1
|
Yang Y, Xie P, Nan Y, Xu X, Yuan J, Li Y, Bi Y, Prusky D. Transcriptome Analysis Provides Insights into the Mechanism of the Transcription Factor AaCrz1 Regulating the Infection Structure Formation of Alternaria alternata Induced by Pear Peel Wax Signal. Int J Mol Sci 2024; 25:11950. [PMID: 39596020 PMCID: PMC11593592 DOI: 10.3390/ijms252211950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alternaria alternata, a causal agent of pear black spot, can recognize and respond to physicochemical signals from fruit surfaces through an intricate signaling network to initiate infection. Crz1 is an important transcription factor downstream of the calcium signaling pathway. In this study, we first investigated the infection structure formation process of the wild type (WT) and ΔAaCrz1 strains induced by the cuticular wax of the "Zaosu" pear by microscopic observation. We found that the infection process was delayed and the rate of appressorium formation and infection hyphae formation was significantly decreased in the ΔAaCrz1 strain. RNA-seq of WT and ΔAaCrz1 strains was analyzed after 6 h of induction with pear wax. A total of 893 up-regulated and 534 down-regulated genes were identified. Among them, genes related to cell wall degrading enzymes, ABC transporters, and ion homeostasis were down-regulated, and the autophagy pathway was induced and activated. In addition, disruption to the intracellular antioxidant system was also found after AaCrz1 knockdown. In summary, this study provides new information on the mechanism of the transcription factor AaCrz1 in the regulation of infection structure formation of A. alternata induced by pear peel wax signal, which can be used to develop new strategies for controlling fungal diseases in the future.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yuanping Nan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Jing Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| |
Collapse
|
2
|
Dai M, Du W, Lu L, Zhang S. Transcription factors SltA and CrzA reversely regulate calcium homeostasis under calcium-limited conditions. Appl Environ Microbiol 2023; 89:e0117023. [PMID: 37874299 PMCID: PMC10686095 DOI: 10.1128/aem.01170-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Calcium ions are ubiquitous intracellular signaling molecules for many signaling pathways regulating the fungal response to stress and antifungal drugs. The concentration of intracellular calcium is tightly regulated in its storage, release, and distribution. CrzA is the best-studied transcription factor that regulates this process under sufficient calcium or other external signals. However, CrzA was excluded from nuclei and then lost transcriptional activation under calcium-limited conditions. The regulators in the Ca2+ signaling pathway under calcium-limited conditions remain unclear. Here, we identified SltA as a key regulator in the Ca2+ signaling pathway under calcium-limited conditions, and the underlying mechanisms were further explored in Aspergillus fumigatus. These findings reveal a transcriptional control pathway that precisely regulates calcium homeostasis under calcium-limited conditions.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Yang Y, Xie P, Li Y, Bi Y, Prusky DB. Updating Insights into the Regulatory Mechanisms of Calcineurin-Activated Transcription Factor Crz1 in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1082. [PMID: 36294647 PMCID: PMC9604740 DOI: 10.3390/jof8101082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated calcium signaling pathway has been studied systematically in various mammals and fungi, indicating that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+ channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion homeostasis, infection structure development, cell wall integrity and virulence. This review briefly summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi, the new strategies in which Crz1 may be used as a target to explore disease control in practice are also discussed.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Ye J, Wang Y, Li X, Wan Q, Zhang Y, Lu L. Synergistic Antifungal Effect of a Combination of Iron Deficiency and Calcium Supplementation. Microbiol Spectr 2022; 10:e0112122. [PMID: 35674440 PMCID: PMC9241635 DOI: 10.1128/spectrum.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 01/10/2023] Open
Abstract
Fungal diseases have become a major public health issue worldwide. Increasing drug resistance and the limited number of available antifungals result in high morbidity and mortality. Metal-based drugs have been reported to be therapeutic agents against major protozoan diseases, but knowledge of their ability to function as antifungals is limited. In this study, we found that calcium supplementation combined with iron deficiency causes dramatic growth inhibition of the human fungal pathogens Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Calcium induces the downregulation of iron uptake-related genes and, in particular, causes a decrease in the expression of the transcription factor HapX, which tends to transcriptionally activate siderophore-mediated iron acquisition under iron-deficient conditions. Iron deficiency causes calcium overload and the overproduction of intracellular reactive oxygen species (ROS), and perturbed ion homeostasis suppresses fungal growth. These phenomena are consistently identified in azole-resistant A. fumigatus isolates. The findings here imply that low iron availability lets cells mistakenly absorb calcium as a substitute, causing calcium abnormalities. Thus, there is a mutual effect between iron and calcium in fungal pathogens, and the combination of calcium with an iron chelator could serve to improve antifungal therapy. IMPORTANCE Millions of immunocompromised people are at a higher risk of developing different types of severe fungal diseases. The limited number of antifungals and the emergence of antimicrobial resistance highlight an urgent need for new strategies against invasive fungal infections. Here, we report that calcium can interfere with iron absorption of fungal pathogens, especially in iron-limited environments. Thus, a combination of calcium supplementation with an iron chelator inhibits the growth of human fungal pathogens, including Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. Moreover, we demonstrate that iron deficiency induces a nonspecific calcium uptake response, which results in toxic levels of metal. Findings in this study suggest that a microenvironment with excess calcium and limited iron is an efficient strategy to curb the growth of fungal pathogens, especially for drug-resistant isolates.
Collapse
Affiliation(s)
- Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yamei Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xinyu Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qinyi Wan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
6
|
Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. mBio 2021; 12:e0273521. [PMID: 34663092 PMCID: PMC8524344 DOI: 10.1128/mbio.02735-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.
Collapse
|
7
|
Archer M, Xu J. Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel) 2021; 12:genes12070960. [PMID: 34202507 PMCID: PMC8307107 DOI: 10.3390/genes12070960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of Aspergillus. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with beta-tubulin being the most used reference gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of Aspergillus.
