1
|
Sun J, Zhan X, Wang W, Yang X, Liu Y, Yang H, Deng J, Yang H. Natural aporphine alkaloids: A comprehensive review of phytochemistry, pharmacokinetics, anticancer activities, and clinical application. J Adv Res 2024; 63:231-253. [PMID: 37935346 PMCID: PMC11380034 DOI: 10.1016/j.jare.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Cancer is the most common cause of death and is still a serious public health problem. Alkaloids, a class of bioactive compounds widely diffused in plants, especially Chinese herbs, are used as functional ingredients, precursors, and lead compounds in food and clinical applications. Among them, aporphine alkaloids (AAs), as an important class of isoquinoline alkaloids, exert a strong anticancer effect on multiple cancer types. AIM OF REVIEW This review aims to comprehensively summarize the phytochemistry, pharmacokinetics, and bioavailability of seven subtypes of AAs and their derivatives from various plants and highlight their anticancer bioactivities and mechanisms of action. Key Scientific Concepts of Review. The chemical structures and botanical diversity of AAs are elucidated, and promising results are highlighted regarding the potent anticancer activities of AAs and their derivatives, contributing to their pharmacological benefits. This work provides a better understanding of AAs and combinational anticancer therapies involving them, thereby improving the development of functional food containing plant-derived AA and the clinical application of AAs.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingtian Zhan
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China.
| | - Weimin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaojie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yichen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huanzhi Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Tian Y, Wang Z, Xu X, Guo Y, Ma Y, Lu Y, Shen M, Geng Y, Tomás H, Rodrigues J, Sheng R. Natural alkaloids from Dicranostigma leptopodum (Maxim.) Fedde and their G5. NHAc-PBA dendrimer-alkaloid complexes for targeting chemotherapy in breast cancer MCF-7 cells. Nat Prod Res 2024:1-18. [PMID: 38586940 DOI: 10.1080/14786419.2024.2335669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Herein, we isolated five natural alkaloids, iso-corydine (iso-CORY), corydine (CORY), sanguinarine (SAN), chelerythrine (CHE) and magnoflorine (MAG), from traditional medicinal herb Dicranostigma leptopodum (Maxim.) Fedde (whole herb) and elucidated their structures. Then we synthesised G5. NHAc-PBA as targeting dendrimer platform to encapsulate the alkaloids into G5. NHAc-PBA-alkaloid complexes, which demonstrated alkaloid-dependent positive zeta potential and hydrodynamic particle size. G5. NHAc-PBA-alkaloid complexes demonstrated obvious breast cancer MCF-7 cell targeting effect. Among the G5. NHAc-PBA-alkaloid complexes, G5.NHAc-PBA-CHE (IC50=13.66 μM) demonstrated the highest MCF-7 cell inhibition capability and G5.NHAc-PBA-MAG (IC50=24.63 μM) had equivalent inhibitory effects on cell proliferation that comparable to the level of free MAG (IC50=23.74 μM), which made them the potential breast cancer targeting formulation for chemotherapeutic application. This work successfully demonstrated a pharmaceutical research model of 'natural bioactive product isolation-drug formulation preparation-breast cancer cell targeting inhibition'.
Collapse
Affiliation(s)
- Ye Tian
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yanni Ma
- Henan Natural Products Biotechnology Co., Ltd, Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Yanqi Lu
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yang Geng
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational and Technical College, Zhengzhou, China
| | - Helena Tomás
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
4
|
Machado TQ, Lima MED, da Silva RC, Macedo AL, de Queiroz LN, Angrisani BRP, da Fonseca ACC, Câmara PR, Rabelo VVH, Carollo CA, de Lima Moreira D, de Almeida ECP, Vasconcelos TRA, Abreu PA, Valverde AL, Robbs BK. Anticancer Activity and Molecular Targets of Piper cernuum Substances in Oral Squamous Cell Carcinoma Models. Biomedicines 2023; 11:1914. [PMID: 37509552 PMCID: PMC10377665 DOI: 10.3390/biomedicines11071914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a worldwide public health problem, with high morbidity and mortality rates. The development of new drugs to treat OSCC is paramount. Piper plant species have shown many biological activities. In the present study, we show that dichloromethane partition of Piper cernuum (PCLd) is nontoxic in chronic treatment in mice, reduces the amount of atypia in tongues of chemically induced OSCC, and significantly increases animal survival. To identify the main active compounds, chromatographic purification of PCLd was performed, where fractions 09.07 and 14.05 were the most active and selective. These fractions promoted cell death by apoptosis characterized by phosphatidyl serine exposition, DNA fragmentation, and activation of effector caspase-3/7 and were nonhemolytic. LC-DAD-MS/MS analysis did not propose matching spectra for the 09.07 fraction, suggesting compounds not yet known. However, aporphine alkaloids were annotated in fraction 14.05, which are being described for the first time in P. cernuum and corroborate the observed cytotoxic activity. Putative molecular targets were determined for these alkaloids, in silico, where the androgen receptor (AR), CHK1, CK2, DYRK1A, EHMT2, LXRβ, and VEGFR2 were the most relevant. The results obtained from P. cernuum fractions point to promising compounds as new preclinical anticancer candidates.
Collapse
Affiliation(s)
- Thaíssa Queiróz Machado
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, RJ, Brazil
| | - Maria Emanuelle Damazio Lima
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Rafael Carriello da Silva
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Arthur Ladeira Macedo
- Pharmaceutical Sciences, Food and Nutrition Faculty, Mato Grosso do Sul Federal University, Campo Grande 79070-900, MS, Brazil
| | - Lucas Nicolau de Queiroz
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24241-000, RJ, Brazil
| | | | - Anna Carolina Carvalho da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Priscilla Rodrigues Câmara
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Vitor Von-Held Rabelo
- Biodiversity and Sustainability Institute, Macaé Campus, Federal University of Rio de Janeiro, Macae 21941-901, RJ, Brazil
| | - Carlos Alexandre Carollo
- Pharmaceutical Sciences, Food and Nutrition Faculty, Mato Grosso do Sul Federal University, Campo Grande 79070-900, MS, Brazil
| | - Davyson de Lima Moreira
- Research Directorate, Laboratory of Natural Products and Biochemistry, Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro 22460-030, RJ, Brazil
| | - Elan Cardozo Paes de Almeida
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | | | - Paula Alvarez Abreu
- Biodiversity and Sustainability Institute, Macaé Campus, Federal University of Rio de Janeiro, Macae 21941-901, RJ, Brazil
| | - Alessandra Leda Valverde
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| |
Collapse
|
5
|
Isocorydine Ameliorates IL-6 Expression in Bone Marrow-Derived Macrophages and Acute Lung Injury Induced by Lipopolysaccharide. Int J Mol Sci 2023; 24:ijms24054629. [PMID: 36902060 PMCID: PMC10003757 DOI: 10.3390/ijms24054629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Isocorydine (ICD) is a type of isoquinoline alkaloid originating from Corydalis edulis, which has been used to relieve spasm, dilate blood vessels, and treat malaria as well as hypoxia in clinic. However, its effect on inflammation and underlying mechanisms remains unclear. The aim of our study was to determine the potential effects and mechanisms of ICD on pro-inflammatory interleukin-6 (IL-6) expression in bone marrow-derived macrophages (BMDMs) and acute lung injury mouse model. A mouse model of acute lung injury was established by intraperitoneal injection of LPS and treated with different doses of ICD. The body weight and food intake of mice were monitored to determine the toxicity of ICD. The tissue samples of lung, spleen and blood were taken to assess the pathological symptoms of acute lung injury and the expression levels of IL-6. Further, BMDMs isolated from C57BL/6 mice were cultured in vitro and treated with granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS and different doses of ICD. CCK-8 assay and flow cytometry were performed to assess the viability of BMDMs. The expression of IL-6 was detected by RT-PCR and ELISA. RNA-seq was carried out to detect the differential expression genes of ICD-treated BMDMs. Western blotting was used to detect the change in MAPK and NF-κB signaling pathways. Our findings show that ICD ameliorates IL-6 expression and attenuates phosphorylation of p65 and JNK in BMDMs, and can protect mice from acute lung injury.
