Component of Vineyard Ecosystems and Correlates with Regional Distinctiveness of Wine. mSphere 2020; 5:5/4/e00534-20. [PMID: 32817452 PMCID: PMC7426168 DOI: 10.1128/msphere.00534-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The composition of soil has long been thought to provide wine with characteristic regional flavors. Here, we show that for vineyards in southern Australia, the soil fungal communities are of primary importance for the aromas found in wines. We propose a mechanism by which fungi can move from the soil through the vine. The flavors of fermented plant foods and beverages are formed by microorganisms, and in the case of wine, the location and environmental features of the vineyard site also imprint the wine with distinctive aromas and flavors. Microbial growth and metabolism play an integral role in wine production, by influencing grapevine health, wine fermentation, and the flavor, aroma, and quality of finished wines. The contributions by which microbial distribution patterns drive wine metabolites are unclear, and while flavor has been correlated with fungal and bacterial composition for wine, bacterial activity provides fewer sensorially active biochemical conversions than fungi in wine fermentation. Here, we collected samples across six distinct wine-growing areas in southern Australia to investigate regional distribution patterns of fungi and bacteria and the association with wine chemical composition. Results show that both soil and must microbiota distinguish wine-growing regions. We found a relationship between microbial and wine metabolic profiles under different environmental conditions, in particular measures of soil properties and weather. Fungal communities are associated with wine regional distinctiveness. We found that the soil microbiome is a source of grape- and must-associated fungi and suggest that weather and soil could influence wine characteristics via the soil fungal community. Our report describes a comprehensive scenario of wine microbial biogeography where microbial diversity responds to the surrounding environment and correlates with wine composition and regional characteristics. These findings provide perspectives for thoughtful human practices to optimize food composition through understanding fungal activity and abundance. IMPORTANCE The composition of soil has long been thought to provide wine with characteristic regional flavors. Here, we show that for vineyards in southern Australia, the soil fungal communities are of primary importance for the aromas found in wines. We propose a mechanism by which fungi can move from the soil through the vine.
Collapse
|
35
|
Theofel CG, Williams TR, Gutierrez E, Davidson GR, Jay-Russell M, Harris LJ. Microorganisms Move a Short Distance into an Almond Orchard from an Adjacent Upwind Poultry Operation. Appl Environ Microbiol 2020; 86:e00573-20. [PMID: 32444472 PMCID: PMC7376559 DOI: 10.1128/aem.00573-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 11/25/2022] Open
Abstract
Over a 2-year period, drag swabs of orchard soil surface and air, soil, and almond leaf samples were collected in an almond orchard adjacent to (35 m from the first row of trees) and downwind from a poultry operation and in two almond orchards (controls) that were surrounded by other orchards. Samples were evaluated for aerobic plate count, generic Escherichia coli, other coliforms, the presence of Salmonella, bacterial community structure (analyzed through sequencing of the 16S rRNA gene), and amounts of dry solids (dust) on leaf surfaces on trees 0, 60, and 120 m into each orchard. E. coli was isolated from 41 of 206 (20%) and 1 of 207 (0.48%) air samples in the almond-poultry and control orchards, respectively. Salmonella was not isolated from any of the 529 samples evaluated. On average, the amount of dry solids on leaves collected from trees closest to the poultry operation was more than 2-fold greater than from trees 120 m into the orchard or from any of the trees in the control orchards. Members of the family Staphylococcaceae-often associated with poultry-were, on average, significantly (P < 0.001) more abundant in the phyllosphere of trees closest to the poultry operation (10% of relative abundance) than in trees 120 m into the orchard (1.7% relative abundance) or from any of the trees in control orchards (0.41% relative abundance). Poultry-associated microorganisms from a commercial operation transferred a short distance into an adjacent downwind almond orchard.IMPORTANCE The movement of microorganisms, including foodborne pathogens, from animal operations into adjacent plant crop-growing environments is not well characterized. This study provides evidence that dust and bioaerosols moved from a commercial poultry operation a short distance downwind into an almond orchard and altered the microbiome recovered from the leaves. These data provide growers with information they can use to assess food safety risks on their property.