Collapse
Affiliation(s)
| | - Jianping Xu
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27934); Fax: +1-905-522-6066
| |
Collapse
|
8
|
Zhang C, Ren Y, Gu H, Gao L, Zhang Y, Lu L. Calcineurin-mediated intracellular organelle calcium homeostasis is required for the survival of fungal pathogens upon extracellular calcium stimuli. Virulence 2021; 12:1091-1110. [PMID: 33843471 PMCID: PMC8043181 DOI: 10.1080/21505594.2021.1909954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, calcium not only is an essential mineral nutrient but also serves as an intracellular second messenger that is necessary for many physiological processes. Previous studies showed that the protein phosphatase-calcineurin protects fungi from toxicity caused by the extracellular calcium; however, little is known about how calcineurin mediates the cellular physiology process for this function. In this study, by monitoring intracellular calcium, particularly by tracking vacuolar calcium dynamics in living cells through a novel procedure using modified aequorin, we found that calcineurin dysfunction systematically caused abnormal intracellular calcium homeostasis in cytosol, mitochondria, and vacuole, leading to drastic autophagy, global organelle fragmentation accompanied with the increased expression of cell death-related enzymes, and cell death upon extracellular calcium stimuli. Notably, all detectable defective phenotypes seen with calcineurin mutants can be significantly suppressed by alleviating a cytosolic calcium overload or increasing vacuolar calcium storage capacity, suggesting toxicity of exogenous calcium to calcineurin mutants is tightly associated with abnormal cytosolic calcium accumulation and vacuolar calcium storage capacity deficiency. Our findings provide insights into how the original recognized antifungal drug target-calcineurin regulates intracellular calcium homeostasis for cell survival and may have important implications for antifungal therapy and clinical drug administration.
Collapse
Affiliation(s)
- Chi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yiran Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huiyu Gu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Hou YH, Hsu LH, Wang HF, Lai YH, Chen YL. Calcineurin Regulates Conidiation, Chlamydospore Formation and Virulence in Fusarium oxysporum f. sp. lycopersici. Front Microbiol 2020; 11:539702. [PMID: 33193126 PMCID: PMC7641966 DOI: 10.3389/fmicb.2020.539702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022] Open
Abstract
Fusarium wilt of tomato caused by the ascomycetous fungus Fusarium oxysporum f. sp. lycopersici (Fol) is widespread in most tomato planting areas. Calcineurin is a heterodimeric calcium/calmodulin-dependent protein phosphatase comprised of catalytic (Cna1) and regulatory (Cnb1) subunits. Calcineurin has been studied extensively in human fungal pathogens, but less is known about its roles in plant fungal pathogens. It is known that calcineurin regulates fungal calcium signaling, growth, drug tolerance, and virulence. However, the roles of calcineurin in Fol have not yet been characterized. In this study, we deleted calcineurin CNA1 and CNB1 genes to characterize their roles in conidiation, chlamydospore formation and virulence in Fol. Our results revealed that both cna1 and cnb1 mutants show defects in calcineurin phosphatase activity, vegetative growth and conidiation as compared to the wild type. Furthermore, calcineurin mutants exhibited blunted and swollen hyphae as observed by scanning electron microscopy. Interestingly, we found that Fol calcineurin is critical for chlamydospore formation, a function of calcineurin previously undocumented in the fungal kingdom. According to transcriptome analysis, the expression of 323 and 414 genes was up- and down-regulated, respectively, in both cna1 and cnb1 mutants. Based on the pathogen infection assay, tomato plants inoculated with cna1 or cnb1 mutant have a dramatic reduction in disease severity, indicating that calcineurin has a vital role in Fol virulence. In conclusion, our findings suggest that Fol calcineurin is required, at least in part, for phosphatase activity, vegetative growth, conidiation, chlamydospore formation, and virulence.
Collapse
Affiliation(s)
- Yi-Hsuan Hou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Fu Wang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsin Lai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Precise Expression of Afmed15 Is Crucial for Asexual Development, Virulence, and Survival of Aspergillus fumigatus. mSphere 2020; 5:5/5/e00771-20. [PMID: 33028685 PMCID: PMC7568654 DOI: 10.1128/msphere.00771-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The identification and characterization of regulators essential for virulence or development constitute one approach for antifungal drug development. In this study, we screened and functionally characterized Afmed15, a novel developmental regulator in A. fumigatus. We demonstrate that the precise transcriptional expression of Afmed15 is crucial for fungal asexual development, virulence, and survival. Downregulating the expression of Afmed15 abolished the conidiation and decreased the fungal virulence in an insect model. In contrast, the overexpression of Afmed15 caused fungal death accompanied by intensive autophagy. Our study provides a foundation for further studies to identify compounds perturbing the expression of Afmed15 that may be used for the prevention of invasive A. fumigatus infections. The rise of drug resistance in fungal pathogens is becoming a serious problem owing to the limited number of antifungal drugs available. Identifying and targeting factors essential for virulence or development unique to fungal pathogens is one approach to develop novel treatments for fungal infections. In this study, we present the identification and functional characterization of a novel developmental regulator in Aspergillus fumigatus, AfMed15, which contained a conserved Med15_fungal domain, as determined by screening of a mutant library that contained more than 2,000 hygromycin-resistant A. fumigatus transformants. Downregulating the expression of Afmed15 abolished the conidiation and decreased the fungal virulence in an insect model. Strikingly, the overexpression of Afmed15 caused fungal death accompanied by intensive autophagy. RNA sequencing of an Afmed15 overexpression strain revealed that altered gene expression patterns were associated with carbon metabolism, energy metabolism, and translation. Interestingly, the addition of metal ions could partially rescue fungal death caused by the overexpression of Afmed15, indicating that disordered ion homeostasis is a potential reason for the fungal death caused by the overexpression of Afmed15. Considering that the precise expression of Afmed15 is crucial for fungal development, virulence, and survival and that no ortholog was found in humans, Afmed15 is an ideal target for antifungal-drug development. IMPORTANCE The identification and characterization of regulators essential for virulence or development constitute one approach for antifungal drug development. In this study, we screened and functionally characterized Afmed15, a novel developmental regulator in A. fumigatus. We demonstrate that the precise transcriptional expression of Afmed15 is crucial for fungal asexual development, virulence, and survival. Downregulating the expression of Afmed15 abolished the conidiation and decreased the fungal virulence in an insect model. In contrast, the overexpression of Afmed15 caused fungal death accompanied by intensive autophagy. Our study provides a foundation for further studies to identify compounds perturbing the expression of Afmed15 that may be used for the prevention of invasive A. fumigatus infections.