Collapse
|
6
|
Qiu J, Chen L, Yang J, Varier KM, Gajendran B, Yao Y, Liu W, Song J, Rao Q, Long Q, Yuan C, Hao X, Li Y. Garmultin-A Incites Apoptosis in CB3 Cells Through miR-17-5p by Attenuating Poly (ADP-Ribose) Polymerase-1. Dose Response 2022; 20:15593258221130681. [PMID: 36246167 PMCID: PMC9558886 DOI: 10.1177/15593258221130681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Leukemia accounts for a large number of deaths, worldwide, every year.
Treating this ailment is always a challenging job. Recently, oncogenic miRNA
leading to apoptosis are highly promising targets of many natural products.
In this study, Garmultin-A (GA), isolated from the bark of Garcinia
multiflora, was elucidated for its anti-leukemic effect in CB3
cells. Methods The effect of the compound on CB3 cell viability was detected by MTT assay
and apoptosis by FITC Annexin V/PI and Hochest 33258 staining. The western
blot analysis assessed the BAX, BCL2, cMYC, pERK, and PARP-1 protein levels.
Autodock analysis predicted the ligand–protein interactions. q-RT-PCR
quantified the miR-17-5p expression. Luciferase assay confirmed the
interaction between PARP-1 and miR-17-5p. Results We uncover that GA leads to apoptosis by inducing overexpression of miR-17-5p
and significantly downregulate PARP-1 protein levels in CB3 cells. The
overexpression of miR-17-5p promotes apoptosis, and the miR-17-5p antagomirs
restore GA-triggered apoptosis. Notably, we disclose that PARP-1 is a direct
target of miR-17-5p. Increased pro-apoptotic and reduced anti-apoptosis
protein levels were also observed in GA-treated CB3 cells. Conclusion These results provide critical insights that GA could induce apoptosis in CB3
cells through targeting miR-17-5p by attenuating PARP-1. Thus, GA could act
as a novel therapeutic agent for erythroleukemia.
Collapse
Affiliation(s)
- Jianfei Qiu
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China,Department of Immunology, College
of Basic Medical Sciences, Guizhou Medical
University, Guiyang, P.R. China
| | - Li Chen
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Jue Yang
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Krishnapriya M. Varier
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Babu Gajendran
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Yao Yao
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Wuling Liu
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Jingrui Song
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Qing Rao
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Qun Long
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China
| | - Chunmao Yuan
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China,Chunmao Yuan, Xiaojiang Hao and Yanmei Li,
State Key Laboratory for Functions and Applications of Medicinal Plants/School
of Pharmaceutical Sciences, Guizhou Medical University, Baiyun District, Guiyang
Guiyang, P.R. China. Emails: ;
;
| | - Xiaojiang Hao
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China,Chunmao Yuan, Xiaojiang Hao and Yanmei Li,
State Key Laboratory for Functions and Applications of Medicinal Plants/School
of Pharmaceutical Sciences, Guizhou Medical University, Baiyun District, Guiyang
Guiyang, P.R. China. Emails: ;
;
| | - Yanmei Li
- State Key Laboratory for Functions
and Applications of Medicinal Plants/School of Pharmaceutical Sciences,
Guizhou
Medical University, Guiyang, P.R.
China,The Key Laboratory of Chemistry for Natural
Products of Guizhou Province and Chinese Academic of
Sciences, Guiyang, P.R. China,Chunmao Yuan, Xiaojiang Hao and Yanmei Li,
State Key Laboratory for Functions and Applications of Medicinal Plants/School
of Pharmaceutical Sciences, Guizhou Medical University, Baiyun District, Guiyang
Guiyang, P.R. China. Emails: ;
;
| |
Collapse
|
7
|
Zheng Y, Zhang W, Xu L, Zhou H, Yuan M, Xu H. Recent Progress in Understanding the Action of Natural Compounds at Novel Therapeutic Drug Targets for the Treatment of Liver Cancer. Front Oncol 2022; 11:795548. [PMID: 35155196 PMCID: PMC8825370 DOI: 10.3389/fonc.2021.795548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the third most common cause of cancer-related death following lung and stomach cancers. As a highly lethal disease, liver cancer is diagnosed frequently in less developed countries. Natural compounds extracted from herbs, animals and natural materials have been adopted by traditional Chinese medicine (TCM) practices and reported to be effective in the development of new medications for the treatment of diseases. It is important to focus on the mechanisms of action of natural compounds against hepatocellular carcinoma (HCC), particularly in terms of cell cycle regulation, apoptosis induction, autophagy mediation and cell migration and invasion. In this review, we characterize novel representative natural compounds according to their pharmacologic effects based on recently published studies. The aim of this review is to summarize and explore novel therapeutic drug targets of natural compounds, which could accelerate the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Yannan Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Wenhui Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Lin Xu
- Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for Traditional Chinese Medicine (TCM) New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Rabêlo SV, Araújo ECC, Costa EV, Braz-Filho R, Barison A, Santos MDFC, Oliveira GG, Tomaz JC, Rolim LA, Lopes NP, Silva MFS, Moraes MO, Pessoa CDÓ, El Aouad N, Almeida JRGS. A new N-oxide benzylisoquinoline alkaloid isolated from the leaves of atemoya ( Annona cherimola × Annona squamosa). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2020-0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytochemical investigation of the atemoya aerial parts was carried out by LC-MS-IT and cytotoxic activities were evaluated as well. These results led to the identification of a new N-oxide alkaloid (dehydroanomuricine-N-oxide) and eight other alkaloids: scoulerine, reticuline, isocorydine, norisocorydine, asimilobine, nornuciferine, anonaine, and liriodenine. The new alkaloid dehydroanomuricine-N-oxide and anomuricine were also isolated. The structures of these compounds were determined by spectroscopic and spectrometric techniques. The cytotoxic capacity of crude methanolic extract and the alkaloidal fraction were evaluated, showing moderate cytotoxicity. The isolation and identification of these alkaloids are an important contribution to the chemotaxonomy of the genus Annona and the Annonaceae family.
