1
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
2
|
Biernacka JM, Coombes BJ, Batzler A, Ho AMC, Geske JR, Frank J, Hodgkinson C, Skime M, Colby C, Zillich L, Pozsonyiova S, Ho MF, Kiefer F, Rietschel M, Weinshilboum R, O'Malley SS, Mann K, Anton R, Goldman D, Karpyak VM. Genetic contributions to alcohol use disorder treatment outcomes: a genome-wide pharmacogenomics study. Neuropsychopharmacology 2021; 46:2132-2139. [PMID: 34302059 PMCID: PMC8505452 DOI: 10.1038/s41386-021-01097-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Naltrexone can aid in reducing alcohol consumption, while acamprosate supports abstinence; however, not all patients with alcohol use disorder (AUD) benefit from these treatments. Here we present the first genome-wide association study of AUD treatment outcomes based on data from the COMBINE and PREDICT studies of acamprosate and naltrexone, and the Mayo Clinic CITA study of acamprosate. Primary analyses focused on treatment outcomes regardless of pharmacological intervention and were followed by drug-stratified analyses to identify treatment-specific pharmacogenomic predictors of acamprosate and naltrexone response. Treatment outcomes were defined as: (1) time until relapse to any drinking (TR) and (2) time until relapse to heavy drinking (THR; ≥ 5 drinks for men, ≥4 drinks for women in a day), during the first 3 months of treatment. Analyses were performed within each dataset, followed by meta-analysis across the studies (N = 1083 European ancestry participants). Single nucleotide polymorphisms (SNPs) in the BRE gene were associated with THR (min p = 1.6E-8) in the entire sample, while two intergenic SNPs were associated with medication-specific outcomes (naltrexone THR: rs12749274, p = 3.9E-8; acamprosate TR: rs77583603, p = 3.1E-9). The top association signal for TR (p = 7.7E-8) and second strongest signal in the THR (p = 6.1E-8) analysis of naltrexone-treated patients maps to PTPRD, a gene previously implicated in addiction phenotypes in human and animal studies. Leave-one-out polygenic risk score analyses showed significant associations with TR (p = 3.7E-4) and THR (p = 2.6E-4). This study provides the first evidence of a polygenic effect on AUD treatment response, and identifies genetic variants associated with potentially medication-specific effects on AUD treatment response.
Collapse
Affiliation(s)
- Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Colin Hodgkinson
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Colin Colby
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sofia Pozsonyiova
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ming-Fen Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ray Anton
- Medical University of South Carolina, Charleston, SC, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Santos DS, Medeiros LF, Stein DJ, De Macedo IC, Da Silva Rios DE, De Oliveira C, Toledo RS, Fregni F, Caumo W, Torres ILS. Bimodal transcranial direct current stimulation reduces alcohol consumption and induces long-term neurochemical changes in rats with neuropathic pain. Neurosci Lett 2021; 759:136014. [PMID: 34111512 DOI: 10.1016/j.neulet.2021.136014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the effects of repeated bimodal transcranial direct current stimulation (tDCS) on alcohol consumption and immunohistological and neurochemical parameters in nerve-injured rats. Forty-eight adult male Wistar rats were distributed into six groups: control, neuropathic pain (NP) + sham-tDCS, NP + alcohol + sham-tDCS, alcohol + sham-tDCS, alcohol + tDCS, and NP + alcohol + tDCS. NP is induced by chronic sciatic nerve constriction (CCI). The rats were exposed to a 10% alcohol solution by voluntary consumption for 14 days. From the 16th day after surgery, bimodal tDCS was applied for 20 min/day for 8 days. Brain structures were collected to evaluate the number of neuropeptide Y (NPY)-positive neurons, neurites, and argyrophilic grains by immunohistochemistry, and brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), interleukin (IL)-6, and IL-10 by ELISA. Nerve-injured rats showed a progressive increase in alcohol consumption compared to the non-injured rats. In addition, there was a reduction in voluntary alcohol consumption over time induced by tDCS. Alcohol exposure, chronic pain, and tDCS treatment modulated the central NPY immunoreactivity. tDCS increased the cerebellar levels of IL-6 and IL-10, and CCI and/or tDCS reduced striatal BDNF levels. The current data suggest that tDCS could be a promising non-pharmacological adjuvant to treat patients with chronic pain who use alcohol to relieve their symptoms.