Collapse
|
11
|
Mouhoumed AZ, Mou YN, Tong SM, Ying SH, Feng MG. Three proline rotamases involved in calcium homeostasis play differential roles in stress tolerance, virulence and calcineurin regulation of Beauveria bassiana. Cell Microbiol 2020; 22:e13239. [PMID: 32602171 DOI: 10.1111/cmi.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
FK506-sensitive proline rotamases (FPRs), also known as FK506-binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15-kD Fpr1, membrane-associated 14.78-kD Fpr2 and nuclear 50.43-kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect-pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+ , K+ , Mn2+ , Ca2+ , Cu2+ , metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+ , Mg2+ , Fe2+ , H2 O2 and cell wall-perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+ /K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.
Collapse
Affiliation(s)
- Amina-Zahra Mouhoumed
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
13
|
Functional Coupling between the Unfolded Protein Response and Endoplasmic Reticulum/Golgi Ca 2+-ATPases Promotes Stress Tolerance, Cell Wall Biosynthesis, and Virulence of Aspergillus fumigatus. mBio 2020; 11:mBio.01060-20. [PMID: 32487759 PMCID: PMC7267887 DOI: 10.1128/mbio.01060-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many species of pathogenic fungi deploy the unfolded protein response (UPR) to expand the folding capacity of the endoplasmic reticulum (ER) in proportion to the demand for virulence-related proteins that traffic through the secretory pathway. Although Ca2+ plays a pivotal role in ER function, the mechanism by which transcriptional upregulation of the protein folding machinery is coordinated with Ca2+ homeostasis is incompletely understood. In this study, we investigated the link between the UPR and genes encoding P-type Ca2+-ATPases in the human-pathogenic mold Aspergillus fumigatus We demonstrate that acute ER stress increases transcription of the srcA gene, encoding a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family, as well as that of pmrA, encoding a secretory pathway Ca2+-ATPase (SPCA) in the Golgi membrane. Loss of the UPR transcription factor HacA prevented the induction of srcA and pmrA transcription during ER stress, defining these ER/Golgi Ca2+ pumps as novel downstream targets of this pathway. While deletion of srcA alone caused no major deficiencies, a ΔsrcA/ΔpmrA mutant displayed a severe polarity defect, was hypersensitive to ER stress, and showed attenuated virulence. In addition, cell wall analyses revealed a striking reduction in mannose levels in the absence of both Ca2+ pumps. The ΔhacA mutant was hypersensitive to agents that block calcineurin-dependent signaling, consistent with a functional coupling between the UPR and Ca2+ homeostasis. Together, these findings demonstrate that the UPR integrates the need for increased levels of chaperone and folding enzymes with an influx of Ca2+ into the secretory pathway to support fungal growth, stress adaptation, and pathogenicity.IMPORTANCE The UPR is an intracellular signal transduction pathway that maintains homeostasis of the ER. The pathway is also tightly linked to the expression of virulence-related traits in diverse species of human-pathogenic and plant-pathogenic fungal species, including the predominant mold pathogen infecting humans, Aspergillus fumigatus Despite advances in the understanding of UPR signaling, the linkages and networks that are governed by this pathway are not well defined. In this study, we revealed that the UPR is a major driving force for stimulating Ca2+ influx at the ER and Golgi membranes and that the coupling between the UPR and Ca2+ import is important for virulence, cell wall biosynthesis, and resistance to antifungal compounds that inhibit Ca2+ signaling.
Collapse
|
14
|
Lange M, Peiter E. Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Front Microbiol 2020; 10:3100. [PMID: 32047484 PMCID: PMC6997533 DOI: 10.3389/fmicb.2019.03100] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
The key players of calcium (Ca2+) homeostasis and Ca2+ signal generation, which are Ca2+ channels, Ca2+/H+ antiporters, and Ca2+-ATPases, are present in all fungi. Their coordinated action maintains a low Ca2+ baseline, allows a fast increase in free Ca2+ concentration upon a stimulus, and terminates this Ca2+ elevation by an exponential decrease – hence forming a Ca2+ signal. In this respect, the Ca2+ signaling machinery is conserved in different fungi. However, does the similarity of the genetic inventory that shapes the Ca2+ peak imply that if “you’ve seen one, you’ve seen them all” in terms of physiological relevance? Individual studies have focused mostly on a single species, and mechanisms elucidated in few model organisms are usually extrapolated to other species. This mini-review focuses on the physiological relevance of the machinery that maintains Ca2+ homeostasis for growth, virulence, and stress responses. It reveals common and divergent functions of homologous proteins in different fungal species. In conclusion, for the physiological role of these Ca2+ transport proteins, “seen one,” in many cases, does not mean: “seen them all.”