Collapse
Affiliation(s)
- Suzana V. Rabêlo
- Post-Graduate Program in Biotechnology (RENORBIO) , Federal Rural University of Pernambuco , Recife , Pernambuco , Brazil
| | - Edigênia C. C. Araújo
- Center for Studies and Research of Medicinal Plants (NEPLAME) , Federal University of San Francisco Valley , Petrolina , Pernambuco , Brazil
| | - Emmanoel V. Costa
- Department of Chemistry , Federal University of Amazonas , Manaus , Amazonas , Brazil
| | - Raimundo Braz-Filho
- Department of Chemistry , Federal Rural University of Rio de Janeiro , Seropédica , Rio de Janeiro , Brazil
- State University of Norte Fluminense Darcy Ribeiro , Campos dos Goytacazes , Rio de Janeiro , Brazil
| | - Andersson Barison
- NMR Center, Federal University of Paraná , Curitiba , Paraná , Brazil
| | - Maria de F. C. Santos
- Department of Chemistry , Federal University of Sergipe , Jardim Rosa Elze , São Cristóvão , Sergipe , Brazil
| | - Gibson G. Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - José C. Tomaz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Larissa A. Rolim
- Post-Graduate Program in Biotechnology (RENORBIO) , Federal Rural University of Pernambuco , Recife , Pernambuco , Brazil
- Center for Studies and Research of Medicinal Plants (NEPLAME) , Federal University of San Francisco Valley , Petrolina , Pernambuco , Brazil
| | - Norberto P. Lopes
- Faculty of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Maria F. S. Silva
- National Laboratory of Experimental Oncology (LabNOE) , Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Manoel O. Moraes
- National Laboratory of Experimental Oncology (LabNOE) , Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Cláudia do Ó Pessoa
- National Laboratory of Experimental Oncology (LabNOE) , Federal University of Ceará , Fortaleza , Ceará , Brazil
| | - Noureddine El Aouad
- Research Team on Biological Engineering, Agrifood and Aquaculture, Polydisciplinary Faculty of Larache , University Abdelmalek Essaadi , Route de Rabat , Larache 92000 , Morocco
| | - Jackson R. G. S. Almeida
- Post-Graduate Program in Biotechnology (RENORBIO) , Federal Rural University of Pernambuco , Recife , Pernambuco , Brazil
- Center for Studies and Research of Medicinal Plants (NEPLAME) , Federal University of San Francisco Valley , Petrolina , Pernambuco , Brazil
| |
Collapse
|
9
|
Long Q, Xiao X, Yi P, Liu Y, Varier KM, Rao Q, Song J, Qiu J, Wang C, Liu W, Gajendran B, He Z, Liu S, Li Y. L20, a Calothrixin B analog, induces intrinsic apoptosis on HEL cells through ROS/γ-H2AX/p38 MAPK pathway. Biomed Pharmacother 2021; 137:111336. [DOI: 10.1016/j.biopha.2021.111336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
|
10
|
Song L, Zhao F, Liu Y, Guo X, Wu C, Liu J. Effects of 8-Amino-Isocorydine, a Derivative of Isocorydine, on Gastric Carcinoma Cell Proliferation and Apoptosis. Curr Ther Res Clin Exp 2021; 94:100624. [PMID: 34306264 PMCID: PMC8296074 DOI: 10.1016/j.curtheres.2021.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/26/2021] [Indexed: 12/05/2022] Open
Abstract
Background Isocorydine (ICD) has anticancer effects; however, its suboptimal bioactivity has driven the production of ICD derivatives, including 8-amino-isocorydine (8-NICD). Objective This study explored the antitumor effects of 8-NICD on a variety of tumor cell lines to detect tumors sensitive to 8-NICD and investigated the mechanisms by which it suppresses tumor cell growth. Methods Human gastric carcinoma (GC) cells (MGC-803) were used to evaluate the effects of 8-NICD on cell proliferation and apoptosis. The in vivo action of 8-NICD in a nude mouse xenograft model was also investigated. The antioxidant activity of 8-NICD was evaluated using a 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. Results 8-NICD exerted significant antitumor activity against several tumor cell lines with IC50 between 8.0 and 142.8 µM and was not toxic to healthy fibroblasts and epithelial cells at concentrations up to 100 µM. Moreover, 8-NICD strongly inhibited the proliferation of MGC803 cells without causing toxicity to human umbilical vein endothelial cells with a selectivity index of 19.2 and arrested MGC803 cells in the S phase. Further, the percentages of apoptotic MGC-803 and BGC823 cells increased in a concentration-dependent manner, and the expression of apoptosis regulator Bax increased, whereas that of Bcl-2 decreased in response to 8-NICD treatment. Further, 8-NICD significantly suppressed MGC-803 tumor growth in nude mice. In addition, 8-NICD was a potent scavenger of radicles in a 1,1-diphenyl-2-picrylhydrazyl (IC50 = 11.12 µM) antioxidant assay. Conclusions These results suggest that 8-NICD exerts significant antitumor effects on GC cells by inducing apoptosis and cell cycle arrest and is a promising candidate anti-GC drug. The particularly high sensitivity of MGC803 cells suggest that the potential of 8-NICD to treat GC should be further explored. (Curr Ther Res Clin Exp. 2021; 82:XXX–XXX)
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China.,Department of Medicine, Northwest Minzu University, Gansu, China
| | - Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China.,Department of Medicine, Northwest Minzu University, Gansu, China
| | - Yong Liu
- Department of Medicine, Northwest Minzu University, Gansu, China
| | - Xiaonong Guo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China
| | - Chengli Wu
- Department of Medicine, Northwest Minzu University, Gansu, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, China
| |
Collapse
|
11
|
Mallya R, Bhitre MJ. Cytotoxic Activity and Initiation of Apoptosis via Intrinsic Pathway in Jurkat Cells by Leaf Extract of Zanthoxylum rhetsa DC. Nutr Cancer 2020; 73:1768-1779. [PMID: 32811210 DOI: 10.1080/01635581.2020.1808231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Newer drugs are in demand for leukemia treatment that specifically targets tumor cells without affecting normal cells. Potent cytotoxic activities have been reported from various parts of Zanthoxylum rhetsa. Thus, the present study was conducted to evaluate antileukemic potential of leaf extract of Z. rhetsa along with probable mechanism of cytotoxicity. Materials and Methods: The antiproliferative activity of the extract on leukemic cell lines was evaluated using sulforhodamine B assay. The changes in cell death profile, cell cycle, and expression levels of pro-apoptotic markers (p53, Bax, cytochrome C, caspase 3, and MMP) and antiapoptic marker (Bcl2) on Jurkat cell lines were studied using flow cytometer. Comparison of oxidative stress induced by extract on Jurkat cells and normal mouse fibroblast cells was done. DNA fragmentation was studied using gel electrophoresis. Results: The leaf extract showed concentration-dependent cytotoxicity against Jurkat cell lines majorly via apoptotic mechanism. It arrested cells at G0/G1 and S phase of cell cycle. Apoptosis was associated with increase in the expression of pro-apoptotic markers and decrease of anti-apoptotic markers. The treatment with extract selectively increased the oxidative stress in Jurkat cells and showed DNA fragmentation. Conclusion: The methanol extract of leaves of Z. rhetsa show selective cytotoxic activity on Jurkat cell lines and induced apoptosis via intrinsic pathway.
Collapse
Affiliation(s)
- Rashmi Mallya
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.,C. U. Shah College of Pharmacy, SNDT Women's University, Mumbai, Maharashtra, India
| | - Milind J Bhitre
- C. U. Shah College of Pharmacy, SNDT Women's University, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Zhang QB, Ye RF, Ye LY, Zhang QY, Dai NG. Isocorydine decrease gemcitabine-resistance by inhibiting epithelial-mesenchymal transition via STAT3 in pancreatic cancer cells. Am J Transl Res 2020; 12:3702-3714. [PMID: 32774728 PMCID: PMC7407734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Gemcitabine is widely used as an anticancer chemotherapy drug for a variety of solid tumors, and it has become the standard treatment option for locally advanced and metastatic pancreatic cancer. However, pancreatic cancer cells develop resistance to gemcitabine after a few weeks of treatment, resulting in poor therapeutic effects. Isocorydine (ICD) is a typical natural aporphine alkaloid, and ICD and its derivatives inhibit the proliferation of many types of cancer cells in vitro. In this study, ICD was found to synergistically inhibit cell viability with gemcitabine in pancreatic cancer cells. A microarray analysis showed that ICD can inhibit the upregulation of STAT3 and EMT in pancreatic cancer cells induced by gemcitabine. STAT3 is closely related to tumor EMT, migration and invasion. After knocking down the expression of STAT3 in pancreatic cancer cells, the combination index (CI) of ICD and gemcitabine decreased. ICD can reverse the increase in the expression of EMT-related transcription factors and proteins caused by gemcitabine, thereby inhibiting the enhanced cell migration and invasion ability caused by gemcitabine. Finally, the synergistic treatment effect of the combination treatment of ICD and gemcitabine in pancreatic cancer cells was confirmed in established xenograft models.