Collapse
Affiliation(s)
- Daniela Silva Santos
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Isabel Cristina De Macedo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego Evandro Da Silva Rios
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carla De Oliveira
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Felipe Fregni
- Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Wolnei Caumo
- Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Postgraduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratoryof Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Bauer MR, McVey MM, Boehm SL. Three Weeks of Binge Alcohol Drinking Generates Increased Alcohol Front-Loading and Robust Compulsive-Like Alcohol Drinking in Male and Female C57BL/6J Mice. Alcohol Clin Exp Res 2021; 45:650-660. [PMID: 33496972 DOI: 10.1111/acer.14563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Current models of compulsive-like quinine-adulterated alcohol (QuA) drinking in mice, if improved, could be more useful for uncovering the neural mechanisms of compulsive-like alcohol drinking. The purpose of these experiments was to further characterize and improve the validity of a model of compulsive-like QuA drinking in C57BL/6J mice. We sought to determine whether compulsive-like alcohol drinking could be achieved following 2 or 3 weeks of Drinking-in-the-Dark (DID), whether it provides evidence for a robust model of compulsive-like alcohol drinking by inclusion of a water control group and use of a highly concentrated QuA solution, whether repeated QuA exposures alter compulsive-like drinking, and whether there are sex differences in compulsive-like alcohol drinking. METHODS Male and Female C57BL/6J mice were allowed free access to either 20% alcohol or tap water for 2 hours each day for approximately 3 weeks. After 2 or 3 weeks, the mice were given QuA (500 μM) and the effect of repeated QuA drinking sessions on compulsive-like alcohol drinking was assessed. 3-minute front-loading, 2 hour binge-drinking, and blood alcohol concentrations were determined. RESULTS Compulsive-like QuA drinking was achieved after 3 weeks, but not 2 weeks, of daily alcohol access as determined by alcohol history mice consuming significantly more QuA than water history mice and drinking statistically nondifferent amounts of QuA than nonadulterated alcohol at baseline. Thirty-minute front-loading of QuA revealed that alcohol history mice front-loaded significantly more QuA than water history mice, but still found the QuA solution aversive. Repeated QuA exposures did not alter these patterns, compulsive-like drinking did not differ by sex, and BACs for QuA drinking were at the level of a binge. CONCLUSIONS These data suggest that compulsive-like QuA drinking can be robustly achieved following 3 weeks of DID and male and female C57BL/6J mice do not differ in compulsive-like alcohol drinking.
Collapse
Affiliation(s)
- Meredith R Bauer
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Megan M McVey
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen L Boehm
- Department of Psychology, Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
5
|
Popova NK, Ilchibaeva TV, Antonov EV, Pershina AV, Bazovkina DV, Naumenko VS. On the interaction between BDNF and serotonin systems: The effects of long-term ethanol consumption in mice. Alcohol 2020; 87:1-15. [PMID: 32330588 DOI: 10.1016/j.alcohol.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
We investigated the effect of chronic (6 weeks) consumption of 10% alcohol on the principal elements of BDNF (BDNF, proBDNF, p75, and TrkB receptors) and 5-HT (5-HT, 5-HIAA, tryptophan hydroxylase-2 [Tph-2], 5-HT transporter [5-HTT], 5-HT1A, 5-HT2A, and 5-HT7 receptors) systems in the brain of C57Bl/6 mice. BDNF mRNA level in the raphe nuclei area and BDNF protein level in the hippocampus were lowered in ethanol-treated mice. The increase in proBDNF protein level in the raphe nuclei area, cortex, and amygdala and the increase of p75 receptor protein levels in the raphe nuclei area were revealed after ethanol exposure. Alcohol intake reduced the protein level and increased the activity of Tph-2, the key enzyme for serotonin biosynthesis in the brain, and increased the main 5-HT metabolite 5-HIAA level and 5-HIAA/5-НТ ratio as well as the 5-HT7 receptor mRNA level in the raphe nuclei area. In the cortex, 5-HT2A receptor protein level was reduced, and 5-HIAA/5-HT ratio was increased. These data showed considerable impact of alcoholization on the BDNF system, resulting in proBDNF and p75 receptor expression enhancement. Alcohol-induced changes in BDNF and 5-HT systems were revealed in the raphe nuclei area where the majority of the cell bodies of the 5-HT neurons are localized, as well as in the cortex, hippocampus, and amygdala. Our data suggest that the BDNF/5-HT interaction contributes to the mechanism underlying chronic alcohol-induced neurodegenerative disorders.