Collapse
Affiliation(s)
- Christopher G Theofel
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| | - Thomas R Williams
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Eduardo Gutierrez
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Gordon R Davidson
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
- Western Center for Food Safety, University of California, Davis, Davis, California, USA
| |
Collapse
|
36
|
Zhang S, Wang Y, Chen X, Cui B, Bai Z, Zhuang G. Variety features differentiate microbiota in the grape leaves. Can J Microbiol 2020; 66:653-663. [PMID: 32511936 DOI: 10.1139/cjm-2019-0551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dependence of plant health and crop quality on the epiphytic microbial community has been extensively addressed, but little is known about plant-associated microbial communities under natural conditions. In this study, the bacterial and fungal communities on grape leaves were analyzed by 16S rRNA gene and internal transcribed spacer high-throughput sequencing, respectively. The results showed differences in the composition of the microbial communities on leaf samples of nine wine grape varieties. The most abundant bacterial genus was Pseudomonas, and the top three varieties with Pseudomonas were Zinfandel (22.6%), Syrah (21.6%), and Merlot (13.5%). The most abundant fungal genus was Alternaria, and the cultivar with the lowest abundance of Alternaria was Zinfandel (33.6%), indicating that these communities had different habitat preferences. The linear discriminant analysis effect size of all species showed that the bacteria Enterococcus, Massilia, and Kocuria were significantly enriched on the leaves of Merlot, Syrah, Cabernet Sauvignon, respectively; Pseudomonadales and Pantoea on Zinfandel; and Bacillus, Turicibacter, and Romboutsia on Pinot Noir. Similarly, the fungi Cladosporium, Phoma, and Sporormiella were significantly enriched on Zinfandel, Lon, and Gem, respectively. Both Bray-Curtis and unweighted UniFrac revealed that bacteria and fungi have a significant impact (P < 0.01), and the results further proved that variety is the most important factor affecting the microbial community. The findings indicate that some beneficial or harmful microorganisms existing on the wine grape leaves might affect the health of the grape plants and the wine-making process.
Collapse
Affiliation(s)
- Shiwei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Yuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Xi Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Bingjian Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
37
|
Anagnostopoulos DA, Kamilari E, Tsaltas D. Evolution of Bacterial Communities, Physicochemical Changes and Sensorial Attributes of Natural Whole and Cracked Picual Table Olives During Spontaneous and Inoculated Fermentation. Front Microbiol 2020; 11:1128. [PMID: 32547528 PMCID: PMC7273852 DOI: 10.3389/fmicb.2020.01128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Table olives are one of the most well-known traditionally fermented products, and their global consumption is exponentially increasing. In direct brining, table olives are produced spontaneously, without any debittering pre-treatment. Up to date, fermentation process remains empirical and inconstant, as it is affected by the physicochemical attributes of the fruit, tree and fruit management of pro and post-harvest. In the present study, whole and cracked Picual table olives were fermented at industrial scale for 120 days, using three distinct methods (natural fermentation, inoculation with lactic acid bacteria (LAB) at a 7 or a 10% NaCl concentration). Microbial, physicochemical and sensorial alterations monitored during the whole process, and several differences were observed between treatments. Results indicated that in all treatments, the dominant microflora were LAB. Yeasts also detected in noteworthy populations, especially in non-inoculated samples. However, LAB population was significantly higher in inoculated compared to non-inoculated samples. Microbial profiles identified by metagenomic approach showed meaningful differences between spontaneous and inoculated treatments. As a result, the profound dominance of starter culture had a severe effect on olives fermentation, resulting in lower pH and higher acidification, which was mainly caused by the higher levels of lactic acid produced. Furthermore, the elimination of Enterobacteriaceae was shortened, even at lower salt concentration. Although no effect observed concerning the quantitated organoleptic parameters such as color and texture, significantly higher levels in terms of antioxidant capacity were recorded in inoculated samples. At the same time, the degradation time of oleuropein was shortened, leading to the production of higher levels of hydroxytyrosol. Based on this evidence, the establishment of starter culture driven Picual olives fermentation is strongly recommended. It is crucial to mention that the inoculated treatment with reducing sodium content was highly appreciated by the sensory panel, enhancing the hypothesis that the production of Picual table olives at reduced NaCl levels is achievable.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
38
|