Collapse
Affiliation(s)
- Quan-Bo Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Rui-Fan Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Long-Yun Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Qi-Yu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ning-Gao Dai
- Department of Traumatology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
13
|
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang F, Gan L, Wang N, Yang X, Guo AY. Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene 2019; 38:6818-6834. [PMID: 31406247 PMCID: PMC6988105 DOI: 10.1038/s41388-019-0925-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Abstract
Tumor-repopulating cells (TRCs) are cancer stem cell (CSC)-like cells with highly tumorigenic and self-renewing abilities, which were selected from tumor cells in soft three-dimensional (3D) fibrin gels with unidentified mechanisms. Here we evaluated the transcriptome alteration during TRCs generation in 3D culture and revealed that a variety of molecules related with integrin/membrane and stemness were continuously altered by mechanical environment. Some key regulators such as MYC/STAT3/hsa-miR-199a-5p, were changed in the TRCs generation. They regulated membrane genes and the downstream mechanotransduction pathways such as Hippo/WNT/TGF-β/PI3K-AKT pathways, thus further affecting the expression of downstream cancer-related genes. By integrating networks for membrane proteins, the WNT pathway and cancer-related genes, we identified key molecules in the selection of TRCs, such as ATF4, SLC3A2, CCT3, and hsa-miR-199a-5p. Silencing ATF4 or CCT3 inhibited the selection and growth of TRCs whereas reduction of SLC3A2 or hsa-miR-199a-5p promoted TRCs growth. Further studies showed that CCT3 promoted cell proliferation and stemness in vitro, while its suppression inhibited TRCs-induced tumor formation. We also contemplated CCT3 as a stemness-related gene. Our findings provide insights in the mechanism of TRCs selection through transcriptome analysis.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xian Wu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fuxiang Wei
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Fang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ning Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
14
|
Cassels BK, Fuentes-Barros G, Castro-Saavedra S. Boldo, Its Secondary Metabolites and their Derivatives. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083804666181113112928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Boldo leaves (Boldo folium, from Peumus boldus Mol.) are very frequently used as a medicinal herb in Chile and are exported to many countries to be used in teas or as extracts included in herbal remedies, primarily as an aid to digestion and as a mild sedative. Scientific support for these uses is scanty, and boldine, an alkaloid viewed as characteristic of the tree and present in high concentration in the bark, is extracted by specialized companies and sold as the supposed main active constituent. Consequently, boldine has been the subject of a considerable number of research papers, while some of the other alkaloids present to a greater extent in the leaves have been relatively neglected except when found in large amounts in other species. These studies range from assays of antioxidant activity to anti-inflammatory, antineoplastic and other medical applications. The essential oil, usually containing a large percentage of the toxic ascaridole, was once used as a vermifuge and is now regarded with caution, but is still of interest as a possible natural insecticide, fungicide, antiparasitic and herbicide. The last decade has seen an explosive increase in papers pointing to possible uses of boldo and its constituents. This review attempts to bring these publications together in a comprehensive way with the purpose of stimulating and orienting further research into the useful properties of this Chilean endemic tree.
Collapse
Affiliation(s)
- Bruce K. Cassels
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
15
|
Assessment of the cytotoxic effects of aporphine prototypes on head and neck cancer cells. Invest New Drugs 2019; 38:70-78. [PMID: 31102120 DOI: 10.1007/s10637-019-00784-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022]
Abstract
Purpose Among alkaloids, abundant secondary metabolites in plants, aporphines constitute a class of compounds with interesting biological activities, including anticancer effects. The present study evaluated the anticancer activities of 14 substances, including four aporphine derivatives acquired through the biomonitoring of (±)-apomorphine hydrochloride total synthesis from 2-phenethylamine and 3,4-dimethoxybenzaldehyde against head and neck squamous cell carcinoma (HNSCC). Methods The cytotoxic effects of compounds against a panel of HNSCC cell lines were determined by PrestoBlue cell viability assay, while the genotoxicity of substances was evaluated by micronucleus test. Cell death was detected by flow cytometry (Annexin V/7AAD) and western blot analysis was used to detect the presence of cleaved Caspase-3 molecules. Results The aporphine and isoquinoline derivatives APO, C1, and A5 significantly reduced HNSCC cell viability and promoted DNA damages in these cells. Further, by activating the Caspase-3 pathway, these substances were able to induce apoptosis. Conclusion Our results revealed that APO, C1, and A5 exhibit cytotoxic effects in HNSCC cells. The mechanisms of action appear to be partly via the generation of DNA damages and apoptosis induction through Caspase-3 pathway activation. This study provides preclinical data that suggest a potential therapeutic role for APO, C1, and A5 against head and neck cancer cells.
Collapse
|
16
|
MHY440, a Novel Topoisomerase Ι Inhibitor, Induces Cell Cycle Arrest and Apoptosis via a ROS-Dependent DNA Damage Signaling Pathway in AGS Human Gastric Cancer Cells. Molecules 2018; 24:molecules24010096. [PMID: 30597845 PMCID: PMC6337620 DOI: 10.3390/molecules24010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
We investigated the antitumor activity and action mechanism of MHY440 in AGS human gastric cancer cells. MHY440 inhibited topoisomerase (Topo) Ι activity and was associated with a DNA damage response signaling pathway. It exhibited a stronger anti-proliferative effect on AGS cells relative to Hs27 human foreskin fibroblast cells, and this effect was both time- and concentration-dependent. MHY440 also increased cell arrest in the G2/M phase by decreasing cyclin B1, Cdc2, and Cdc25c, and upregulating p53 and p73. MHY440 induced AGS cell apoptosis through the upregulation of Fas-L, Fas, and Bax as well as the proteolysis of BH3 interacting-domain death agonist and poly(ADP-ribose) polymerase. It also contributed to the loss of mitochondrial membrane potential. The apoptotic cell death induced by MHY440 was inhibited by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, indicating that apoptosis was caspase-dependent. Moreover, the apoptotic effect of MHY440 was reactive oxygen species (ROS)-dependent, as evidenced by the inhibition of MHY440-induced PARP cleavage and ROS generation via N-acetylcysteine-induced ROS scavenging. Taken together, MHY440 showed anticancer effects by inhibiting Topo I, regulating the cell cycle, inducing apoptosis through caspase activation, and generating ROS, suggesting that MHY440 has considerable potential as a therapeutic agent for human gastric cancer.
Collapse
|
17
|
Vega-Benedetti AF, Saucedo CN, Zavattari P, Vanni R, Royo F, Llavero F, Zugaza JL, Parada LA. PLAGL1 gene function during hepatoma cells proliferation. Oncotarget 2018; 9:32775-32794. [PMID: 30214684 PMCID: PMC6132347 DOI: 10.18632/oncotarget.25996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma develops as a multistep process, in which cell cycle deregulation is a central feature, resulting in unscheduled proliferation. The PLAGL1 gene encodes a homonym zinc finger protein that is involved in cell-proliferation control. We determined the genomic profile and the transcription and expression level of PLAGL1, simultaneously with that of its molecular partners p53, PPARγ and p21, in cell-lines derived from patients with liver cancer, during in vitro cell growth. Our investigations revealed that genomic and epigenetic changes of PLAGL1 are also present in hepatoma cell-lines. Transcription of PLAGL1 in tumor cells is significantly lower than in normal fibroblasts, but no significant differences in terms of protein expression were detected between these two cell-types, indicating that there is not a direct relationship between the gene transcriptional activity and protein expression. RT-PCR analyses on normal fibroblasts, used as control, also showed that PLAGL1 and p53 genes transcription occurs as an apparent orchestrated process during normal cells proliferation, which gets disturbed in cancer cells. Furthermore, abnormal trafficking of the PLAGL1 protein may occur in hepatocarcinogenesis.