Collapse
|
6
|
Timme NM, Linsenbardt D, Timm M, Galbari T, Cornwell E, Lapish C. Alcohol-preferring P rats exhibit aversion-resistant drinking of alcohol adulterated with quinine. Alcohol 2020; 83:47-56. [PMID: 31542609 DOI: 10.1016/j.alcohol.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 01/17/2023]
Abstract
Understanding why some people continue to drink alcohol despite negative consequences and others do not is a central problem in the study of alcohol use disorder (AUD). In this study, we used alcohol-preferring P rats (a strain bred to prefer to drink alcohol, a model for genetic risk for AUD) and Wistar rats (control) to examine drinking despite negative consequences in the form of an aversive bitter taste stimulus produced by quinine. Animals were trained to consume 10% ethanol in a simple Pavlovian conditioning task that paired alcohol access with an auditory stimulus. When the alcohol was adulterated with quinine (0.1 g/L), P rats continued to consume alcohol + quinine at the same rate as unadulterated alcohol, despite a demonstrated aversion to quinine-adulterated alcohol when given a choice between adulterated and unadulterated alcohol in the home cage. Conversely, Wistar rats decreased consumption of quinine-adulterated alcohol in the task, but continued to try the alcohol + quinine solution at similar rates to unadulterated alcohol. These results indicate that following about 8 weeks of alcohol consumption, P rats exhibit aversion-resistant drinking. This model could be used in future work to explore how the biological basis of alcohol consumption and genetic risk for excessive drinking lead to drinking that is resistant to devaluation.
Collapse
|
7
|
Lesscher HMB, Bailey A, Vanderschuren LJMJ. Genetic Variability in Adenosine Deaminase-Like Contributes to Variation in Alcohol Preference in Mice. Alcohol Clin Exp Res 2017; 41:1271-1279. [PMID: 28449374 DOI: 10.1111/acer.13409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND A substantial part of the risk for alcohol use disorder is determined by genetic factors. We previously used chromosome substitution (CSS) mice, to identify a quantitative trait loci (QTL) for alcohol preference on mouse chromosome 2. The aim of this study was to identify candidate genes within this QTL that confer the risk for alcohol preference. METHODS In order to delineate the neurobiological underpinnings of alcohol consumption, we expanded on the QTL approach to identify candidate genes for high alcohol preference in mice. We narrowed down a QTL for alcohol preference on mouse chromosome 2, that we previously identified using CSS mice, to 4 candidate genes in silico. Expression levels of these candidate genes in prefrontal cortex, amygdala, and nucleus accumbens-brain regions implicated in reward and addiction-were subsequently compared for the CSS-2 and the C57BL/6J host strain. RESULTS We observed increased expression of adenosine deaminase-like (Adal) in all 3 regions in CSS-2 mice. Moreover, we found that the adenosine deaminase inhibitor EHNA reduced the difference in alcohol preference between CSS-2 and C57BL/6J mice. CONCLUSIONS This study identifies Adal as a genetically protective factor against alcohol consumption in mice, in which elevated Adal levels contribute to low alcohol preference.