Woods DF, Kozak IM, O'Gara F. Microbiome and Functional Analysis of a Traditional Food Process: Isolation of a Novel Species ( Vibrio hibernica) With Industrial Potential. Front Microbiol 2020; 11:647. [PMID: 32373093 PMCID: PMC7179675 DOI: 10.3389/fmicb.2020.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Traditional food preservation processes are vital for the food industry. They not only preserve a high-quality protein and nutrient source but can also provide important value-added organoleptic properties. The Wiltshire process is a traditional food curing method applied to meat, and special recognition is given to the maintenance of a live rich microflora within the curing brine. We have previously analyzed a curing brine from this traditional meat process and characterized a unique microbial core signature. The characteristic microbial community is actively maintained and includes the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio. The bacteria present are vital for Wiltshire curing compliance. However, the exact function of this microflora is largely unknown. A microbiome profiling of three curing brines was conducted and investigated for functional traits by the robust bioinformatic tool, Tax4Fun. The key objective was to uncover putative metabolic functions associated with the live brine and to identify changes over time. The functional bioinformatic analysis revealed metabolic enrichments over time, with many of the pathways identified as being involved in organoleptic development. The core bacteria present in the brine are Lactic Acid Bacteria (LAB), with the exception of the Vibrio genus. LAB are known for their positive contribution to food processing, however, little work has been conducted on the use of Vibrio species for beneficial processes. The Vibrio genome was sequenced by Illumina MiSeq technologies and annotated in RAST. A phylogenetic reconstruction was completed using both the 16S rRNA gene and housekeeping genes, gapA, ftsZ, mreB, topA, gyrB, pyrH, recA, and rpoA. The isolated Vibrio species was defined as a unique novel species, named Vibrio hibernica strain B1.19. Metabolic profiling revealed that the bacterium has a unique substrate scope in comparison to other closely related Vibrio species tested. The possible function and industrial potential of the strain was investigated using carbohydrate metabolizing profiling under food processing relevant conditions. Vibrio hibernica is capable of metabolizing a unique carbohydrate profile at low temperatures. This characteristic provides new application options for use in the industrial food sector, as well as highlighting the key role of this bacterium in the Wiltshire curing process.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Human Microbiome Programme, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
39
|
Geographic Patterns of Bacterioplankton among Lakes of the Middle and Lower Reaches of the Yangtze River Basin, China. Appl Environ Microbiol 2020; 86:AEM.02423-19. [PMID: 31924617 DOI: 10.1128/aem.02423-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/17/2019] [Indexed: 02/01/2023] Open
Abstract
The revolution of molecular techniques has revealed that the composition of natural bacterial communities normally includes a few abundant taxa and many rare taxa. Unraveling the mechanisms underlying the spatial assembly process of both abundant and rare bacterial taxa has become a central goal in microbial ecology. Here, we used high-throughput sequencing to explore geographic patterns and the relative importance of ecological processes in the assembly of abundant and rare bacterial subcommunities from 25 lakes across the middle and lower reaches of Yangtze River basin (MLYB), located in Southeast China, where most of the lakes are interconnected by river networks. We found similar biogeographic patterns of abundant and rare subcommunities which could significantly distinguish the community compositions of the two lake groups that were far from each other but which could not distinguish the community compositions of the nearby lakes. Both abundant and rare bacteria followed a strong distance-decay relationship. These findings suggest that the interconnectivity between lakes homogenizes the bacterial communities in local areas, and the abundant and rare taxa therein may be affected by the same ecological process. In addition, based on the measured environmental variables, the deterministic processes explain a small fraction of variation within both abundant and rare subcommunities, while both neutral and null models revealed a high stochasticity ratio for the spatial distribution patterns of both abundant and rare taxa. These findings indicate that the stochastic processes exhibited a greater influence on both abundant and rare bacterial subcommunity assemblies among interconnected lakes.IMPORTANCE The middle and lower Yangtze Plain is a typical floodplain in which many lakes connect with each other, especially in the wet season. More importantly, with the frequent change of regional water level in the wet season, there is a mutual hydrodynamic exchange among these lakes. The microbial biogeography among these interconnected lakes is still poorly understood. This study aims to unravel the mechanisms underlying the assembly process of abundant and rare bacteria among the interconnected lakes in the middle and lower Yangtze Plain. Our findings will provide a deeper understanding of the biogeographic patterns of rare and abundant bacterial taxa and their determined processes among interconnected aquatic habitats.