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
16
|
Mysyakina IS, Sorokin VV, Dorofeeva IK, Bokareva DA. Elemental Composition of Dormant and Germinating Fungal Spores. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171904009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Li Y, Zhang Y, Lu L. Calcium signaling pathway is involved in non-CYP51 azole resistance in Aspergillus fumigatus. Med Mycol 2019; 57:S233-S238. [PMID: 30816964 DOI: 10.1093/mmy/myy075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus, which is one of the primary airborne ascomycete pathogens and allergens worldwide, causes invasive fungal infections, which have high morbidity and mortality rates among immunosuppressed patients. The abuse of azole antifungals results in serious drug resistance in clinical therapy. Thus, a thorough understanding of the azole drug resistance mechanism and screening of antifungal agents with a novel mode of action and new drug targets are required to fight against drug resistance. Current studies suggest that there are three major azole resistance mechanisms in fungal pathogens, including changes of the drug target Cyp51, activation of drug efflux pumps and induction of cellular stress responses. Fungi must adapt to a variety of external environmental stressors to survive. These obstacles include stress to the plasma membrane after azole antifungal treatments, high temperature, pH variation, and oxidative stress. As a filamentous fungus, A. fumigatus has evolved numerous signal-transduction systems to sense and respond to azole stresses to survive and proliferate in harsh environmental conditions. Among these signal-transduction systems, the Ca2+ signaling pathway is one of the most important response systems, which has been verified to be involved in stress adaptation. In this review, we have summarized how the components of the calcium-signaling pathway and their interaction network are involved in azole stress response in A. fumigatus.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanwei Zhang
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ling Lu
- Jiangsu Key laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
18
|
Abstract
Maintenance of Ca2+ homeostasis is important for fungal cells to respond to a multitude of stresses, as well as antifungal treatment, and for virulence in animal models. Here, we demonstrate that a P-type ATPase, Pmc1p, is required for Candida albicans to respond to a variety of stresses, affects azole susceptibility, and is required to sustain tissue invasive hyphal growth and to cause disease in a mouse model of disseminated infection. Defining the mechanisms responsible for maintaining proper Ca2+ homeostasis in this important human pathogen can ultimately provide opportunities to devise new chemotherapeutic interventions that dysregulate intracellular signaling and induce Ca2+ toxicity. Calcium is a critically important secondary messenger of intracellular signal transduction in eukaryotes but must be maintained at low levels in the cytoplasm of resting cells to avoid toxicity. This is achieved by several pumps that actively transport excess cytoplasmic Ca2+ out of the cell across the plasma membrane and into other intracellular compartments. In fungi, the vacuole serves as the major storage site for excess Ca2+, with two systems actively transporting cytoplasmic calcium ions into the vacuole. The H+/Ca2+ exchanger, Vcx1p, harnesses the proton-motive force across the vacuolar membrane (generated by the V-ATPase) to drive Ca2+ transport, while the P-type ATPase Pmc1p uses ATP hydrolysis to translocate Ca2+ into the vacuole. Ca2+-dependent signaling is required for the prevalent human fungal pathogen Candida albicans to endure exposure to the azole antifungals and to cause disease within the mammalian host. The purpose of this study was to determine if the Pmc1p or Vcx1p Ca2+ pumps are required for C. albicans pathogenicity and if these pumps impact antifungal resistance. Our results indicate that Pmc1p is required by C. albicans to transition from yeast to hyphal growth, to form biofilms in vitro, and to cause disease in a mouse model of disseminated infection. Moreover, loss of Pmc1p function appears to enhance C. albicans azole tolerance in a temperature-dependent manner. IMPORTANCE Maintenance of Ca2+ homeostasis is important for fungal cells to respond to a multitude of stresses, as well as antifungal treatment, and for virulence in animal models. Here, we demonstrate that a P-type ATPase, Pmc1p, is required for Candida albicans to respond to a variety of stresses, affects azole susceptibility, and is required to sustain tissue invasive hyphal growth and to cause disease in a mouse model of disseminated infection. Defining the mechanisms responsible for maintaining proper Ca2+ homeostasis in this important human pathogen can ultimately provide opportunities to devise new chemotherapeutic interventions that dysregulate intracellular signaling and induce Ca2+ toxicity.
Collapse
|
19
|
D'Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci 2018; 19:E2465. [PMID: 30134544 PMCID: PMC6164603 DOI: 10.3390/ijms19092465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Immunosuppression may occur for a number of reasons related to an individual's frailty, debility, disease or from therapeutic iatrogenic intervention or misadventure. A large percentage of morbidity and mortality in immunodeficient populations is related to an inadequate response to infectious agents with slow response to antibiotics, enhancements of antibiotic resistance in populations, and markedly increased prevalence of acute inflammatory response, septic and infection related death. Given known relationships between intracellular calcium ion concentrations and cytotoxicity and cellular death, we looked at currently available data linking blockade of calcium ion channels and potential decrease in expression of sepsis among immunosuppressed patients. Notable are relationships between calcium, calcium channel, vitamin D mechanisms associated with sepsis and demonstration of antibiotic-resistant pathogens that may utilize channels sensitive to calcium channel blocker. We note that sepsis shock syndrome represents loss of regulation of inflammatory response to infection and that vitamin D, parathyroid hormone, fibroblast growth factor, and klotho interact with sepsis defense mechanisms in which movement of calcium and phosphorus are part of the process. Given these observations we consider that further investigation of the effect of relatively inexpensive calcium channel blockade agents of infections in immunosuppressed populations might be worthwhile.
Collapse
Affiliation(s)
- John A D'Elia
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA. jd'
| | - Larry A Weinrauch
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA.
| |
Collapse
|
20
|
Blatzer M, Latgé JP. Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Curr Opin Microbiol 2017; 40:152-159. [PMID: 29179120 DOI: 10.1016/j.mib.2017.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022]
Abstract
In contrast to obligate pathogens opportunistic pathogens such as Aspergillus fumigatus do not need a specific host to propagate or survive. However several characteristics of the saprophytic life-style and the selective pressure encountered in the primary ecological niche contribute to the virulence of A. fumigatus. All fungi depend on metals for growth and proliferation, like iron, copper, zinc, manganese or calcium. In the recent past several studies explored the manifold impact of metals modulating virulence of pathogens. Components which might be scarce in the natural environment but also in the host due to nutritional immunity. This review recapitulates molecular constituents of metal ion uptake systems in A. fumigatus, their regulation and their significance at the host-pathogen battlefield.
Collapse
|
21
|
The Aspergillus fumigatus CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect. mBio 2017; 8:mBio.00705-17. [PMID: 28611248 PMCID: PMC5472186 DOI: 10.1128/mbio.00705-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a β-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the “caspofungin paradoxical effect” (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkAMPK1 and its associated transcription factor (TF) RlmARLM1, which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies. Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies.