Collapse
Affiliation(s)
| | | | - Patrizia Zavattari
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Roberta Vanni
- Biochemistry, Biology and Genetics Unit, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SP 8, Monserrato, Cagliari, Italy
| | - Felix Royo
- CIC BioGUNE-CIBERehd, Bizkaia Technology Park, Derio, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, UPV/EHU Technology Park, Leioa, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis A Parada
- Institute of Experimental Pathology, CONICET-UNSa, Salta, Argentina
| |
Collapse
|
18
|
Xin A, Zhang Y, Zhang Y, Di D, Liu J. Development of an HPLC-DAD method for the determination of five alkaloids in Stephania yunnanensis
Lo and in rat plasma after oral dose of Stephania yunnanensis
Lo extracts. Biomed Chromatogr 2018; 32:e4292. [DOI: 10.1002/bmc.4292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Aiyi Xin
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou China
- University of Chinese Academy of Sciences; Beijing China
| | - Yaming Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou China
- University of Chinese Academy of Sciences; Beijing China
| | - Yanxia Zhang
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou China
- University of Chinese Academy of Sciences; Beijing China
| | - Duolong Di
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou China
| |
Collapse
|
19
|
Yan Q, Li R, Xin A, Han Y, Zhang Y, Liu J, Li W, Di D. Design, synthesis, and anticancer properties of isocorydine derivatives. Bioorg Med Chem 2017; 25:6542-6553. [PMID: 29103873 DOI: 10.1016/j.bmc.2017.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 01/20/2023]
Abstract
Isocorydine (ICD), an aporphine alkaloid, is widely distributed in nature. Its ability to target side population (SP) cells found in human hepatocellular carcinoma (HCC) makes it and its derivative 8-amino-isocorydine (NICD) promising chemotherapeutic agents for the treatment of HCC. To improve the anticancer activity of isocorydine derivatives, twenty derivatives of NICD were designed and synthesized through chemical structure modifications of the aromatic amino group at C-8. The anti-proliferative activities of all synthesized compounds against human hepatocellular (HepG2), cervical (HeLa), and gastric (MGC-803) cancer cell lines were evaluated using an MTT assay. The results showed that all the synthetic compounds had some tumor cell growth inhibitory activity. The compound COM33 (24) was the most active with IC50 values under 10 μM (IC50 for HepG2 = 7.51 µM; IC50 for HeLa = 6.32 μM). FICD (12) and COM33 (24) were selected for further investigation of their in vitro and in vivo activities due to their relatively good antiproliferative properties. These two compounds significantly downregulated the expression of four key proteins (C-Myc, β-Catenin, CylinD1, and Ki67) in HepG2 cells. The tumor inhibition rate of COM33 (24) in vivo was 73.8% after a dose 100 mg/kg via intraperitoneal injection and the combined inhibition rate of COM33 (24) (50 mg/kg) with sorafenib (50 mg/kg) was 66.5%. The results indicated that these isocorydine derivatives could potentially be used as targeted chemotherapy agents or could be further developed in combination with conventional chemotherapy drugs to target cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT), the main therapeutic targets in HCC.
Collapse
Affiliation(s)
- Qian Yan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Ruxia Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China; Gansu Key Laboratory of Preclinical Studies for New Drugs, Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Aiyi Xin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yin Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Yanxia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| | - Junxi Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China.
| | - Wenguang Li
- Gansu Key Laboratory of Preclinical Studies for New Drugs, Institute of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China
| |
Collapse
|
20
|
Zhang J, Wen X, Liu N, Li YQ, Tang XR, Wang YQ, He QM, Yang XJ, Zhang PP, Ma J, Sun Y. Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:147. [PMID: 29052525 PMCID: PMC5649082 DOI: 10.1186/s13046-017-0621-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Background Epigenetic abnormalities play important roles in nasopharyngeal cancer (NPC), however, the epigenetic changes associated with abnormal cell proliferation remain unclear. Methods We detected epigenetic change of ZNF671 in NPC tissues and cell lines by bisulfite pyrosequencing. We evaluated zinc finger protein 671 (ZNF671) expression in NPC cell lines and clinical tissues using real-time PCR and western blotting. Then, we established NPC cell lines that stably overexpressed ZNF671 and knocked down ZNF671 expression to explore its function in NPC in vitro and in vivo. Additionally, we investigated the potential mechanism of ZNF671 by identifying the mitotic spindle and G2/M checkpoint pathways pathway downstream genes using gene set enrichment analysis, flow cytometry and western blotting. Results ZNF671 was hypermethylated in NPC tissues and cell lines. The mRNA and protein expression of ZNF671 was down-regulated in NPC tissues and cell lines and the mRNA expression could be upregulated after the demethylation agent 5-aza-2′-deoxycytidine treatment. Overexpression of ZNF671 suppressed NPC cell proliferation and colony formation in vitro; silencing ZNF671 using a siRNA had the opposite effects. Additionally, overexpression of ZNF671 reduced the tumorigenicity of NPC cells in xenograft model in vivo. The mechanism study determined that overexpressing ZNF671 induced S phase arrest in NPC cells by upregulating p21 and downregulating cyclin D1 and c-myc. Conclusions Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and enhances tumorigenicity by inhibiting cell cycle arrest in NPC, which may represent a novel potential therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-017-0621-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xin Wen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xin-Ran Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ya-Qin Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Pan-Pan Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China.
| | - Ying Sun
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylicapnos scandens by transcriptome analysis. Sci Rep 2017; 7:9119. [PMID: 28831066 PMCID: PMC5567367 DOI: 10.1038/s41598-017-08672-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Dactylicapnos scandens (D. Don) Hutch (Papaveraceae) is a well-known traditional Chinese herb used for treatment of hypertension, inflammation, bleeding and pain for centuries. Although the major bioactive components in this herb are considered as isoquinoline alkaloids (IQAs), little is known about molecular basis of their biosynthesis. Here, we carried out transcriptomic analysis of roots, leaves and stems of D. scandens, and obtained a total of 96,741 unigenes. Based on gene expression and phylogenetic relationship, we proposed the biosynthetic pathways of isocorydine, corydine, glaucine and sinomenine, and identified 67 unigenes encoding enzymes potentially involved in biosynthesis of IQAs in D. scandens. High performance liquid chromatography analysis demonstrated that while isocorydine is the most abundant IQA in D. scandens, the last O-methylation biosynthesis step remains unclear. Further enzyme activity assay, for the first time, characterized a gene encoding O- methyltransferase (DsOMT), which catalyzes O-methylation at C7 of (S)-corytuberine to form isocorydine. We also identified candidate transcription factor genes belonging to WRKY and bHLH families that may be involved in the regulation of IQAs biosynthesis. Taken together, we first provided valuable genetic information for D. scandens, shedding light on candidate genes involved in IQA biosynthesis, which will be critical for further gene functional characterization.