Collapse
|
40
|
Djeni TN, Kouame KH, Ake FDM, Amoikon LST, Dje MK, Jeyaram K. Microbial Diversity and Metabolite Profiles of Palm Wine Produced From Three Different Palm Tree Species in Côte d'Ivoire. Sci Rep 2020; 10:1715. [PMID: 32015447 PMCID: PMC6997158 DOI: 10.1038/s41598-020-58587-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Palm wine, the most commonly consumed traditional alcoholic beverage in Western Africa, harbours a complex microbiota and metabolites, which plays a crucial role in the overall quality and value of the product. In the present study, a combined metagenomic and metabolomic approach was applied to describe the microbial community structure and metabolites profile of fermented saps from three palm species (Elaeis guineensis, Raphia hookeri, Borassus aethiopum) in Côte d'Ivoire. Lactobacillaceae (47%), Leuconostocaceae (16%) and Acetobacteriaceae (28%) were the most abundant bacteria and Saccharomyces cerevisiae (87%) the predominant yeasts in these beverages. The microbial community structure of Raphia wine was distinctly different from the others. Multivariate analysis based on the metabolites profile clearly separated the three palm wine types. The main differentiating metabolites were putatively identified as gevotroline hydrochloride, sesartemin and methylisocitrate in Elaeis wine; derivative of homoserine, mitoxantrone in Raphia wine; pyrimidine nucleotide sugars (UDP-D-galacturonate) and myo-Inositol derivatives in Borassus wine. The enriched presence of gevotroline (an antipsychotic agent) and mitoxantrone (an anticancer drug) in palm wine supports its therapeutic potential. This work provides a valuable insight into the microbiology and biochemistry of palm wines and a rationale for selecting functional microorganisms for potential biotechnology applications.
Collapse
Affiliation(s)
- Theodore N Djeni
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire.
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795 001, Manipur, India.
| | - Karen H Kouame
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Francine D M Ake
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Laurent S T Amoikon
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Marcellin K Dje
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795 001, Manipur, India.
| |
Collapse
|
41
|
Xu Y, Curtasu MV, Bendiks Z, Marco ML, P. Nørskov N, Knudsen KEB, Hedemann MS, Lærke HN. Effects of dietary fibre and protein content on intestinal fibre degradation, short-chain fatty acid and microbiota composition in a high-fat fructose-rich diet induced obese Göttingen Minipig model. Food Funct 2020; 11:10758-10773. [DOI: 10.1039/d0fo02252g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An AX-enriched high DF diet improved the intestinal environment and attenuated protein fermentation, while protein did not show prebiotic effects.
Collapse
Affiliation(s)
- Yetong Xu
- Department of Animal Science
- Aarhus University
- DK-8830 Tjele
- Denmark
| | | | - Zachary Bendiks
- Department of Food Science and Technology
- University of California
- Davis
- USA
| | - Maria L. Marco
- Department of Food Science and Technology
- University of California
- Davis
- USA
| | - Natalja P. Nørskov
- Department of Food Science and Technology
- University of California
- Davis
- USA
| | | | | | | |
Collapse
|
42
|
Characterization of microbial communities in ethanol biorefineries. J Ind Microbiol Biotechnol 2019; 47:183-195. [PMID: 31848793 DOI: 10.1007/s10295-019-02254-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Bacterial contamination of corn-based ethanol biorefineries can reduce their efficiency and hence increase their carbon footprint. To enhance our understanding of these bacterial contaminants, we temporally sampled four biorefineries in the Midwestern USA that suffered from chronic contamination and characterized their microbiomes using both 16S rRNA sequencing and shotgun metagenomics. These microbiotas were determined to be relatively simple, with 13 operational taxonomic units (OTUs) accounting for 90% of the bacterial population. They were dominated by Firmicutes (89%), with Lactobacillus comprising 80% of the OTUs from this phylum. Shotgun metagenomics confirmed our 16S rRNA data and allowed us to characterize bacterial succession at the species level, with the results of this analysis being that Lb. helveticus was the dominant contaminant in this fermentation. Taken together, these results provide insights into the microbiome of ethanol biorefineries and identifies a species likely to be commonly responsible for chronic contamination of these facilities.