Collapse
|
22
|
Desoubeaux G, Cray C. Rodent Models of Invasive Aspergillosis due to Aspergillus fumigatus: Still a Long Path toward Standardization. Front Microbiol 2017; 8:841. [PMID: 28559881 PMCID: PMC5432554 DOI: 10.3389/fmicb.2017.00841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct animal models. They were developed to address pathophysiology, therapy, diagnosis, or miscellaneous other concerns associated. However, there are great discrepancies regarding all the experimental variables of animal models, and a thorough focus on them is needed. This systematic review completed a comprehensive bibliographic analysis specifically-based on the technical features of rodent models infected with Aspergillus fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%). Three quarters of the models involved immunocompromised status, mainly by steroids (44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and inhalation/deposition into respiratory airways (66.9%) were the most used routes for experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used in models. Of all the published studies, 18.4% did not mention usage of any diagnostic tool, like histopathology or mycological culture, to control correct implementation of the disease and to measure outcome. In light of these findings, a consensus discussion should be engaged to establish a minimum standardization, although this may not be consistently suitable for addressing all the specific aspects of invasive aspergillosis.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA.,Service de Parasitologie-Mycologie-Médecine tropicale, Centre Hospitalier Universitaire de ToursTours, France.,Centre d'Etude des Pathologies Respiratoires (CEPR) Institut National de la Santé et de la Recherche Médicale U1100/Équipe 3, Université François-RabelaisTours, France
| | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of MiamiMiami, FL, USA
| |
Collapse
|
23
|
Wang J, Zhu XG, Ying SH, Feng MG. Differential Roles for Six P-Type Calcium ATPases in Sustaining Intracellular Ca 2+ Homeostasis, Asexual Cycle and Environmental Fitness of Beauveria bassiana. Sci Rep 2017; 7:1420. [PMID: 28469160 PMCID: PMC5431182 DOI: 10.1038/s41598-017-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
A global insight into the roles of multiple P-type calcium ATPase (CA) pumps in sustaining the life of a filamentous fungal pathogen is lacking. Here we elucidated the functions of five CA pumps (Eca1, Spf1 and PmcA/B/C) following previous characterization of Pmr1 in Beauveria bassiana, a fungal insect pathogen. The fungal CA pumps interacted at transcriptional level, at which singular deletions of five CA genes depressed eca1 expression by 76–98% and deletion of spf1 resulted in drastic upregulation of four CA genes by 36–50-fold. Intracellular Ca2+ concentration increased differentially in most deletion mutants exposed to the stresses of Ca2+, EDTA chelator, and/or endoplasmic reticulum and calcineurin inhibitors, accompanied with their changed sensitivities to not only the mentioned agents but also Fe2+, Cu2+ and Zn2+. Liquid culture acidification was delayed in the Δspf1, Δpmr1 and ΔpmcA mutants, coinciding well with altered levels of their extracellular lactic and oxalic acids. Moreover, all deletion mutants showed differential defects in conidial germination, vegetative growth, conidiation capacity, antioxidant activity, cell wall integrity, conidial UV-B resistance and/or virulence. Our results provide the first global insight into differential roles for six CA pumps in sustaining intracellular Ca2+ level, asexual cycle and environmental fitness of B. bassiana.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
24
|
Evidence of the presence of a calmodulin-sensitive plasma membrane Ca 2+-ATPase in Trypanosoma equiperdum. Mol Biochem Parasitol 2017; 213:1-11. [PMID: 28213174 DOI: 10.1016/j.molbiopara.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023]
Abstract
Trypanosoma equiperdum belongs to the subgenus Trypanozoon, which has a significant socio-economic impact by limiting animal protein productivity worldwide. Proteins involved in the intracellular Ca2+ regulation are prospective chemotherapeutic targets since several drugs used in experimental treatment against trypanosomatids exert their action through the disruption of the parasite intracellular Ca2+ homeostasis. Therefore, the plasma membrane Ca2+-ATPase (PMCA) is considered as a potential drug target. This is the first study revealing the presence of a PMCA in T. equiperdum (TePMCA) showing that it is calmodulin (CaM) sensitive, revealed by ATPase activity, western-blot analysis and immuno-absorption assays. The cloning sequence for TePMCA encodes a 1080 amino acid protein which contains domains conserved in all PMCAs so far studied. Molecular modeling predicted that the protein has 10 transmembrane and three cytoplasmic loops which include the ATP-binding site, the phosphorylation domain and Ca2+ translocation site. Like all PMCAs reported in other trypanosomatids, TePMCA lacks a classic CaM binding domain. Nevertheless, this enzyme presents in the C-terminal tail a region of 28 amino acids (TeC28), which most likely adopts a helical conformation within a 1-18 CaM binding motif. Molecular docking between Trypanosoma cruzi CaM (TcCaM) and TeC28 shows a significant similarity with the CaM-C28PMCA4b reference structure (2kne). TcCaM-TeC28 shows an anti-parallel interaction, the peptide wrapped by CaM and the anchor buried in the hydrophobic pocket, structural characteristic described for similar complexes. Our results allows to conclude that T. equiperdum possess a CaM-sensitive PMCA, which presents a non-canonical CaM binding domain that host a 1-18 motif.