Collapse
|
22
|
Derivate Isocorydine (d-ICD) Suppresses Migration and Invasion of Hepatocellular Carcinoma Cell by Downregulating ITGA1 Expression. Int J Mol Sci 2017; 18:ijms18030514. [PMID: 28264467 PMCID: PMC5372530 DOI: 10.3390/ijms18030514] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023] Open
Abstract
In our previous studies, we found that isocorydine (ICD) could be a potential antitumor agent in hepatocellular carcinoma (HCC). Derivate isocorydine (d-ICD), a more effective antitumor agent, has been demonstrated to inhibit proliferation and drug resistance in HCC. In order to investigate the potential role of d-ICD on HCC cell migration and its possible mechanism, wound healing assay, trans-well invasion assay, western blot analysis, and qRT-PCR were performed to study the migration and invasion ability of HCC cells as well as relevant molecular alteration following d-ICD treatment. Results indicated that the migration and invasion ability of HCC cells were suppressed when cultured with d-ICD. Meanwhile, the expression level of ITGA1 was markedly reduced. Furthermore, we found that ITGA1 promotes HCC cell migration and invasion in vitro, and that ITGA1 can partly reverse the effect of d-ICD-induced migration and invasion suppression in HCC cells. In addition, dual luciferase reporter assay and chromatin immunoprecipitation assay were used to study the expression regulation of ITGA1, and found that E2F1 directly upregulates ITGA1 expression and d-ICD inhibits E2F1 expression. Taken together, these results reveal that d-ICD inhibits HCC cell migration and invasion may partly by downregulating E2F1/ITGA1 expression.
Collapse
|
23
|
Grecco SS, Lorenzi H, Tempone AG, Lago JHG. Update: biological and chemical aspects of Nectandra genus (Lauraceae). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Li M, Zhang L, Ge C, Chen L, Fang T, Li H, Tian H, Liu J, Chen T, Jiang G, Xie H, Cui Y, Yao M, Li J. An isocorydine derivative (d-ICD) inhibits drug resistance by downregulating IGF2BP3 expression in hepatocellular carcinoma. Oncotarget 2016; 6:25149-60. [PMID: 26327240 PMCID: PMC4694821 DOI: 10.18632/oncotarget.4438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
In our previous studies, we reported that CD133+ cancer stem cells (CSCs) were chemoresistant in hepatocellular carcinoma (HCC) and that isocorydine treatment decreased the percentage of CD133+ CSCs. Here, we found that a derivative of isocorydine (d-ICD) inhibited HCC cell growth, particularly among the CD133+ subpopulation, and rendered HCC cells more sensitive to sorafenib treatment. d-ICD inhibited IGF2BP3 expression in a time-dependent manner, and IGF2BP3 expression negatively correlated with d-ICD-induced growth suppression. IGF2BP3 overexpression enriched the CD133+ CSC subpopulation in HCC, enhanced tumor sphere formation and suppressed the cytotoxic effects of sorafenib and doxorubicin. The expression of drug resistance-related genes, including ABCB1 and ABCG2, and the CSC marker CD133 expression was increased after IGF2BP3 overexpression. The significance of these observations was underscored by our findings that high IGF2BP3 expression predicted poor survival in a cohort of 236 patients with HCC and positively correlated with ABCG2 and CD133 expression in vivo. These results suggested that the d-ICD may inhibit HCC cells growth by IGF2BP3 decrease and that IGF2BP3 may serve as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Meng Li
- School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lijuan Chen
- School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tao Fang
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Taoyang Chen
- Qi Dong Liver Cancer Institute, Qi Dong People's Hospital, Qi Dong, Jiangsu Province, China
| | - Guoping Jiang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haiyang Xie
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Cui
- Cancer Institute of Guangxi, Guangxi Medical University, Nanning, China
| | - Ming Yao
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
HU CHENGQI, GAO XUEXIANG, HAN YUANYUAN, GUO QI, ZHANG KAILIANG, LIU MIAOMIAO, WANG YUGANG, WANG JING. Evodiamine sensitizes BGC-823 gastric cancer cells to radiotherapy in vitro and in vivo. Mol Med Rep 2016; 14:413-9. [DOI: 10.3892/mmr.2016.5237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/11/2016] [Indexed: 11/06/2022] Open
|
26
|
Jin S, Park HJ, Oh YN, Kwon HJ, Kim JH, Choi YH, Kim BW. Anti-cancer Activity of Osmanthus matsumuranus Extract by Inducing G2/M Arrest and Apoptosis in Human Hepatocellular Carcinoma Hep G2 Cells. J Cancer Prev 2015; 20:241-9. [PMID: 26734586 PMCID: PMC4699751 DOI: 10.15430/jcp.2015.20.4.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Osmanthus matsumuranus, a species of Oleaceae, is found in East Asia and Southeast Asia. The bioactivities of O. matsumuranus have not yet been fully understood. Here, we studied on the molecular mechanisms underlying anti-cancer effect of ethanol extract of O. matsumuranus (EEOM). METHODS Inhibitory effect of EEOM on cell growth and proliferation was determined by WST assay in various cancer cells. To investigate the mechanisms of EEOM-mediated cytotoxicity, HepG2 cells were treated with various concentration of EEOM and analyzed the cell cycle arrest and apoptosis induction by flow cytometry, Western blot analysis, 4,6-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation. RESULTS EEOM showed the cytotoxic activities in a dose-dependent manner in various cancer cell lines but not in normal cells, and HepG2 cells were most susceptible to EEOM-induced cytotoxicity. EEOM induced G2/M arrest in HepG2 cells associated with decreased expression of cyclin-dependent kinase 1 (CDK1), cyclin A and cylcin B, and increased expression of phospho-checkpoint kinase 2, p53 and CDK inhibitor p21. Immunofluorescence staining showed that EEOM-treated HepG2 increased doublet nuclei and condensed actin, resulting in cell rounding. Furthermore, EEOM-mediated apoptosis was determined by Annexin V staining, chromatin condensation and DNA fragmentation. EEOM caused upregulation of FAS and Bax, activation of caspase-3, -8, -9, and fragmentation of poly ADP ribose polymerase. CONCLUSIONS These results suggest that EEOM efficiently inhibits proliferation of HepG2 cells by inducing both G2/M arrest and apoptosis via intrinsic and extrinsic pathways, and EEOM may be used as a cancer chemopreventive agent in the food or nutraceutical industry.