Collapse
|
43
|
Microbial Community Analyses Associated with Nine Varieties of Wine Grape Carposphere Based on High-Throughput Sequencing. Microorganisms 2019; 7:microorganisms7120668. [PMID: 31835425 PMCID: PMC6956142 DOI: 10.3390/microorganisms7120668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the composition of microbials on the grape carposphere may provide direct guidance for the wine brewing. In this work, 16S rRNA and ITS (Internal Transcribed Spacer) fungal amplicon sequencing were performed to investigate the differences of epiphytic microbial communities inhabiting different varieties of wine grape berries. The results showed that the dominated phylum of different wine grape carpospheres were Proteobacteria, Actinomycetes, Firmicutes, Gemmatimonadete, and Bacteroidetes. The dominant bacterial genera of different wine grape varieties were Pseudomonas, Arthrobacter, Bacillus, Pantoea, Planomicrobium, Massilia, Curtobacterium, Corynebacterium, Cellulomonas, Sphingomonas, and Microvirga. The fungal communities of the grapes were dominated by Ascomycota for all nine wine varieties. The dominant fungal genera on grape carposphere were Alternaria, Cladosporium, unclassified Capnodiales, Phoma, Rhodotorula, Cryptococcus, Aureobasidium, and Epicoccum. Community structure exerts a significant impact on bacterial Bray-Curtis dissimilarity on six red grapes and also a significant bacterial impact on three white grapes. Community structure exerts a significant impact on fungal Bray-Curtis dissimilarity on six red grapes but weak or no fungal impact on three white grapes. The results revealed that grape variety plays a significant role in shaping bacterial and fungal community, varieties can be distinguished based on the abundance of several key bacterial and fungal taxa.
Collapse
|
44
|
Ruiz J, Ortega N, Martín-Santamaría M, Acedo A, Marquina D, Pascual O, Rozès N, Zamora F, Santos A, Belda I. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations. Int J Food Microbiol 2019; 305:108255. [DOI: 10.1016/j.ijfoodmicro.2019.108255] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
|
45
|
Berbegal C, Borruso L, Fragasso M, Tufariello M, Russo P, Brusetti L, Spano G, Capozzi V. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Int J Mol Sci 2019; 20:ijms20163980. [PMID: 31443334 PMCID: PMC6721008 DOI: 10.3390/ijms20163980] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.
Collapse
Affiliation(s)
- Carmen Berbegal
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
- EnolabERI BioTecMed, Universitat de València, 46100 Valencia, Spain
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mariagiovanna Fragasso
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Tufariello
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Unità Operativa di Supporto di Lecce, 73100 Lecce, Italy
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
46
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
47
|
The Influence of Fungicide Treatments on Mycobiota of Grapes and Its Evolution during Fermentation Evaluated by Metagenomic and Culture-Dependent Methods. Microorganisms 2019; 7:microorganisms7050114. [PMID: 31035521 PMCID: PMC6560393 DOI: 10.3390/microorganisms7050114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
The present study evaluated the impact of organic and conventional fungicide treatments compared with untreated samples (no fungicides were used) on the grape berry yeast community of the Montepulciano variety. The yeast dynamics during the spontaneous fermentation using culture-dependent and -independent methods was also evaluated. Results showed a reduction of yeast biodiversity by conventional treatments determining a negative influence on fermenting yeasts in favor of oxidative yeasts such as Aerobasidium pullulans. Starmerella bacillaris was significantly more present in organic samples (detected by next generation sequencing (NGS)), while Hanseniaspopa uvarum was significantly less present in untreated samples (detected by the culture-dependent method). The fermenting yeasts, developed during the spontaneous fermentation, were differently present depending on the fungicide treatments used. Culture-dependent and -independent methods exhibited the same most abundant yeast species during the spontaneous fermentation but a different relative abundance. Differently, the NGS method was able to detect a greater biodiversity (lower abundant species) in comparison with the culture-dependent method. In this regard, the methodologies used gave a different picture of yeast dynamics during the fermentation process. The results indicated that the fungal treatments can influence the yeast community of grapes leading must fermentation and the final composition of wine.