Collapse
|
25
|
Cation-Stress-Responsive Transcription Factors SltA and CrzA Regulate Morphogenetic Processes and Pathogenicity of Colletotrichum gloeosporioides. PLoS One 2016; 11:e0168561. [PMID: 28030573 PMCID: PMC5193415 DOI: 10.1371/journal.pone.0168561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/02/2016] [Indexed: 11/24/2022] Open
Abstract
Growth of Colletotrichum gloeosporioides in the presence of cation salts NaCl and KCl inhibited fungal growth and anthracnose symptom of colonization. Previous reports indicate that adaptation of Aspergillus nidulans to salt- and osmotic-stress conditions revealed the role of zinc-finger transcription factors SltA and CrzA in cation homeostasis. Homologs of A. nidulans SltA and CrzA were identified in C. gloeosporioides. The C. gloeosporioides CrzA homolog is a 682-amino acid protein, which contains a C2H2 zinc finger DNA-binding domain that is highly conserved among CrzA proteins from yeast and filamentous fungi. The C. gloeosporioides SltA homolog encodes a 775-amino acid protein with strong similarity to A. nidulans SltA and Trichoderma reesei ACE1, and highest conservation in the three zinc-finger regions with almost no changes compared to ACE1 sequences. Knockout of C. gloeosporioides crzA (ΔcrzA) resulted in a phenotype with inhibited growth, sporulation, germination and appressorium formation, indicating the importance of this calciu006D-activated transcription factor in regulating these morphogenetic processes. In contrast, knockout of C. gloeosporioides sltA (ΔsltA) mainly inhibited appressorium formation. Both mutants had reduced pathogenicity on mango and avocado fruit. Inhibition of the different morphogenetic stages in the ΔcrzA mutant was accompanied by drastic inhibition of chitin synthase A and B and glucan synthase, which was partially restored with Ca2+ supplementation. Inhibition of appressorium formation in ΔsltA mutants was accompanied by downregulation of the MAP kinase pmk1 and carnitine acetyl transferase (cat1), genes involved in appressorium formation and colonization, which was restored by Ca2+ supplementation. Furthermore, exposure of C. gloeosporioides ΔcrzA or ΔsltA mutants to cations such as Na+, K+ and Li+ at concentrations that the wild type C. gloeosporioides is not affected had further adverse morphogenetic effects on C. gloeosporioides which were partially or fully restored by Ca2+. Overall results suggest that both genes modulating alkali cation homeostasis have significant morphogenetic effects that reduce C. gloeosporioides colonization.
Collapse
|
26
|
de Castro PA, Chiaratto J, Morais ER, Dos Reis TF, Mitchell TK, Brown NA, Goldman GH. The putative flavin carrier family FlcA-C is important for Aspergillus fumigatus virulence. Virulence 2016; 8:797-809. [PMID: 27652896 DOI: 10.1080/21505594.2016.1239010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen and the most important species causing pulmonary fungal infections. The signaling by calcium is very important for A. fumigatus pathogenicity and it is regulated by the transcription factor CrzA. We have previously used used ChIP-seq (Chromatin Immunoprecipitation DNA sequencing) aiming to identify gene targets regulated by CrzA. We have identified among several genes regulated by calcium stress, the putative flavin transporter, flcA. This transporter belongs to a small protein family composed of FlcA, B, and C. The ΔflcA null mutant showed several phenotypes, such as morphological defects, increased sensitivity to calcium chelating-agent ethylene glycol tetraacetic acid (EGTA), cell wall or oxidative damaging agents and metals, repre-sentative of deficiencies in calcium signaling and iron homeostasis. Increasing calcium concentrations improved significantly the ΔflcA growth and conidiation, indicating that ΔflcA mutant has calcium insufficiency. Finally, ΔflcA-C mutants showed reduced flavin adenine dinucleotide (FAD) and were avirulent in a low dose murine infection model.
Collapse
Affiliation(s)
- Patrícia A de Castro
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Jéssica Chiaratto
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Enyara Rezende Morais
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thaila Fernanda Dos Reis
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thomas K Mitchell
- b Department of Plant Pathology , The Ohio State University , Columbus , OH , USA
| | - Neil A Brown
- c Plant Biology and Crop Science, Rothamsted Research , Harpenden, Herts , UK
| | - Gustavo H Goldman
- a Faculdade de Ciências Farmacêuticas de Ribeirão Preto and Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
27
|
Lange M, Weihmann F, Schliebner I, Horbach R, Deising HB, Wirsel SGR, Peiter E. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis. PLoS One 2016; 11:e0158561. [PMID: 27359114 PMCID: PMC4928787 DOI: 10.1371/journal.pone.0158561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/19/2016] [Indexed: 12/02/2022] Open
Abstract
Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2+ from the extracellular space. Cgtrpf mutants did not show pathogenicity defects in leaf infection assays. In summary, our study reveals major differences between different fungi in the contribution of TRP channels to Ca2+-mediated signal transduction.
Collapse
Affiliation(s)
- Mario Lange
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fabian Weihmann
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivo Schliebner
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ralf Horbach
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B. Deising
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefan G. R. Wirsel
- Phytopathology and Plant Protection, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Interdisciplinary Centre for Crop Plant Research (IZN), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
28
|
Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infect Immun 2016; 84:917-929. [PMID: 26787716 DOI: 10.1128/iai.01124-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection.
Collapse
|
29
|
The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. J Microbiol 2016; 54:243-53. [PMID: 26920884 DOI: 10.1007/s12275-016-5510-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Invasive aspergillosis has emerged as one of the most common life-threatening fungal disease of humans. The emergence of antifungal resistant pathogens represents a current and increasing threat to society. In turn, new strategies to combat fungal infection are urgently required. Fungal adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. Here, we review the latest information on the signalling pathways in Aspergillus fumigatus that contribute to stress adaptations and virulence, while highlighting their potential as targets for the development of novel combinational antifungal therapies.
Collapse
|
30
|
Muñoz A, Bertuzzi M, Bettgenhaeuser J, Iakobachvili N, Bignell EM, Read ND. Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS One 2015; 10:e0138008. [PMID: 26402916 PMCID: PMC4581630 DOI: 10.1371/journal.pone.0138008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is an inhaled fungal pathogen of human lungs, the developmental growth of which is reliant upon Ca2+-mediated signalling. Ca2+ signalling has regulatory significance in all eukaryotic cells but how A. fumigatus uses intracellular Ca2+ signals to respond to stresses imposed by the mammalian lung is poorly understood. In this work, A. fumigatus strains derived from the clinical isolate CEA10, and a non-homologous recombination mutant ΔakuBKU80, were engineered to express the bioluminescent Ca2+-reporter aequorin. An aequorin-mediated method for routine Ca2+ measurements during the early stages of colony initiation was successfully developed and dynamic changes in cytosolic free calcium ([Ca2+]c) in response to extracellular stimuli were measured. The response to extracellular challenges (hypo- and hyper-osmotic shock, mechanical perturbation, high extracellular Ca2+, oxidative stress or exposure to human serum) that the fungus might be exposed to during infection, were analysed in living conidial germlings. The 'signatures' of the transient [Ca2+]c responses to extracellular stimuli were found to be dose- and age-dependent. Moreover, Ca2+-signatures associated with each physico-chemical treatment were found to be unique, suggesting the involvement of heterogeneous combinations of Ca2+-signalling components in each stress response. Concordant with the involvement of Ca2+-calmodulin complexes in these Ca2+-mediated responses, the calmodulin inhibitor trifluoperazine (TFP) induced changes in the Ca2+-signatures to all the challenges. The Ca2+-chelator BAPTA potently inhibited the initial responses to most stressors in accordance with a critical role for extracellular Ca2+ in initiating the stress responses.