Collapse
Affiliation(s)
- Soojung Jin
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
- Department of Life Science and Biotechnology, College of Natural Sciences and Human Ecology, Dong-Eui University, Busan,
Korea
| | - Hyun-Jin Park
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
| | - You Na Oh
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
| | - Hyun Ju Kwon
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
- Department of Life Science and Biotechnology, College of Natural Sciences and Human Ecology, Dong-Eui University, Busan,
Korea
| | - Jeong-Hwan Kim
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
| | - Yung Hyun Choi
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan,
Korea
- Anti-Aging Research Center, Dong-Eui University, Busan,
Korea
| | - Byung Woo Kim
- Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan,
Korea
- Department of Life Science and Biotechnology, College of Natural Sciences and Human Ecology, Dong-Eui University, Busan,
Korea
| |
Collapse
|
27
|
Chen L, Tian H, Li M, Ge C, Zhao F, Zhang L, Li H, Liu J, Wang T, Yao M, Li J. Derivate isocorydine inhibits cell proliferation in hepatocellular carcinoma cell lines by inducing G2/M cell cycle arrest and apoptosis. Tumour Biol 2015; 37:5951-61. [PMID: 26596832 DOI: 10.1007/s13277-015-4362-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that isocorydine (ICD) can be served as a potential antitumor agent in hepatocellular carcinoma (HCC). A novel derivate of isocorydine (d-ICD) could significantly improve its anticancer activity in tumors. However, the molecular mechanisms of d-ICD on HCC cells remain to be unclear. In this study, we observed that d-ICD inhibited cell proliferation and induced apoptosis of HCC cells in a concentration-dependent manner. We found d-ICD induced G2/M cycle arrest of HCC cells via DNA damage 45 alpha (GADD45A) and p21 pathway in vitro and in vivo. In d-ICD-treated cells, cell cycle-related proteins cyclin B1 and p-CDC2 were upregulated and p-cyclin B1, CDC2, and E2F1 were inhibited. p21 expression can be reversed by knockdown of GADD45A in d-ICD-treated HCC cells. Enforced expression of CCAAT/enhancer-binding protein β (C/EBPβ) in combination with d-ICD enhanced the p21 expression in HCC cells. Furthermore, the luciferase reporter assay showed that upregulation of GADD45A by C/EBPβ was achieved through the increase of GADD45A promoter activity. These findings indicate that d-ICD inhibits cell proliferation and induces cell cycle arrest through activation of C/EBPβ-GADD45A-p21 pathway in HCC cells. d-ICD might be a promising chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Chen
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Meng Li
- Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory Fornatural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tingpu Wang
- College of Life Sciences and Chemistry, Tianshui Normal University, Tianshui, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Wu CC, Huang KF, Yang TY, Li YL, Wen CL, Hsu SL, Chen TH. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS One 2015; 10:e0132052. [PMID: 26147394 PMCID: PMC4492957 DOI: 10.1371/journal.pone.0132052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
Koelreuteria henryi Dummer, an endemic plant of Taiwan, has been used as a folk medicine for the treatment of hepatitis, enteritis, cough, pharyngitis, allergy, hypertension, hyperlipidemia, and cancer. Austrobailignan-1, a natural lignan derivative isolated from Koelreuteria henryi Dummer, has anti-oxidative and anti-cancer properties. However, the effects of austrobailignan-1 on human cancer cells have not been studied yet. Here, we showed that austrobailignan-1 inhibited cell growth of human non-small cell lung cancer A549 and H1299 cell lines in both dose- and time-dependent manners, the IC50 value (48 h) of austrobailignan-1 were 41 and 22 nM, respectively. Data from flow cytometric analysis indicated that treatment with austrobailignan-1 for 24 h retarded the cell cycle at the G2/M phase. The molecular event of austrobailignan-1-mediated G2/M phase arrest was associated with the increase of p21Waf1/Cip1 and p27Kip1 expression, and decrease of Cdc25C expression. Moreover, treatment with 100 nM austrobailignan-1 for 48 h resulted in a pronounced release of cytochrome c followed by the activation of caspase-2, -3, and -9, and consequently induced apoptosis. These events were accompanied by the increase of PUMA and Bax, and the decrease of Mcl-1 and Bcl-2. Furthermore, our study also showed that austrobailignan-1 was a topoisomerase 1 inhibitor, as evidenced by a relaxation assay and induction of a DNA damage response signaling pathway, including ATM, and Chk1, Chk2, γH2AX phosphorylated activation. Overall, our results suggest that austrobailignan-1 is a novel DNA damaging agent and displays a topoisomerase I inhibitory activity, causes DNA strand breaks, and consequently induces DNA damage response signaling for cell cycle G2/M arrest and apoptosis in a p53 independent manner.
Collapse
Affiliation(s)
- Chun-Chi Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Keh-Feng Huang
- Department of Applied Chemistry, Providence University, Taichung, Taiwan, ROC
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ya-Ling Li
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Luan Wen
- Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Propagation Technology Section, Taichung, Taiwan, ROC
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tzu-Hsiu Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan, Taiwan, ROC
- * E-mail:
| |
Collapse
|
29
|
Liu Y, Chen X, Liu J, Di D. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds fromDicranostigma leptopodumby high-speed counter-current chromatography. J Sep Sci 2015; 38:2038-45. [DOI: 10.1002/jssc.201401466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/08/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Yanjuan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics; Lanzhou China
- Graduate University of the Chinese Academy of Sciences; Beijing China
| | - Xiaofen Chen
- Lanzhou University; Analysis and Testing Center; Lanzhou China
| | - JunXi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics; Lanzhou China
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics; Lanzhou China
| |
Collapse
|
30
|
Chen Y, Yan Q, Zhong M, Zhao Q, Liu J, Di D, Liu J. Study on pharmacokinetics and tissue distribution of the isocorydine derivative (AICD) in rats by HPLC-DAD method. Acta Pharm Sin B 2015; 5:238-45. [PMID: 26579452 PMCID: PMC4629263 DOI: 10.1016/j.apsb.2015.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
A simple and effective high-performance liquid chromatography with diode-array detection method coupled with a liquid-liquid extraction pretreatment has been developed for determining the pharmacokinetics and tissue distribution of a novel structurally modified derivative (8-acetamino-isocorydine) of isocorydine. According to the in vivo experiments data calculations by DAS 2.0 software, a two-compartment metabolic model was suitable for describing the pharmacokinetic of 8-acetamino-isocorydine in rats. 8-Acetamino-isocorydine was absorbed well after oral administration, and the absolute bioavailability was 76.5%. The half-life of 8-acetamino-isocorydine after intravenous and oral administration was 2.2 h and 2.0 h, respectively. In vivo, 8-acetamino-isocorydine was highly distributed in the lungs, kidney and liver; however, relatively little entered the brain, suggesting that 8-acetamino-isocorydine could not easily pass through the blood brain barrier. Our work describes the first characterization of the pharmacokinetic parameters and tissue distribution of 8-acetamino-isocorydine. The acquired data will provide useful information for the in vivo pharmacology of 8-acetamino-isocorydine, and can be applied to new drug research.
Collapse
Key Words
- 8-Acetamino-isocorydine
- AICD, 8-acetamino-isocorydine
- AUC, area under concentration-time curve
- Alkaloids
- F, absolute bioavailability
- HPLC-DAD, high-performance liquid chromatography with diode-array detection
- HPLC-UV, high-performance liquid chromatography coupled with ultraviolet detection
- High-performance liquid chromatography with diode-array detection
- ICD, isocorydine
- IS, internal standard
- LC-ESI-MS/MS, high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry
- LLE, liquid-liquid extraction
- LLOQ, lower limit of quantification
- LOD, limit of detection
- Pharmacokinetics
- QC, quality control
- RE, relative error
- RP, reverse phase
- RSD, relative standard deviation
- SD, standard deviation.
- Tissue distribution
Collapse
|
31
|
Abstract
Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery of new drugs, due to their wide structural diversity and present, mostly specific and selective biological activities. Among natural products the alkaloids, biologically active secondary metabolites, that can be found in plants, animals or microorganisms stand out. The alkaloids are compounds consisting of a basic nitrogen atom that may or may not be part of a heterocyclic ring. This review will describe 15 alkaloids with antiulcer activity in animal models and in vitro studies.