Collapse
|
48
|
Sirén K, Mak SST, Fischer U, Hansen LH, Gilbert MTP. Multi-omics and potential applications in wine production. Curr Opin Biotechnol 2019; 56:172-178. [DOI: 10.1016/j.copbio.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
|
49
|
Tang Y, Zhou X, Huang S, Li Y, Long M, Zhao X, Suo H, Zalán Z, Hegyi F, Du M. Microbial community analysis of different qualities of pickled radishes by Illumina MiSeq sequencing. J Food Saf 2018. [DOI: 10.1111/jfs.12596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanyan Tang
- College of Food Sciences, Southwest University Chongqing China
| | - Xianrong Zhou
- College of Food Sciences, Southwest University Chongqing China
| | - Shenglan Huang
- College of Food Sciences, Southwest University Chongqing China
| | - Yuzhu Li
- College of Food Sciences, Southwest University Chongqing China
| | - Mou Long
- College of Food Sciences, Southwest University Chongqing China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing China
| | - Huayi Suo
- College of Food Sciences, Southwest University Chongqing China
| | - Zsolt Zalán
- Chinese‐Hungarian Cooperative Research Centre for Food Science, Southwest University Chongqing China
- Food Science Research Institute of National Agricultural Research and Innovation Center Budapest Hungary
| | - Ferenc Hegyi
- Chinese‐Hungarian Cooperative Research Centre for Food Science, Southwest University Chongqing China
- Food Science Research Institute of National Agricultural Research and Innovation Center Budapest Hungary
| | - Muying Du
- College of Food Sciences, Southwest University Chongqing China
- Chinese‐Hungarian Cooperative Research Centre for Food Science, Southwest University Chongqing China
- Chongqing Key Laboratory of Produce Processing and Storage, Southwest University Chongqing China
| |
Collapse
|
50
|
De Filippis F, Aponte M, Piombino P, Lisanti MT, Moio L, Ercolini D, Blaiotta G. Influence of microbial communities on the chemical and sensory features of Falanghina sweet passito wines. Food Res Int 2018; 120:740-747. [PMID: 31000293 DOI: 10.1016/j.foodres.2018.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/26/2022]
Abstract
Natural (N) as well as starter inoculated (S, inoculated with Saccharomyces cerevisiae M3-5; CZS, Candida zemplinina T13, Zygosaccharomyces bailii NS113 and Saccharomyces cerevisiae M3-5) fermentations of Falanghina must from dehydrated grape were monitored. Culture dependent analyses and amplicon-based high-throughput sequencing targeting 18S rRNA and 16S rRNA genes were used to monitor the fungal and bacterial communities (8 sampling points during 65 days). The resulting wines were subject to both sensory evaluation and volatile organic compounds analysis. Fungal community of un-inoculated musts (N) at beginning of the fermentation was mainly represented by Aureobasidium, Cladosporium, Sclerotinia, while Candida, Debaryomyces, Hanseniaspora, Metschnikowia, Pichia, Saccharomyces and Zygosaccharomyces showed a very low occurrence. The dominance of Hanseniaspora vineae and/or Hanseniaspora uvarum was clear up to 29th days of fermentation. S. cerevisiae occurred in all the phases but become dominant only at the end of the process. The odour profiles as evaluate by Quantitative Descriptive Analysis (QDA) highlighted a significant impact of the fungal populations on the olfactory profiles of the wines. Raisins, dried fruits, Sherry and liqueur were stronger in both S and CZS, while N was mostly discriminated by solvent/chemical and floral features. Outcomes underpin the impact of microbiota on the chemical and odour traits of Falanghina passito wines.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Maria Aponte
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy
| | - Paola Piombino
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy; Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| | - Maria Tiziana Lisanti
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| | - Luigi Moio
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100 Avellino, Italy.
| |
Collapse
|