Collapse
Affiliation(s)
- Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jan Bettgenhaeuser
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nino Iakobachvili
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (NDR); (EMB)
| | - Nick D. Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (NDR); (EMB)
| |
Collapse
|
31
|
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6:325. [PMID: 25932027 PMCID: PMC4399325 DOI: 10.3389/fmicb.2015.00325] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence.
Collapse
Affiliation(s)
- Vito Valiante
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Juliane Macheleidt
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Martin Föge
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | - Axel A Brakhage
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|
32
|
Yang L, Xie L, Xue B, Goodwin PH, Quan X, Zheng C, Liu T, Lei Z, Yang X, Chao Y, Wu C. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. PLoS One 2015; 10:e0120691. [PMID: 25875107 PMCID: PMC4397062 DOI: 10.1371/journal.pone.0120691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/15/2022] Open
Abstract
Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.
Collapse
Affiliation(s)
- Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Lihua Xie
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Baoguo Xue
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Xin Quan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Chuanlin Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Taiguo Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhensheng Lei
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Yueen Chao
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| |
Collapse
|
33
|
Winkelströter LK, Bom VLP, de Castro PA, Ramalho LNZ, Goldman MHS, Brown NA, Rajendran R, Ramage G, Bovier E, Dos Reis TF, Savoldi M, Hagiwara D, Goldman GH. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence. Mol Microbiol 2015; 96:42-54. [PMID: 25597841 DOI: 10.1111/mmi.12919] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and β-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Lizziane K Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis. FUNGAL BIOL REV 2014; 28:56-69. [PMID: 25383089 DOI: 10.1016/j.fbr.2014.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Collapse
Affiliation(s)
- Praveen R Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Frédéric Lamoth
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland ; Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA ; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
35
|
de Castro PA, Chen C, de Almeida RSC, Freitas FZ, Bertolini MC, Morais ER, Brown NA, Ramalho LNZ, Hagiwara D, Mitchell TK, Goldman GH. ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus high-osmolarity glycerol response (HOG) signalling pathway. Mol Microbiol 2014; 94:655-74. [PMID: 25196896 DOI: 10.1111/mmi.12785] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 12/28/2022]
Abstract
Aspergillus fumigatus is an opportunistic pathogen and allergen of mammals. Calcium signalling is essential for A. fumigatus pathogenicity and is regulated by the CrzA transcription factor. We used ChIP-seq (Chromatin Immunoprecipitation DNA sequencing) to explore CrzA gene targets in A. fumigatus. In total, 165 potential binding peaks including 102 directly regulated genes were identified, resulting in the prediction of the A[GT][CG]CA[AC][AG] CrzA-binding motif. The 102 CrzA putatively regulated genes exhibited a diverse array of functions. The phkB (Afu3g12530) histidine kinase and the sskB (Afu1g10940) MAP kinase kinase kinase of the HOG (high-osmolarity glycerol response) pathway were regulated by CrzA. Several members of the two-component system (TCS) and the HOG pathway were more sensitive to calcium. CrzA::GFP was translocated to the nucleus upon osmotic stress. CrzA is important for the phosphorylation of the SakA MAPK in response to osmotic shock. The ΔsskB was more sensitive to CaCl2 , NaCl, and paraquat stress, while being avirulent in a murine model of invasive pulmonary aspergillosis. The presence of CaCl2 and osmotic stresses resulted in synergistic inhibition of ΔcrzA and ΔsskB growth. These results suggest there is a genetic interaction between the A. fumigatus calcineurin-CrzA and HOG pathway that is essential for full virulence.
Collapse
Affiliation(s)
- Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hu Y, Wang J, Ying SH, Feng MG. Five vacuolar Ca(2+) exchangers play different roles in calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence of a filamentous entomopathogen. Fungal Genet Biol 2014; 73:12-9. [PMID: 25256588 DOI: 10.1016/j.fgb.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 11/28/2022]
Abstract
Multiple Vcx1 (vacuolar calcium exchanger) paralogues exist in many filamentous fungi but are functionally unexplored unlike a single Vcx1 ortholog well characterized in yeasts. Here we show that five Vcx1 paralogues (Vcx1A-E) in Beauveria bassiana are conditionally functional for intracellular Ca(2+) homeostasis and contribute differentially to multistress tolerance and virulence in the filamentous entomopathogen. Each vcx1 deletion drastically upregulated transcriptional expressions of four other partners and six P-type Ca(2+)-ATPases, resulting in elevated or lowered intracellular Ca(2+) concentration in some deletion mutants treated with Ca(2+) stress or untreated at 25 and 30 °C. When calcineurin was inactivated by cyclosporine A, Ca(2+) tolerance decreased by 11-17% in five Δvcx1 mutants, but Mn(2+) sensitivity increased only in Δvcx1A and Δvcx1D, at optimal 25 °C. These two mutants were also more sensitive to Ca(2+) stress at 30 °C when calcineurin was active, and showed minor growth defect at 25 and 30 °C when calcineurin was inactive. Moreover, all the Δvcx1 mutants were more sensitive to dithiothreitol (stress-response trigger to endoplasmic reticulum) and Congo red (cell wall stressor); three of them were consistently less tolerant to the oxidants menadione and H2O2. The fungal virulence to Galleria mellonella larvae decreased by 15-40% in four Δvcx1 mutants excluding Δvcx1E, which was uniquely defective in conidial thermotolerance. All the changes were restored by each vcx1 complementation. Our findings indicate that the five Vcx1 paralogues in B. bassiana contribute differentially to calcineurin-dependent Ca(2+)/Mn(2+) tolerance, multistress responses and virulence, and recall attention to multifunctional Vcx1 paralogues in filamentous fungi.