Collapse
|
32
|
Chen Y, Li M, Liu J, Yan Q, Zhong M, Liu J, Di D, Liu J. Simultaneous determination of the content of isoquinoline alkaloids inDicranostigma leptopodum(Maxim) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection. J Sep Sci 2014; 38:9-17. [DOI: 10.1002/jssc.201400905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Yali Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
- Institute of Medicinal Chemistry; School of Pharmacy, Lanzhou University; Lanzhou PR China
| | - Min Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Jianjun Liu
- University hospital of Gansu Traditional Chinese Medicine; Lanzhou PR China
| | - Qian Yan
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Mei Zhong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; Lanzhou PR China
| | - Jinxia Liu
- Institute of Biology; Gansu Academy of Sciences; Lanzhou PR China
| |
Collapse
|
33
|
Zhong M, Liu Y, Liu J, Di D, Xu M, Yang Y, Li W, Chen Y, Liu J. Isocorydine derivatives and their anticancer activities. Molecules 2014; 19:12099-115. [PMID: 25120059 PMCID: PMC6271052 DOI: 10.3390/molecules190812099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/13/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022] Open
Abstract
In order to improve the anticancer activity of isocorydine (ICD), ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8) and 6a,7-dihydrogen-isocorydione (10) could inhibit the growth of human lung (A549), gastric (SGC7901) and liver (HepG2) cancer cell lines in vitro. Isocorydione (2) could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11), a pro-drug of 8-amino-isocorydine (8), which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.
Collapse
Affiliation(s)
- Mei Zhong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yanjuan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Duolong Di
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Mengrou Xu
- Gansu Key Laboratory of Preclinical Study for New Drugs, Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China.
| | - Yaya Yang
- Gansu Key Laboratory of Preclinical Study for New Drugs, Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China.
| | - Wenguang Li
- Gansu Key Laboratory of Preclinical Study for New Drugs, Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China.
| | - Yali Chen
- Gansu Key Laboratory of Preclinical Study for New Drugs, Institute of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China.
| | - Jinxia Liu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
34
|
Desgrouas C, Taudon N, Bun SS, Baghdikian B, Bory S, Parzy D, Ollivier E. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:537-563. [PMID: 24768769 DOI: 10.1016/j.jep.2014.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. AIM OF THE REVIEW To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. MATERIAL AND METHODS Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. RESULTS The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. CONCLUSION Stephania rotunda is traditionally used for the treatment of a wide range of ailments. Pharmacological investigations have validated different uses of Stephania rotunda in folk medicine. The present review highlights the three most promising compounds of Stephania rotunda, which could constitute potential leads in various medicinal fields, including malaria and cancer.
Collapse
Affiliation(s)
- Camille Desgrouas
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France; UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | | | - Sok-Siya Bun
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Beatrice Baghdikian
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Sothavireak Bory
- Faculté de Pharmacie, Université des Sciences de la Santé, no. 73, Monivong Blvd, Daun Penh, Phnom Penh, Cambodia.
| | - Daniel Parzy
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Evelyne Ollivier
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| |
Collapse
|
35
|
Cytotoxicity of Aporphine, Protoberberine, and Protopine Alkaloids from Dicranostigma leptopodum (Maxim.) Fedde. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:580483. [PMID: 24963327 PMCID: PMC4055583 DOI: 10.1155/2014/580483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022]
Abstract
Nine alkaloids with three different structural skeletons were isolated from Dicranostigma leptopodum (Maxim.) Fedde (Papaveraceae) by repeated silica gel column chromatography. Their chemical structures were identified on the basic of physicochemical and spectroscopic data. Among them, 10-O-methylhernovine (1), nantenine (2), corytuberine (3), lagesianine A (4), and dihydrocryptopine (9) were first isolated from this plant. With a series of cytotoxic tests, compounds 2, 3, and 7 displayed cytotoxicity against SMMC-7721 with IC50 values of 70.08 ± 4.63, 73.22 ± 2.35, and 27.77 ± 2.29 μM, respectively.
Collapse
|
36
|
Bo S, Hui H, Li W, Hui L, Hong X, Lin D, Dai WX, Wu YH, Ai XH, Hao J, Qi S. Chk1, but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells. Food Chem Toxicol 2014; 68:61-70. [PMID: 24650757 DOI: 10.1016/j.fct.2014.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/19/2014] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
Diallyl disulfide (DADS) has been shown to cause G2/M phase cell cycle arrest in several human cancers. Here we demonstrate a mechanism by which DADS induces G2/M phase arrest in BGC823 human gastric cancer cells via Chk1. From cell cycle gene array results, we next confirmed that cyclin B1 expression was decreased by DADS, while the expression of p21, GADD45α and p53 were increased. Despite the lack of change in Chk1 gene expression in response to DADS according to the array analysis, intriguingly overexpression of Chk1, but not Chk2, exhibited increased accumulation in G2/M phase. Moreover, overexpression of Chk1 promoted the effect of DADS-induced G2/M arrest. Augmented phosphorylation of Chk1 by DADS was observed in Chk1-transfected cells, followed by downregulation of Cdc25C and cyclin B1 proteins. In contrast, phosphorylated Chk2 showed no obvious change in Chk2-transfected cells after DADS treatment. Furthermore, knockdown of Chk1 by siRNA partially abrogated DADS-induced downregulation of Cdc25C and cyclin B1 proteins and G2/M arrest. In contrast, knockdown of Chk2 did not show these effects. Therefore, these data indicate that DADS may specifically modulate Chk1 phosphorylation, and DADS-induced G2/M phase arrest in BGC823 cells could result in part from Chk1-mediated inhibition of the Cdc25C/cyclin B1 pathway.
Collapse
Affiliation(s)
- Su Bo
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China; Key Laboratory for Pharmacoproteomics of Hunan Provincial University, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - He Hui
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Wang Li
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Ling Hui
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Xia Hong
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Dong Lin
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Xiang Dai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - You-Hua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hong Ai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jiang Hao
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Su Qi
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
Zhong M, Ma YX, Liu JX, Di DL. A new quaternary protoberberine alkaloid isolated from Dicranostigma leptopodum (Maxim) Fedde. Nat Prod Res 2014; 28:507-10. [PMID: 24499388 DOI: 10.1080/14786419.2013.879586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phytochemical investigation of the whole plants of Dicranostigma leptopodum (Maxim) Fedde has led to the isolation of two quaternary protoberberine alkaloids 5-hydroxy-coptisine (1) and berberrubine (2). This type of alkaloids was isolated from the genus Dicranostigma for the first time and the new compound structure (1) was elucidated by various spectroscopic methods including 2D NMR techniques (gCOSY, HMQC and HMBC) and HR-ESI-MS.
Collapse
Affiliation(s)
- Mei Zhong
- a Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 73000 , P.R. China
| | | | | | | |
Collapse
|
38
|
Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC. Berberine and S allyl cysteine mediated amelioration of DEN+CCl4 induced hepatocarcinoma. Biochim Biophys Acta Gen Subj 2014; 1840:219-44. [DOI: 10.1016/j.bbagen.2013.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
|
39
|
Lu P, Sun H, Zhang L, Hou H, Zhang L, Zhao F, Ge C, Yao M, Wang T, Li J. Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma. Mol Med 2012; 18:1136-46. [PMID: 22714713 DOI: 10.2119/molmed.2012.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/12/2012] [Indexed: 12/25/2022] Open
Abstract
Isocorydine (ICD), an anticancer agent under current evaluation, decreased the percentage of side population (SP) cells significantly in hepatocellular carcinoma (HCC) cell lines. ICD treatment sensitized cancer cells to doxorubicin (DXR), a conventional clinical chemotherapeutic drug for HCC. We found that ICD decreased the percentage of SP cells in HCC cell lines by preferentially killing SP cells. In the early stage of treatment, ICD inhibited SP cell growth by arresting cells in G2/M; later, it induced apoptosis. Our xenograft model confirmed that ICD selectively reduced the size and weight of SP-induced tumor masses in vivo. Furthermore, it was found that programmed cell death 4 (PDCD4), a tumor suppressor gene, was relatively low when expressed in SP cells compared with non-SP cells, and its expression level was remarkably elevated when cells were treated with ICD. Taken together, these data suggest that ICD is a drug that may target the SP cells of HCC.
Collapse
Affiliation(s)
- Ping Lu
- Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|