Collapse
Affiliation(s)
- Heidi M B Lesscher
- Division of Behavioural Neuroscience , Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Alexis Bailey
- Institute of Medical and Biomedical Education , St George's University of London, London, UK
| | - Louk J M J Vanderschuren
- Division of Behavioural Neuroscience , Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Vanderschuren LJMJ, Minnaard AM, Smeets JAS, Lesscher HMB. Punishment models of addictive behavior. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Mathew DE, Larsen K, Janeczek P, Lewohl JM. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs. Mol Cell Neurosci 2016; 75:44-9. [DOI: 10.1016/j.mcn.2016.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/20/2016] [Accepted: 06/26/2016] [Indexed: 01/23/2023] Open
|
10
|
Lei K, Wegner SA, Yu JH, Simms JA, Hopf FW. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice. Alcohol 2016; 55:9-16. [PMID: 27788780 DOI: 10.1016/j.alcohol.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022]
Abstract
Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 μM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine-resistant alcohol drinking patterns, this model provides a simple, quick, and robust method for uncovering the mechanisms that promote aversion-resistant consumption.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ji-Hwan Yu
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey A Simms
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - F Woodward Hopf
- Alcohol and Addiction Research Group, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016; 110:431-437. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023]
Abstract
Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 μM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin + quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs.
Collapse
Affiliation(s)
- Kelly Lei
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Scott A Wegner
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ji-Hwan Yu
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - F Woodward Hopf
- Alcohol Center for Translational Genetics, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Banerjee TS, Hazra A, Mondal NB, Das S. The quinoline compound, S4 effectively antagonizes alcohol intake in mice: Possible association with the histone H3 modifications. Neurochem Int 2015; 87:117-27. [DOI: 10.1016/j.neuint.2015.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
13
|
Pharmacological inactivation of the prelimbic cortex emulates compulsive reward seeking in rats. Brain Res 2014; 1628:210-8. [PMID: 25451128 DOI: 10.1016/j.brainres.2014.10.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022]
Abstract
Drug addiction is a chronic, relapsing brain disorder characterized by compulsive drug use. Contemporary addiction theories state that loss of control over drug use is mediated by a combination of several processes, including a transition from goal-directed to habitual forms of drug seeking and taking, and a breakdown of the prefrontally-mediated cognitive control over drug intake. In recent years, substantial progress has been made in the modelling of loss of control over drug use in animal models, but the neural substrates of compulsive drug use remain largely unknown. On the basis of their involvement in goal-directed behaviour, value-based decision making, impulse control and drug seeking behaviour, we identified the prelimbic cortex (PrL) and orbitofrontal cortex (OFC) as candidate regions to be involved in compulsive drug seeking. Using a conditioned suppression model, we have previously shown that prolonged cocaine self-administration reduces the ability of a conditioned aversive stimulus to reduce drug seeking, which may reflect the unflagging pursuit of drugs in human addicts. Therefore, we tested the hypothesis that dysfunction of the PrL and OFC underlies loss of control over drug seeking behaviour, apparent as reduced conditioned suppression. Pharmacological inactivation of the PrL, using the GABA receptor agonists baclofen and muscimol, reduced conditioned suppression of cocaine and sucrose seeking in animals with limited self-administration experience. Inactivation of the OFC did not influence conditioned suppression, however. These data indicate that reduced neural activity in the PrL promotes persistent seeking behaviour, which may underlie compulsive aspects of drug use in addiction.
Collapse
|
14
|
Rodent models for compulsive alcohol intake. Alcohol 2014; 48:253-64. [PMID: 24731992 DOI: 10.1016/j.alcohol.2014.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
Continued seeking and drinking of alcohol despite adverse legal, health, economic, and societal consequences is a central hallmark of human alcohol use disorders. This compulsive drive for alcohol, defined by resistance to adverse and deleterious consequences, represents a major challenge when attempting to treat alcoholism clinically. Thus, there has long been interest in developing pre-clinical rodent models for the compulsive drug use that characterizes drug addiction. Here, we review recent studies that have attempted to model compulsive aspects of alcohol and cocaine intake in rodents, and consider technical and conceptual issues that need to be addressed when trying to recapitulate compulsive aspects of human addiction. Aversion-resistant alcohol intake has been examined by pairing intake or seeking with the bitter tastant quinine or with footshock, and exciting recent work has used these models to identify neuroadaptations in the amygdala, cortex, and striatal regions that promote compulsive intake. Thus, rodent models do seem to reflect important aspects of compulsive drives that sustain human addiction, and will likely provide critical insights into the molecular and circuit underpinnings of aversion-resistant intake as well as novel therapeutic interventions for compulsive aspects of addiction.
Collapse
|
15
|
Roles of the Cerebral Reward System and Gene Mutations in the Development of Alcoholism. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|