Collapse
Affiliation(s)
- Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
37
|
de Castro PA, Chiaratto J, Winkelströter LK, Bom VLP, Ramalho LNZ, Goldman MHS, Brown NA, Goldman GH. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS One 2014; 9:e103957. [PMID: 25083783 PMCID: PMC4118995 DOI: 10.1371/journal.pone.0103957] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022] Open
Abstract
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca2+ through the addition of the Ca2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Chiaratto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lizziane K. Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Laboratory of Science and Technology of Bioethanol (CTBE), Campinas, Brazil
- * E-mail:
| |
Collapse
|
38
|
Mysyakina IS, Sergeeva YE, Sorokin VV, Ivashechkin AA, Kostrikina NA, Feofilova EP. Lipid and elemental composition as indicators of the physiological state of sporangiospores in Mucor hiemalis cultures of different ages. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714020155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Kmetzsch L, Staats CC, Cupertino JB, Fonseca FL, Rodrigues ML, Schrank A, Vainstein MH. The calcium transporter Pmc1 provides Ca2+ tolerance and influences the progression of murine cryptococcal infection. FEBS J 2013; 280:4853-64. [PMID: 23895559 DOI: 10.1111/febs.12458] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 01/14/2023]
Abstract
The Ca(2+)-calcineurin signaling pathway in the human fungal pathogen Cryptococcus neoformans is essential for adaptation to the host environment during infection. Calcium transporters regulate cytosolic calcium concentrations, providing Ca(2+) loading into storage organelles. The three calcium transporters that have been characterized in C. neoformans, Cch1, Eca1 and Vcx1, are required for fungal virulence, supporting a role for calcium-mediated signaling in cryptococcal pathogenesis. In the present study, we report the functional characterization of the putative vacuolar calcium ATPase Pmc1 in C. neoformans. Our results demonstrate that Pmc1 provides tolerance to high Ca(2+) concentrations. The double knockout of C. neoformans PMC1 and VCX1 genes impaired the intracellular calcium transport, resulting in a significant increase in cytosolic calcium levels. Furthermore, Pmc1 was essential for both the progression of pulmonary infection and brain colonization in mice, emphasizing the crucial role of calcium signaling and transport for cryptococcal pathogenesis.
Collapse
Affiliation(s)
- Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Genetic bypass of Aspergillus nidulans crzA function in calcium homeostasis. G3-GENES GENOMES GENETICS 2013; 3:1129-41. [PMID: 23665873 PMCID: PMC3704241 DOI: 10.1534/g3.113.005983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After dephosphorylation by the phosphatase calcineurin, the fungal transcription factor CrzA enters the nucleus and activates the transcription of genes responsible for calcium homeostasis and many other calcium-regulated activities. A lack of CrzA confers calcium-sensitivity to the filamentous fungus Aspergillus nidulans. To further understand calcium signaling in filamentous fungi and to identify genes that interact genetically with CrzA, we selected for mutations that were able to suppress crzAΔ calcium intolerance and identified three genes. Through genetic mapping, gene sequencing, and mutant rescue, we were able to identify these as cnaB (encoding the calcineurin regulatory subunit), folA (encoding an enzyme involved in folic acid biosynthesis, dihydroneopterin aldolase), and scrC (suppression of crzA-, encoding a hypothetical protein). By using a calcium indicator, Fluo-3, we were able to determine that the wild-type and the suppressor strains were either able to regulate intracellular calcium levels or were able to take up and or store calcium correctly. The increased expression of calcium transporters, pmcA and/or pmcB, in suppressor mutants possibly enabled tolerance to high levels of calcium. Our results suggest that a cnaB suppressor mutation confers calcium tolerance to crzAΔ strains through restoration of calcium homeostasis. These results stress that in A. nidulans there are calcineurin-dependent and CrzA-independent pathways. In addition, it is possible that CrzA is able to contribute to the modulation of folic acid biosynthesis.
Collapse
|
41
|
Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One 2013; 8:e62088. [PMID: 23658706 PMCID: PMC3641053 DOI: 10.1371/journal.pone.0062088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/16/2013] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and 1H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The 1H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development.
Collapse
|
42
|
Wang S, Cao J, Liu X, Hu H, Shi J, Zhang S, Keller NP, Lu L. Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans. PLoS One 2012; 7:e46564. [PMID: 23071589 PMCID: PMC3470553 DOI: 10.1371/journal.pone.0046564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 11/25/2022] Open
Abstract
Although the high affinity Ca2+ channel, Cch1, and its subunit Mid1 have been investigated and evaluated in yeast and some of filamentous fungi, little is known about the function of their homologs in the Aspergilli. Here, we have functionally characterized the yeast homologs, CchA and MidA, in Aspergillus nidulans using conditional and null deletion mutants. CchA and MidA not only have functional benefits of fast growth, which is consistent with Cch1 and Mid1 in yeast, but also have unique and complex roles in regulating conidiation, hyphal polarity and cell wall components in low-calcium environments. The defect of CchA or MidA resulted in a sharp reduction in the number of conidiospores, accompanied by abnormal metulae, and undeveloped-phialides at a higher density of inoculum. Most interestingly, these conidiation defects in mutants can, remarkably, be rescued either by extra-cellular Ca2+ in a calcineurin-dependent way or by osmotic stress in a calcineurin-independent way. Moreover, the fact that the phenotypic defects are not exacerbated by the presence of the double deletion, together with the Y2H assay, indicates that CchA and MidA may form a complex to function together. Our findings suggest that the high-affinity Ca2+ channel may represent a viable and completely unexplored avenue to reduce conidiation in the Aspergilli.
Collapse
Affiliation(s)
- Sha Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences; Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moore CM, Hoey EM, Trudgett A, Timson DJ. A plasma membrane Ca2+-ATPase (PMCA) from the liver fluke, Fasciola hepatica. Int J Parasitol 2012; 42:851-8. [DOI: 10.1016/j.ijpara.2012.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 12/08/2022]
|